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Abstract

Given a class of students, and a pool of questions
in the domain of study, what subset will constitute
a “good” exam? Millions of educators are deal-
ing with this difficult problem worldwide, yet ex-
ams are still composed manually in non-systematic
ways. In this work we present a novel algorithmic
framework for exam composition. Our framework
requires two input components: a student popula-
tion represented by a distribution over overlay mod-
els, each consisting of a set of mastered abilities, or
actions; and a target model ordering that, given any
two student models, defines which should be given
the higher grade. To determine the performance of
a student model on a potential question, we test
whether it satisfies a disjunctive action landmark,
i.e., whether its abilities are sufficient to follow at
least one solution path. We present a novel utility
function for evaluating exams, using the described
components. An exam is highly evaluated if it is
expected to order the student population with high
correlation to the target order. The merit of our al-
gorithmic framework is exemplified with real auto-
generated questions in the domain of middle-school
algebra.

1 Introduction

Assessing the knowledge state of students is an important task
addressed by educators worldwide [Gronlund, 1998]. Knowl-
edge assessment is required not only for the purpose of deter-
mining the students’ deserved grades, but also for diagnos-
tic evaluation used to focus the pedagogical resources on the
students’ observed shortcomings [Lin et al., 2012]. The most
common method for such an assessment is having the stu-
dents answer an exam. Composing an exam from which the
students’ knowledge state can be precisely evaluated is a dif-
ficult task that millions of educators encounter regularly.

The importance of exam composition has increased with
two major developments in computer-aided education. The
first is the growing popularity of massive open on-line
courses (MOOCs) such as Coursera, Kahn Academy, edX,
and Academic-Earth, which offer new educational opportu-
nities worldwide [Yuan et al., 2013]. The second is the im-
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provement of intelligent tutoring systems (ITS). These are
software products that intelligently guide students through
educational activities [Polson and Richardson, 2013].

Exams are still predominantly written manually by edu-
cators. Several attempts have been made at automating this
task, often referred to as restsheet composition [Hwang, 2003;
Guzmén and Conejo, 2005; Lin er al., 2012; El-Alfy and
Abdel-Aal, 2008]. In many of these works, exam questions
are considered to be atomic abstract objects represented only
by a vector of numeric features. Common features include
difficulty level, solving time, and discrimination degree. Us-
ing such a factorial representation, the problem is then de-
fined as a mixed integer programming (MIP) problem. Usu-
ally the objective (maximization) function is the discrimina-
tion level of the entire exam while the remaining features
compose the problem constraints. Different optimization al-
gorithms have been applied to solve such MIP problem for-
mulations [Hwang er al., 2006; 2008; Duan et al., 2012;
Wang et al., 2009].

In these works, assuming a feature vector per question is
given, the process of exam composition is effectively auto-
mated. However, in order to apply these methods in real ed-
ucational settings, the feature vectors of all candidate ques-
tions must be determined. Alas, it remains unclear how this
was done, and this major framework component remains an
atomic blackbox. The reader is left to speculate that perhaps
the feature vectors are manually specified by a field expert. If
s0, these methods may be regarded as only semi-automatic.

In this paper, we present a novel algorithmic framework
for exam generation, which requires minimal manual speci-
fication. We generate real candidate questions, and algorith-
mically determine which domain abilities they test. Student
models are used to represent possible knowledge states, al-
lowing us to determine their performance on candidate ques-
tions. Our algorithm accepts as input a target order between
knowledge states, indicating the relation “more proficient
than”. It then searches the space of possible exams for one
that best reflects this ordering over the student population.

Building the framework requires us to overcome several
difficulties. First we need to define the representation of a
student model or knowledge state. As the number of possible
student models is typically large, we also need a method by
which the user can specify the target student order compactly.
Another challenge is determining the performance of a given



student model on a question and on an entire exam. We ad-
dress this issue by constructing a technique based on graph
search and planning, applicable in procedural domains. Fi-
nally, we need to define a utility function to guide the search
process in the space of possible exams. To this end we use a
correlation measure between the grade order imposed by an
exam and the target student order. ’

2 Problem definition

We define an examination domain as a triplet (@, A, ¥). Itis
composed of a set of candidate questions (), a set of abilities
A = {a1,az, ...,an}, and a sufficiency predicate 1 : 24 x
Q — {1,0}, where ¥(A’, q) = 1 iff the ability set A’ C A is
sufficient to answer the question g € Q.

Next, we define a student model, using the relatively simple
approach known as the binary overlay model [Brusilovskiy,
1994]. By this approach, a student model is defined as a
subset of domain abilities, s C A, mastered by the student.
Therefore, a student s answers a question ¢ € ) correctly
iff ¥(s,q) = 1. The student model, also sometimes referred
to as a knowledge state, may be alternatively represented by
a binary vector with each coordinate indicating mastery of a
matching ability or lack thereof.

We denote the set of all possible models as M = 24 but
assume that not all student models are equally likely. There-
fore we denote by Paq = {(S;, p;)} the distribution over the
possible student models, where §; € M and p; is its propor-
tion in the population.

An exam e of order k. is defined as a vector of k. ques-
tions, and a matching vector of associated non-negative grad-
ing weights: e = ({(q1, ..., q. ), (W1, ..., w, ) ). The grade of
a student model s € M on exam e is simply the sum of grad-
ing weights for questions answered correctly by the student :
g(3,e) = Zlgigke w; - (8, ;).

We turn to define the notion of a good exam. Suppose an
educator teaching a certain domain is asked: What is the per-
fect exam for this domain? Ideally, the educator would spec-
ify, for each pair of students, which is more proficient and
thus deserves a higher grade. Obviously a student knowing
nothing should be ranked inferior to all others, while a student
knowing everything should be ranked superior to all others.
However, to determine the complete order, we rely upon the
educator’s expert knowledge to define the ordering. We call
the desired order, given by the educator, the farget student or-
der, and denote it <, C M?. This is a partial order defining
the binary relation “is more proficient than” between pairs of
students.

Observe that any exam (e) also defines such a partial or-
der between students (=.) according to their grade. For
$1,82 € M, wehave that §1 <. $2 < ¢g(s1,€) < g($2,¢). A
good exam is one for which the resulting student grades ac-
curately reflect the target order, while taking into account the
model distribution P . That is to say, it is more important to
correctly order more likely models than less likely ones. For
this purpose we must make use of some correlation function
C between orders.

We are now ready to define a utility function for evaluating
exams. Given an exam e, an order correlation function C,
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and a target student ordering <., we define the utility of e as
U(e) = C(=e, =<4). Note that the absolute grades resulting
from our generated exams can always be curved to match any
desired absolute grade distribution.

3 Model-based exam generation

In this section we present our algorithmic framework for
MOdel-based Exam Generation (MOEG).

3.1 Examination domains

A reasonable source for candidate questions is a curriculum
textbook or a collection of previous exams. This means that
@ is some finite set of questions selected by the educator or
curriculum supervisor and coded once for the purpose of all
future exam generations.

A more generic approach is to devise a question generat-
ing procedure. In section 4.1 we present an algorithm for
automatically generating questions in algebra. Naturally, this
approach becomes increasingly more difficult with the com-
plexity of the domain. A hybrid approach is to algorithmi-
cally produce variations of existing questions based on user
refinement of constraints [Singh ef al., 2012].

The set of abilities A and a sufficiency predicate v are as-
sumed to be given by the educator. However, for procedu-
ral domains, we introduce an algorithm that automatically in-
duces the sufficiency predicate. Procedural domains are those
where questions are solved by applying a sequence of oper-
ators or actions. Such domains can therefore be represented
as a search graph, where the vertices are possible solution
states S, and the actions are steps executed for solving the
exercise. We assume that the set of search graph actions are
in fact the set of domain abilities A. Examples of applicable
procedural domains include algebra, geometry, trigonometry,
classical mechanics, and motion problems.

We turn to define the sufficiency predicate ¢ : 24 x Q —
{1,0} for procedural domains. An ability set is sufficient
to answer a question iff it contains all abilities needed in
at least one solution path. This type of logical condition
over actions is known as an action landmark. Helmert and
Domshlak [2011] define a disjunctive action landmark as a
set of actions such that any solution must include at least
one of them. We expand the definition to a set of sets of
actions, such that each solution must contain at least one
of the sets. Let S(q) be the set of all solution paths for a
question ¢. The disjunctive action landmark of q is therefore
I(g) = {{alaappearsint}|t € S(q)}, or equivalently, as a
DNF formula: I(q) £ Vies(glNact al. For A" C A q € Q
we have that ¢(A’,q) = 1 iff 34; € l(q) : A; C A’.

In very simple domains, the set of solutions S(g) can be
obtained via exhaustive search. In more complex domains,
however, such a procedure is computationally infeasible. We
can approximate v using an anytime algorithm which collects
solutions by sampling operator sequences of limited length,
defined fully in the pseudo-code of Figure 1.

3.2 Student population

Describing the student model distribution in the general case
requires explicitly defining the probability for each possible



Procedure APPROXIMATE-ACTION-LANDMARK(q)

Constants: runtime limit (T};m ), search depth limit ( Dyim,),
a limit on the number of collected solutions (SO Liim,)
Sols + {}
Repeat until (TIMEUP(T}i,,))

sol <— Follow random action sequence upto length Dy;,,

If sol # None

Sols < Sols U {sol}

ShortestSolsupto <— SO Ly, shortest solutions in Sols
Return {{a € A|a € sol}|sol € ShortestSols}

Figure 1: Pseudo-code for action landmark approximation method

model in M = 24. Due to the exponential size of this
model set, we adopt a simplifying independence assumption
between abilities. By doing so, we reduce the complexity
of distribution specification from exponential to linear in |A|,
while retaining reasonable flexibility. Formally, this simpli-
fication means we assume that a randomly selected student
masters each ability a; € A with probability p; € [0, 1]. Fur-
thermore, we assume that the probability of mastering each
ability is independent and that students are mutually indepen-
dent as well. It follows that the probability of a model is:

P?“(<a1,a2,...,a|A|>)E H Pi- H (1—pi).

:a;=1

i:a;=0

In future work we intend to relax this assumption and
use Bayesian networks for allowing arbitrary dependencies
[Geiger et al., 1990].

3.3 Target student order

Explicitly specifying an order over the set of student models
is also infeasible in the general case due to the exponential
size of the model set M. We therefore propose three meth-
ods for simple order specification. In the first method, the
educator is required to specify a vector of non-negative abil-
ity weights w = (w1, ..., w)4|), indicating the importance of
each ability to domain mastery. Given these, the proficiency
level of a student model 5 = (s1, 52, ..., 514]) € M is defined
as the sum of its mastered ability weights, i.e., the dot product
(s, w) = ¥;w; - s;. Having defined a scalar proficiency level
per student, the target order definition is straightforward. For
any s1,$2 € M :

51 2 $2 & (51,0) < ($2,W) .

The second method uses the order induced by the subset
relation (=X¢). A student who has mastered all the abilities of
another, as well as some additional ones, is naturally consid-
ered more proficient:

51 jg Sy = Vi[s_l [Z} =135 [Z] = ]_] .

The advantage of this method over the first one is that it re-
quires no input from the educator. However, the first method
allows more refined orders to be specified and is thus prefer-
able when the additional input is available.

The third method for target order specification is question-
pool based. It requires a representative set of questions P,
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and defines the order between student models according to
the number of questions in the pool they answer correctly:

51 2p S2 © Bg,ep¥(51,¢) < Xg,ep?¥(S2, i) -

The pool is potentially much larger than the desired exam
size, and thus cannot serve as an exam. In some cases it may
be reasonable to use the entire question set () as the pool.

3.4 Order correlation measure

We have reduced the problem of evaluating an exam e to com-
paring its induced student order (=<.) with the target student
order (<,). For this, we require a correlation measure that
evaluates the similarity between the two orders. We consid-
ered several alternatives such as Kendall’s 7 [1938], Good-
man and Kruskal’s T' [1954], Somers’ d [1962], and Kendall’s
7p [1945]. Eventually we selected the classic Kendall’s 7
for this work, but the others are also adequate candidates.
Kendall’s 7 compares the number of concordant student pairs
(N.) with the number of discordant student pairs (Ng):

N. = [{51,52 € M 51 2 52 A5y 2y 52}
Ny £ {51,582 € M :51 = 52 A 381 = 52|
- A Nc_Nd

("5

A value of 1 implies complete correlation, while a value of
—1 implies complete inverse correlation. Note that this mea-
sure does not account for ties in either of the partial orders,
deeming the full range [—1, 1] unreachable in the presence of
ties.

3.5 Exam utility function

Calculating the order correlation over all possible models is
computationally infeasible. Due to this practical constraint,
we resort to an approximation measure based on a model
sample drawn from the given distribution Pr,. We define
our utility function as Kendall’s 7 computed over the model
sample between the target order and the exam-induced order.

Recall from section 2 that we require the order correlation
measure to reflect the distribution of student models, stress-
ing the significance of more likely models over less likely
ones. Our sample-based correlation measure meets this re-
quirement: The likely models are more likely to be sampled,
perhaps more than once, and thus have a stronger influence on
the measure. The resulting measure approximates the gener-
alization of Kendall’s 7 to non-uniform element weights [Ku-
mar and Vassilvitskii, 2010].

3.6 Searching the space of exams

Our algorithm for exam generation involves three main
phases: adding questions, swapping questions, and adjusting
grading weights. Starting with an empty set of questions, the
algorithm iteratively adds the question for which the result-
ing set yields maximal utility value, using uniform grading
weights. When the question set has reached the desired exam
size, the algorithm turns to consider single swaps between
an exam question and an alternative candidate. The swap
maximizing the utility is performed until a local optimum is



reached, at which point the algorithm proceeds to adjusting
the grading weights.

Recall that the absolute grades of the students are of no
importance to us as we are only interested in the order im-
posed on the student sample. It follows that, theoretically, a
good set of weights would meet the desired property that ev-
ery two subsets have a different sum. Using such a weight
set makes it possible to differentiate between any two stu-
dents who answered differently on at least one exam question,
i.e., they will surely receive different grades. Constructing
a weight set with this property is not difficult, for example:
{1+ pi : p; is the ith prime number} or {1 + & : i € N}
or even a weight set randomly generated from a continuous
range (with a theoretical probability of 1). Of course not all
such candidate weight sets are equivalent in terms of the or-
derings they may impose between subsets.

The weight adjustment performed by our algorithm en-
ables the construction of such a desired weight set by apply-
ing weight perturbations of exponentially decreasing granu-
larity. Starting from the local optimum reached at the end of
the question swapping phase, the algorithm proceeds to per-
form a local search over the space of weight vectors. The
search operators include the addition of a small constant A
(e.g. 0.05) or its negation to any question weight. When a
local optimum is reached, the increment step A is halved and
the process continues this way until no improvement is made.

The algorithm produces exams expected to have good dis-
criminating capabilities. It rejects questions for which the stu-
dent answers are extremely homogeneous, i.e., very difficult
or very easy ones, since such questions contribute little to the
induced order correlation. Moreover, the desired discrimina-
tion is defined by the target order, given as input. Questions
for which proficient students, as defined by input, are more
likely to answer correctly than others, are preferred. The
grading weights of exam questions are expected to behave
similarly. Perhaps contrary to initial intuition, difficult exam
questions are not expected to receive high grading weights.
This behavior, attributed to the lower discriminative capabil-
ity of such questions, is reasonable in real educational set-
tings. An exam weighted directly by difficulty generally re-
sults in a distorted grading curve, as only the few most profi-
cient students will answer correctly the highly weighted ques-
tions.

3.7 Wrap-up

We show in Figure 2 a high-level pseudo-code for the en-
tire exam generation procedure described. It accepts as input
the domain’s ability set A and the student model distribution
Par. For simplicity of presentation, the pseudo-code uses
the default method for defining a target student order (=<).
Therefore the third input parameter is the teacher-specified
ability weight vector .

4 Evaluation

In this section we present an empirical evaluation of the com-
plete MOEG framework over a procedural domain.

Procedure MOEG(A, Paq, W)
Q@ < GENERATE-QUESTIONS()
Foreach g € QQ
I(q) +~ APPROXIMATE-ACTION-LANDMARK(q, A)
M < SAMPLE-STUDENT-POPULATION(Paq)
Foreach 5 € M
Proficiency(3) < Z;w; - s;
=« {(31, 52)| Proficiency(s1) < Proficiency(s2)}
Foreach (s,q) € M x Q  #student s in set notation

1 JtellgstsCt
visq) { 0 otherwise

Foreach exam e and students s1, $2 € M:
grade(si,e) = Zl<i<ke wi - (81, i)
<2 {(51,52)\grad_e(_s"17e) < grade($2,€e)}
Ue) &2 7(=4,=e)  #or other correlation measure

EXAM BUILD:

Initialize exam < Empty Exam

exam < ADD-QUESTIONS(exam, U, k)

exam <— SWAP-QUESTIONS(ezam, U)

A < 0.05 #or any other small value

improved <— TRUFE

While improved
(exam, improved) < ADIUST-WEIGHTS (exam, U, A)
A+ A2

Figure 2: MOEG pseudo-code

4.1 The Domain

The domain over which the evaluation was performed is that
of single variable linear equations, typical of middle-school
algebra courses. Domain questions ask students to solve for
x in equations, e.g., 2z + 5 = 13,and 2 — (—4z + 2(z + 6 —
3x)) = 4.

The ability set

The ability set A, consists of 18 types of algebraic manipu-
lations. We define the following 5 main types of actions and
later decompose them into subtypes:

(U) Unite: —2x + 7z =y 5.

(O) Open multiplication: —3(z +2) =0 —3z — 6.

(D) Divide: 2x = -8 =p z = —4.

(M) Move: bx —2 = -6+ 3x =) 5x = —6 + 2 + 3.
(R) Rearrange: t — 8+ 7z =10 =gz + 7z — 8 = 10.

Each such action type is further decomposed into subtypes
according to the parameters it is applied over. For example,
Unite (U) is decomposed into 8 subtypes according to 3 bi-
nary arguments: the type of terms united (variable or con-
stant), the sign of the first term (+’ or ’-’), and the sign of the
second. In a similar manner each action type is decomposed,
giving us a total of |A| = 18 abilities: 8 (U), 2 (0), 2 (D), 4
(M), 2 (R).

Question set generation

For this algebraic domain we devised a question generating
algorithm. It starts with an equation representing the de-
sired solution, and repetitively applies complicating opera-
tions while retaining equation equivalence.
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The algorithm receives two parameters: depth (d) and
width (w). It begins with a solution equation of the sort
x = c and manipulates it by applying a short random se-
quence of basic operations, resulting in an equation of the
form a,x+by = asx+ by, where the parameters a1, as, b1, bo
may be 0, 1 or any other value. The algorithm then iteratively
performs d “deepening”’ manipulations, transforming expres-
sions of the sort ax + b to o’z + b + c(a”’z + b"”) while
maintaining that a = a’ + ca” and b = b’ + cb”. These
deepening manipulations are performed on random levels of
the equation tree structure, and so may be applied to an inner
part created by a previous iteration.

The algorithm continues with w “widening” iterations
where a random term is split to two, i.e, b = b + V" or
ax = d'z+ d’x (where b =V +b’, a = o' + d’). F-
nally, all terms are shuffled recursively to produce a random
permutation. In all manipulations, the algorithm ensures that
the newly formed coefficients are bounded by some constant
(100).

A set of 160 questions used for evaluation, (), was pro-
duced by applying the described procedure 10 times with
each (w, d) value pair in {0, 1,2, 3}2.

4.2 Empirical Methodology

Ideally we would have liked to evaluate the exams by mea-
suring their fitness over the entire model population. Since
this is computationally infeasible we use an “oracle” sample
for evaluation. Two things are important with regard to this
oracle sample: first, it is taken independently from the utility
sample, and second, it is considerably larger. The resulting
evaluation function is therefore (1) unbiased in evaluating the
algorithm’s produced exams, and (2) a better approximation
of the entire distribution. For completeness, we present the
values of both the guiding utility and the oracle evaluation in
some graphs of this section.

Four independent variables were experimented with: the
utility sample size, the exam size k., and two parameters con-
trolling the student population (Px) and ability weights (w):
€p, and €5 respectively. The ability probabilities {p;} were
independently sampled from Uni(0.75 + ¢,) and the {w;}
values were sampled from Uni(l &+ ez). Default values,
used unless stated otherwise, are sample Size = 400, k. =
10,¢, = 0.15, ¢, = 0.5.

A sample of size 1000 was used for the oracle. All results
presented are based on 50 independent experiment runs us-
ing the same question set (). The derivation of their action
landmarks was also performed once'.

4.3 Experiments

We tested the performance of the MOEG algorithm and com-
pared it to three baseline algorithms we defined®. Uniform
generate & test generates random uni-weight exams and eval-
uates them using the search utility, maintaining the best exam

!parameters: Dyipm = 40, SO Liir, = 100, Tyim = 300 sec.

>We could not compare MOEG to testsheet composition methods
such as [Hwang er al., 2006], as they work with completely different
input and cannot be applied to the setup we use.
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Figure 3: Performance over time
found yet. An improved variation is the weighted gener-

ate & test, which makes a biased selection of exam ques-
tions inspired by the Item Response Theory concept of item-
information [De Ayala, 2009], reflecting a question’s useful-
ness in exams. It selects questions with probability propor-
tional to their information level defined as p(1 — p), where
p is the proportion of utility sample students answering the
question correctly. Note that these two baseline algorithms
use a key component of our framework — the utility func-
tion.

The third baseline algorithm, the diversifier, attempts to
maximize the diversity of exam questions in terms of syntacti-
cal features, because we assume that this will better differenti-
ate between students. We defined six question features: num-
ber of constant terms, variable terms, positive coefficients,
negative coefficients, parentheses, and overall terms. The fea-
ture values are normalized as Z-scores to account for the dif-
ferent scales. The algorithm starts with a random question,
then iteratively selects a question to add, maximizing the sum
over pairwise Euclidean distances between questions. This is
followed by a similar swapping phase.

Figure 3 displays MOEG’s improvement over time during
the question selection and swapping phases, compared to the
baseline competitors. We can see that the MOEG curve sur-
passes the others, even with a partial exam of 6 questions out
of 10. The weighted generate and test performs better than
the uniform version as expected, & the diversifier performs
surprisingly poor.

Another algorithmic variation we tested allows question
swapping during all phases, i.e. question addition and weight
perturbation. It might have been reasonable to expect bet-
ter performance due to the additional flexibility we allow the
algorithm. However, results show that this is not the case
and the proposed alternative algorithm yields nearly equiva-
lent results. The runtime it requires, however, is significantly
longer, as may be expected due to the larger branching factor.

Longer exams are expected to allow a better ordering of the
student population. Figure 4 presents how the exam length,
k., affects algorithm performance. As expected, both curves
increase monotonically with a diminishing slope. As ex-
pected, the utility is higher than the oracle since the search
algorithm tries to optimize it.

Increasing the size of the utility sample is expected to im-
prove the quality of the utility function. Figure 5 shows the
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effect of the utility sample size on performance. Indeed, we
can see that the performance of the algorithm improves as
sample size increases. The difference between the value of
the oracle and that of the search utility can be viewed as the
estimation error of the latter. We can see that this error de-
creases as larger sample sizes are used.

An additional experiment was conducted to test the sta-
bility of the framework with respect to the €, and €3 pa-
rameters. We ran MOEG with ¢, € {0,0.05,0.15,0.25},
es € {0,0.1,0.3,0.5} and tested the average oracle evalua-
tion and standard deviation over 50 runs. From the generally
consistent statistics acquired, and in the absence of any clear
trend, we conclude that the framework is stable with respect
to the model population and the ability weights.

5 Discussion

This paper presents MOEG, a generic framework for au-
tomating exam composition, an important task in the peda-
gogical process. The framework is applicable to any domain
where a set of cognitive abilities A and a sufficiency predi-
cate ¢ may somehow be defined. Automatically deducing v
via action landmarks requires further that solutions be rep-
resented as paths in search graphs, with A as the operator
set. Several such procedural domains may come to mind,
one of which is geometry. A classic ITS paper [Anderson
et al., 1985] presents a tutor for teaching geometrical reason-
ing. The tutor utilizes a library of inference rules: triangle
congruency/similarity, properties of polygons, transitivity of
angle/segment congruency, etc. It is implemented as a pro-

duction system and used to generate proofs, using different
combinations of production rules. This solving process is
naturally formalized as a graph search with inference rules
as operators.

The idea of inference steps as operators is also applicable
in various computational domains. Consider, for example,
inferring the intersection point of two functions in analyti-
cal geometry, the length of a right triangle’s hypotenuse in
trigonometry, or the 2D location at time ¢ of an object mov-
ing according to Z(t). These example inferences may serve
as arcs on solution paths of three different domains in which
diverse sets of useful inference rules exist.

Automatically deducing v for questions is also possible
for domain types other than search spaces. For example, do-
mains where solutions may be obtained by automated theo-
rem provers are also MOEG-applicable with a simple exten-
sion. The abilities A will be the axioms, lemmas, and theo-
rems that a student should know, while solutions will be com-
plete proof trees. Given a proof tree representing a solution,
the axioms at the leaves will be considered the set of required
abilities for the solution. Collecting these ability sets from
different proofs found by the theorem prover results in suf-
ficiency predicates of familiar form: disjunctive action land-
marks.

In other domains, different methods for deducing v may
exist. Consider the domain of combinatorial problems in
which problems are given in text, e.g., “How many non-
empty subsets does a set of size N have?” It is natural
here to define domain abilities as combinatorial concepts such
as non-redundant combination (nrc), summation principle
(sum), redundant permutation (rp), or subtraction princi-
ple (sub). Automatically deducing 1 from the question text
alone is beyond the state of the art, but given the set of pos-
sible solutions, the task becomes feasible using standard syn-
tactic parsers. For the question above the solution set is

{ZZ;‘ (N ),ZN — 1}, and the resulting sufficiency predi-

7
cate is ¢ = (nrc A sum) \/(rp A sub).

Item Response Theory (IRT) [De Ayala, 2009] is another
paradigm that addresses test design by mapping ability levels
to performance on questions. /RT assumes the existence of a
(typically unidimensional) latent trait per student indicating
ability level. Furthermore, every question (item) is assumed
to have a representative item characteristic curve (ICC) that
maps ability level to success probability. Several accepted
parametric /CCs exist, e.g., the classic 3-parameter logistic
model [Birnbaum, 1957] with parameters for item difficulty,
discrimination, and guessing probability. Our work differs
from the above in several respects. We replace the latent trait
representing students with student models, and we replace the
items represented by predefined /CC functions, controlled by
a few parameters, with formal structures, manipulated in the
search for solutions. Finally, we replace the probabilistic pre-
diction of student performance with deterministic algorithmic
inference, based on the student model and question structure.
Our framework produces well-balanced exams that rank stu-
dents by proficiency level as defined by the educator. We be-
lieve this is an important step towards making Al techniques
practical for improving education.
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