Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

Joint POS Tagging and Text Normalization for Informal Text

Chen Li and Yang Liu
University of Texas at Dallas
Richardson, TX, 75080, USA

{chenli,yangl} @hlt.utdallas.edu

Abstract

Text normalization and part-of-speech (POS) tag-
ging for social media data have been investigated
recently, however, prior work has treated them sep-
arately. In this paper, we propose a joint Viterbi
decoding process to determine each token’s POS
tag and non-standard token’s correct form at the
same time. In order to evaluate our approach, we
create two new data sets with POS tag labels and
non-standard tokens’ correct forms. This is the
first data set with such annotation. The experi-
ment results demonstrate the effect of non-standard
words on POS tagging, and also show that our pro-
posed methods perform better than the state-of-the-
art systems in both POS tagging and normalization.

1 Introduction

There has been a rapid increase in social media text in the
last few years, including the mobile phone text message
(SMS), comments from the social media websites such as
Facebook and Twitter, and real-time communication plat-
forms like MSN and Gtalk. Unfortunately, traditional natural
language processing (NLP) tools sometimes perform poorly
when processing this kind of text. One reason is that social
text is very informal, and contains many misspelled words,
abbreviations and many other non-standard tokens.

There are several ways to improve language processing
performance on the social media data. One is to lever-
age normalization techniques which can automatically con-
vert the non-standard tokens into the corresponding standard
words. Intuitively this will ease subsequent language pro-
cessing modules for the domain of social media that contains
non-standard tokens. For example, if ‘2mr’ is converted to
‘tomorrow’, a text-to-speech system will know how to pro-
nounce it, a POS tagger can label it correctly, and an infor-
mation extraction system can identify it as a time expres-
sion. This task has received increasing attention in social
media language processing. Another way is to design spe-
cial models and data or apply specific linguistic knowledge
in this domain [Ritter et al., 2011; Owoputi et al., 2013;
Ritter et al., 2010; Foster et al., 2011; Liu et al., 2011;
2012]. For example, the system in [Ritter er al., 2011] re-
duced the POS tagging prediction error by 41% compared

1263

with the Stanford POS Tagger, and by 22% in parsing tweets
compared with the OpenNLP chunker tool. [Owoputi et al.,
2013] created a new set of POS tags for Twitter data, and
showed improved POS tagging performance for such data
when using their tag set and word cluster information ex-
tracted from a huge Twitter corpus.

In this paper, our objective is to perform POS tagging and
text normalization at the same time. Through analysis of pre-
vious POS tagging results in social media data, we find that
non-standard tokens indeed have a negative impact on POS
tagging. They affect not only the accuracy of the POS tags for
themselves, but also their surrounding correct words because
context information is an very important feature for POS tag-
ging. Therefore, we expect that explicitly performing nor-
malization would improve POS tagging accuracy, for both the
non-standard words themselves and their context words. On
the other hand, previous work in normalization mostly used
word level information, such as character sequences and pro-
nunciation features. Some work [Yang and Eisenstein, 2013;
Li and Liu, 2014] leveraged unsupervised methods to con-
struct the semantic relationship between non-standard tokens
and correct words by considering words’ context. Deeper lin-
guistic information such as POS tags has not been incorpo-
rated for normalization. Motivated by these, we propose to
jointly perform POS tagging and text normalization, in order
to let them benefit each other. Although joint learning and
decoding approaches have been widely used in many tasks,
such as joint Chinese word segmentation and POS tagging
task [Zhang and Clark, 2008], joint text sentence compres-
sion and summarization [Martins and Smith, 2009], this is
the first time to apply joint decoding for normalization and
POS tagging in informal text.

Therefore, our work is related to POS tagging, a funda-
mental research problem in NLP, which has countless appli-
cations. One of the latest research on POS tagging in so-
cial media domain is from [Gimpel et al., 2011; Owoputi
et al., 2013]. They built a POS tagger for tweets using 25
coarse-grained tags and also provided two date sets anno-
tated with this special tag set. Then they incorporated un-
supervised word cluster information into their tagging sys-
tem and achieved significant improvement on tagging perfor-
mance. Another line of work closely related to ours is text
normalization in social media domain. Lots of approaches
have been developed for this task, from using edit distance

[Damerau, 1964; Levenshtein, 1966], to the noisy channel
model [Cook and Stevenson, 2009; Pennell and Liu, 2010;
Li and Liu, 2012a] and machine translation method [Aw et
al., 2006; Pennell and Liu, 2011; Li and Liu, 2012b]. Nor-
malization performance on some bench mark data has been
improved a lot.

Our contributions in this paper are as follows: (1) To the
best of our knowledge, this is the first time that an effective
and joint approach is proposed to combine the normalization
and POS tagging techniques to improve the performance of
these two tasks on English social media data; (2) We created
two data sets for this joint task. In these two data sets, every
token is labeled with POS tag and a correct word if it is a non-
standard token; (3) We demonstrate the effectiveness of our
proposed method. Our results outperform the state-of-the-art
POS tagger and normalization systems in two different data
sets. Our analysis shows the impact of non-standard words
on POS tagging and the effect of various factors in the joint
model.

2 Data Set

Since there is no prior work performing joint POS tagging
and normalization of non-standard tokens at the same time,
we created a data set' for such a joint task by reusing previous
widely used data for each of these two tasks.

[Owoputi er al., 2013] released two data sets, called
OCT27 and DAILY547 respectively. These two data sets are
annotated with their designed POS tag set (see their paper for
details). All together there are 2374 tweets. We asked six
native English speakers (they are also social network heavy
users) to find the non-standard tokens from these tweets, and
also provide the corresponding correct words according to
their knowledge. The annotation results showed that 798
tweets contain at least one non-standard token (The rest 1576
sentences have no non-standard tokens). We put these 798
tweets in one data set, which has both POS tag labels and
non-standard tokens with their correct word forms. This data
set is called Test Data Set 1 in the following of this paper.

[Han and Baldwin, 2011] released a data set including 549
tweets. Each tweet contains at least one non-standard to-
ken and the corresponding correct word. In order to label
POS tags for these tweets, we first trained a POS tagging
model based on the 2374 tweets mentioned above, using the
same features from [Owoputi ef al., 2013]. Then we applied
this model to these 549 tweets and asked one English native
speaker to correct the wrong tags manually. After this proce-
dure, these 549 tweets also have POS tags and non-standard
tokens’ annotation. We call it Test Data Set 2 in the rest of the
paper. Please note that every sentence in these two test sets
has at least one non-standard token.

3 POS Tagging and Normalization Baseline

3.1 POS Tagging

[Owoputi et al., 2013] used a Maximum Entropy Markov
model (MEMM) to implement a POS tagger for Twitter do-
main.In addition to the contextual word features, they in-

"http://www.hlt.utdallas.edu/~chenli/normalization_pos/

1264

cluded other features such as the cluster-based features, a
word’s most frequent POS tags in Penn TreeBank” tags, a
token-level name list feature, which fires on words from
names from several sources. Please refer to [Owoputi et al.,
2013] for more details about their POS tagging system and
the features. We built a POS tagger baseline using CRF mod-
els, rather than MEMM, but kept the same features as used in
[Owoputi et al., 2013].

To help understand our proposed joint POS tagging and
normalization in the next section, here we briefly explain the
Viterbi decoding process in POS tagging. Figure 1 shows the
trellis for part of the test word sequence ‘so u should answr ur
phone’. Every box with dashed lines represents a hidden state
(possible POS tag) for the corresponding token. Two sources
of information are used in decoding. One is the tag transition
probability, p(y;|y,), from the trained model, where y; and y;
are two POS tags. The other is p(y;|t2, t1tats), where y; is the
POS label for token to, t; is the previous word and ¢3 is the
following word. The reason we drop the entire sequence from
the condition is because all the features are defined based on
a three-word window.

p(NIN)

.
i

- - e AN e
I N N \
/- p(N[u) ':{‘ | p(N[should) 'x\ p(N|answr) \
R ,/'p(/v/v%_ AN .-
| e T e
. “\pVIV) . ; .
\.\ pviy) \ pWishouid) | p(vianswr) \I
: / /

Figure 1: A simple trellis of Viterbi decoding for POS tag-
ging.

3.2 Normalization Model

[Li and Liu, 2014] achieved state-of-the-art normalization
performance on Test Data Set 2 by using a reranking tech-
nique that combines multiple normalization systems. We use
the same normalization method in this study. Briefly, there
are three supervised and two unsupervised normalization sys-
tems for each non-standard token, resulting in six candidate
lists (one system provides two lists). Then a Maximum En-
tropy reranking model is adopted to combine and rerank these
candidate lists, using a rich set of features. After reranking,
for each non-standard token ¢, the system provides a candi-
date list, and a probability p(s;|t) for each candidate s;.
Viterbi decoding is used for sentence level normalization
after generating the token level normalization candidates and
scores. Figure 2 shows a decoding trellis for normalization.
Here for the non-standard tokens, the hidden states represent
normalization word candidates. For a standard word that does
not need normalization, we can treat it as a special case and
use a state with the word itself (the normalization probability
is 1 in this case). The scores used in decoding are: the proba-
bility of a normalization candidate word s; given the current

“http://www.cis.upenn.edu/ treebank/

token t;, p(s;|t;), which is from the token level normaliza-
tion model; and the transition probability from a language
model, p(s;|s;), where s; is a candidate word for the previ-
ous token ¢;_; (for the standard word case, it will be just the
word itself). Note that in the trellis used for normalization,
the number of hidden states varies for different tokens. The
trellis shown here is for a first-order Markov model, i.e., a
bigram language model is used. This is also what is used in
[Li and Liu, 2014]. The states can be expanded to consider a
trigram language model, which is actually what we will use
later in the joint decoding section.

e PGV OOSHE] e,

; ugly < .

Q‘gg/v/ ur)
\

H answer
A

7
I

plshould|
you)

planswer| Ny #plugly/anser)
answr) \%
>

\ plyour|answer)
\
8

/

planswer[}

should) | ¥
!

\
\
‘\ ‘\
\ A\ planser|answi) - -
plyouifu) plshouldy,, { blanser| f payourfur) |y
T your) N\, i should) . -
. N, i/

ly

Figure 2: A simple trellis of Viterbi decoding for Normaliza-
tion

4 Proposed Method

For a given sequence of words, our task is to find the normal-
ized sequence and the POS tags for the words. Rather than
using a pipeline method that performs normalization first, and
then POS tagging on the normalized sequence, we propose to
use joint decoding to predict the normalized words and the
POS tags together. This is expected to avoid generating the
single best, but likely incorrect normalization hypothesis to
be used for POS tagging, as well as be able to leverage POS
information to help normalization.

4.1 Joint Decoding for POS and Normalization

Our proposed joint decoding approach for POS tagging and
normalization is to combine the above two decoding proce-
dures together as one process. In this joint decoding process,
for a token in the test sequence, its hidden states consist of a
normalization word candidate and its POS tag. Since for POS
tagging and normalization, we use information from the pre-
vious and the following word (extracting features in POS tag-
ging, n-gram LM probability in normalization), we put these
contextual words explicitly in the states.

Figure 3 shows part of the trellis for the example used pre-
viously (test sequence ‘u should answr ur’). It can be thought
of as a combination of Figure 1 and Figure 2. Let us assume
that each non-standard token (‘u’, ‘answr’ and ‘ur’) has two
normalization candidate words. They are you and your for
u, answer and anser for answr, and ugly and your for ur. A
black box with dashed lines in Figure 3 represents a state.

There are some properties of this trellis worth pointing out.
In joint decoding, each state is composed of a POS tag and
normalization word. Furthermore, as mentioned earlier, we
include the previous word and the following word in the state

1265

(these are the normalization word candidates for the previ-
ous and next word). For one state (N, should, you, answer),
p(N|should, you, answer) means the probability of word
should’s POS is Noun, given its previous token’s (i) nor-
malization is ‘you’ and next token’s (answr) normalization
is ‘answer’. The green box in Figure 3 indicates the same
three-word sequence, with different POS tags (one green box
corresponds to the states for a token in Figure 1, where the
word and context are fixed, and the states are just about POS
tags). In this trellis, not all the transitions among the states
for two consecutive tokens are valid. Figure 3 shows an ex-
ample — a path from state (N, should, you, answer) to state
(N, anser, should, your) is illegal because they do not share
the same word sequence. This is a standard note when using
trigram LM in decoding.

Regarding the number of states for each token, it depends
on the number of POS tags (k), and the number of normal-
ization word candidates of the current token (1), the previous
token (m), and the following token (n). For a standard word,
it has just one normalization candidate, the word itself. The
number of the hidden states of a token is [x m x n * k.

Using such defined states, we can perform Viterbi decod-
ing to find the best state sequence, i.e., the best POS tags and
normalization results. The following scores need to be con-
sidered to compute the forward score for each state:

e p;: the probability of the state’s POS tag given the three
words in this state;

e p: the probability of the normalization candidate for the
token;

e p3: the transition probability of the POS tag from last
state to that of the current state;

e py: trigram language model probability from the pre-
vious state to the current state (current word given the
previous state’s first two words);

The first two probabilities are related to emission probabil-
ities between the hidden state and the observed token, com-
ing from the POS tagger and the normalization model respec-
tively. We use a parameter o when adding them together.
Again, for a standard word, its normalization candidate is just
itself, and p2 is 1 in this case. The last two probabilities are
about the transition probability between the two states. We
use 3 when combining the POS tag transition probability with
the trigram LM probability.

For a hidden state s of an observed token ¢;, if its normal-
ization candidate is ¢, its previous and following words are
ct;_, and ¢y, ,, and its POS tag is y;, we define the forward
value of this hidden state as following:

f(s) max [f(s') +

s'eS
Q * Py (yj|Ct7 Cti_ cti+1) + p2(ct|ti) +
p3(y;lpos(s’)) + B * pacelbigram(s’))]

(D

in which S is the set of all the hidden states of the previ-
ous observed token with valid transitions to this current state;
function pos returns the state’s POS tag, and bigram returns
the state’s current word and its previous context word. We

p(answer|[you should)

"""" I PININ) T

N | should - N | answer 1 L N| ugly -
(you answer) l > (should ugly) (answer t;,) 1
v ~ .
N [N ! I \\s ! 1
. i L, \ SO e pmmmmmmmmuummuu N
V | you :)’\\ \\ V/|should Y N V | answer 1 \\ V| ugly e
| NN \ ~, A I
(t,, should) A (you answer) }, \ (should ugly) i& . =% (answer H+1) .
1 >, p(answdri] you should) \ 1 1
.\ PIVTRY 1 ’ : .
1 \ I : . p(answe\ansv!r) 1
. \\
. — -— L -
: G = \Fososes |
. W . N .
| N | your . N | should p(Nshould, 'N N | anser 1 \ N | your i
(t., should) (you anser) . (should your) (anser t,;)
- 1 .\you anser) . |\ h U .
L SO | T B S 1 . 1
______ B ! B ! ¢ EEEBEEIEGL Lo !
1 V | your 1 V | should \ 1 V | anser 1 \SE(‘\d). V|your i° ...
1 . >. hould o ould your; (t.)
(t,y should) i . (you anser) ‘ / d (should your) Y\ . ~ anser t,;, .
- . M h 1

— = — = ll

p(V|should, .
y’ouanser) //

) /
Eng

L "o
- * p(V]anser| | & s : -
. I * should your) | ’ / 1) 1
\. p(anser|answr) l/ /
: . ‘l//./ .
\ ' z '
B2 S e

Figure 3: An example trellis for joint decoding.

can use backtracking pointers to recover the highest scoring
state sequence.

4.2 Running Time

Assuming the number of normalization candidates for each
non-standard token is N (for some words, there may be fewer
candidates if the normalization systems cannot provide N
candidates), our proposed algorithm’s running time is roughly
O(LN*K?), where L is the length of the sequence, and K is
the number of POS tags. This is because there are N3 K hid-
den states for a non-standard token, and there are N K states
from the previous token that have valid transitions to each
state of the current token. Of course, this is a worst case
scenario. In practice, a sentence has many standard words
that do not need normalization, and can significantly reduce
the number of states to be considered (N3 factor becomes 1).
Furthermore, pruning can be applied to remove the candidate
states for each position. When using the pipeline approach,
the normalization decoding’s complexity is O(LN*) (similar
reason as for the joint decoding, except that the POS tag is
not part of the states when trigram LM is used), and the com-
plexity for POS tagging is O(LK?).

4.3 Training

In the description above, we assumed that the POS tagger and
the normalization model are trained separately, using their
own labeled data sets, and the two models are combined in
the joint decoding process. However, it is possible to train
the two models in a joint fashion, if there is a fully anno-
tated corpus that is labeled with POS tags and non-standard
token’s correct form. Structured perceptron [Collins, 2002]
can be applied to update the weights in each model based on
the current results using joint decoding. In addition, this kind

of training strategy is also applicable for partially annotated
corpus. For example, if a corpus has only normalization la-
bel, we can use it to train a normalization model using the
joint normalization and POS decoding results.

5 Experiments and Results
5.1 Experiment Setup

To evaluate the impact of normalization on POS tagging, and
the benefit of joint decoding on both normalization and POS
tagging, we use the following experimental setups.

(a). POS tagging

As we mentioned in Section 2, 798 tweets out of 2,374
are selected as Data Set 1. Therefore when testing on
the Data Set 1, we used the rest 1576 tweets with the
POS labels as the training data for the CRF POS tagging
model, implemented using the Pocket CRF toolkit. When
testing on Data Set 2, we use all the 2374 tweets to train
the POS tagger.

(b). Normalization

For the normalization model, all the supervised normal-
ization systems are trained using the data released by
[Li and Liu, 2014].3 It has 2,333 unique pairs of non-
standard tokens and standard words, which are collected
from 2,577 Twitter messages (selected from the Edin-
burgh Twitter corpus [Petrovic et al., 2010]). This train-
ing data has only normalization annotation, not POS in-
formation. We first used the Maximum Entropy rerank-
ing for token level normalization, and then a sentence
level decoding process (introduced in Section 3.2) was

*http://www.hlt.utdallas.edu/~chenli/normalization/

1266

used to generate normalization results.* We tried bigram
and trigram language models during sentence level de-
coding.

(c). Normalization + POS tagging
In this experiment, all the tweets are first normalized us-
ing the above normalization system in (b) (with only best

hypothesis), followed by POS tagging, described in (a).

(d). Oracle Normalization + POS tagging

Here for each non-standard word, we use the reference
normalized words. POS tagging is then applied to these
normalized tweets. This can be considered as an oracle

performance.

(e). Joint Decoding using Separately Trained Models

The two setups above use a pipeline process: normaliza-
tion followed by POS tagging. Our first joint decoding
experiment uses the POS tagger and the normalization
models trained independently. Joint Viterbi decoding is
used to combine the information from these models to
make the final prediction. The number of non-standard
token’s candidates is set as 10, and parameter « and
are both set as 0.8.

(f). Joint Decoding using Partial Jointly Trained Model

This one also uses joint decoding; however, we apply
perceptron training strategy and joint decoding process
to train a normalization model, while keeping the POS
model fixed. We could also use this strategy to train a
POS tagging model if the 1576 tweets with POS labels
also have non-standard tokens. In addition, we could
simultaneously train both models if we have the corpus
with both labels. However, data with such annotations is
quite limited (they are used as our test sets). Therefore,
we leave the fully joint training task for future research.

5.2 Experiment Results

Table 1 shows the POS tagging and normalization accura-
cies using different setups. Note that we assume we know
which words are non-standard words and need normaliza-
tion, similar to previous work in [Han and Baldwin, 2011;
Yang and Eisenstein, 2013; Li and Liu, 2014]. We can see
from the table that: (1) The POS tagging accuracy of the sys-
tem without normalization is worse than all the others with
normalization. (2) In terms of normalization results, per-
formance of the normalization system with a second-order
Markov model is better than that using first-order. (3) Us-
ing joint decoding yields better accuracy for both normaliza-
tion and POS tagging than the pipeline system that performs
normalization and then POS tagging. (4) The joint decoding
system with the normalization model trained from partially
joint training with the perceptron strategy outperforms that
with the models trained independently. (5) When all the non-
standard tokens are correctly normalized (oracle setup), the
POS tagging accuracy is the highest, as expected.

“This normalization result is the state-of-the-art performance on
Test Set 2.

1267

Test Set 1 Test Set 2
System
Norm POS | Norm POS
POS w/o Norm 0 90.22 0 90.54
Pipeline Norm{} + POS 76.12 90.8 | 86.91 90.64
Pipeline Norm] + POS 76.96 9091 | 87.01 90.68
Norm Oracle + POS 100 92.05 | 100 91.17
Joint decoding 77.03 91.04 | 87.15 90.72
Separately Trained Model

foint decoding 7731 9121 | 87.58 90.85

Partially Joint Trained

Table 1: Normalization and POS tagging results from differ-
ent systems on two data sets. All the results are accuracy (%).
1 Using first-order Markov Viterbi decoding in Norm system
I Using second order Markov model in Norm system.

5.3 Impact of Candidate Number

As mentioned in Section 4.2, the normalization candidate
number is a key variable affecting the running time in our
proposed method. Fortunately, a good normalization model
can already rank the most possible candidates in the top. Us-
ing the token level normalization reranking results, we find
that the top 20 candidates can already provide more than 90%
precision in Test Set 2, though the top 1 accuracy is far from
that; therefore it seems unnecessary to use more than 20 can-
didates in the joint decoding process. Figure 4 shows the av-
erage number of hidden states for each token when varying
the maximum number of the normalization candidates. The
Y-axis uses a relative value, in comparison with that when the
candidate number is set as 1. We can see that on average the
increasing rate is not bad (the worst case is N'3). In addition, a
typical tweet rarely has more than 3 consecutive non-standard
tokens. Table 2 shows the frequency of different numbers of
consecutive non-standard tokens in the two test data sets. Ob-
viously, most consecutive non-standard tokens are fewer than
3 tokens. The average consecutive non-standard token num-
ber in a tweet is 1.78 and 2.14 in the two data sets, while the
average length of tweets in two test sets is 16.11 and 19.24
respectively. Therefore, the worst complexity we discussed
earlier rarely happens in practice.

T T T
Test Set 1 —+— }
Test Set 2

30

25
20
15
10

Relative Hidden State Number

8

10 12 14 20

Candidate Number

Figure 4: The average number of hidden states for each token
in the two test sets when varying the number of normalization
candidates.

of consecutive

non-standard token 1 2 314 6
Freq in Test Setl 1072 | 128 |24 |3 |0 | 2
Freq in Test Set2 879 | 106 | 15|42 |1

Table 2: Frequency of different numbers of consecutive non-
standard tokens.

Intuitively deceasing the normalization candidate number
for a non-standard token can speed up the decoding process,
but hurts the normalization results and subsequently the POS
tagging results. Therefore a study of the trade-off between the
speed and accuracy is needed. Figure 5 shows the speed and
performance as the number of candidates varies. The speed is
also a relative value to that when the candidate number is 1.
For example, in Test Set 1 when the candidate number is set
as 20, its average speed of decoding a tweet is almost 70 times
slower than that when candidate number is set as 1. From this
Figure, we can see that when the candidate number is set to
5, both the normalization and POS tagging accuracy do not
change much compared to when using 20 candidates, but the
speed is about 4 times faster.

92 LRSS 80

90 A 70

88 60

86 POS Tag Accuracy —¥— 50
Normalization Accuracy —»—

Ave Speed Per Tweet

84 40

82 20

Relative Decoding Speed

80
20

78

POS Tagger & Normorlization Accuracy

76
T T T T T O N S SN Y

7 8 9 10 11 12 13 14 15 16 17 18 19

S

Candidate Numeber (Test Set 1)

92 U T T T T T T T 70

90 60

50
88

40

86 POS Tag Accuracy —¥—

Normalization Accuracy —»—
Ave Speed Per Tweet

30

84
20

Relative Decoding Speed

82

POS Tagger & Normorlization Accuracy

80 S T I S B |
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Candidate Number (Test Set 2)

Figure 5: Tradeoff between performance and speed.

5.4 Error Analysis

Table 3 shows the POS tagging results separately for non-
standard tokens and standard words on Test Set 1. We can
see that normalization has a significant impact on the non-
standard words. As expected, as normalization performance
increases, the POS tagging errors for the non-standard words
decrease. In comparison, the effect of normalization on the
standard words is much smaller. In the oracle system, the
POS tagging errors for the non-standard tokens are signif-
icantly lower than that of our proposed system, suggesting
there is still quite some room for improvement for normaliza-
tion and POS tagging.

1268

Non-standard | Standard
System
Token Err Word Err
POS w/o Norm 25.46 7.82
Pipeline Norm{} + POS 19.90 7.65
Oracle 10.74 7.60
Joint decoding 19.00 751
Partially Joint Trained

Table 3: POS tagging errors for non-standard tokens and stan-
dard words in Test Set 1. I Using second order Markov model
in Norm system.

A detailed error analysis further shows what improvement
our proposed method makes and what errors it is still mak-
ing. For example, for the tweet ‘I can tell you tht my love
..., token tht is labeled as ‘verb’ when POS tagging is done
on the original tweet (i.e., no normalization is performed).
When POS tagging is applied to the normalized tweet, ‘tht’
is normalized as that, and the POS tag is also changed to the
right one (subordinating conjunction). We noticed that joint
decoding can solve some complicated cases that are hard for
the pipeline system. Take the following tweet as an exam-
ple: ‘they’re friiied after party !’. Our joint decoding suc-
cessfully corrects friiied to fried and thus labels They’re as
L(nominal+verbal). However, the pipeline system first cor-
rected friiied as friend, and then POS tagging system labeled
They’re as D(determiner). In addition, when there are consec-
utive non-standard tokens, typically the joint decoding pro-
cess tends to make a better decision. For example, ‘tats
crazin’ is part of a tweet, and its correct form is ‘that’s crazy’.
The pipeline system first normalizes tats to thats and crazin
to crazing, and in the subsequent POS tagging step, ‘crazin’ is
labeled as noun, rather than adjective. But the joint decoding
system correctly normalizes and labels both of them.

6 Conclusion and Further Work

In this paper we proposed a novel joint decoding approach
to label every token’s POS tag and correct the non-standard
tokens in a tweet at the same time. This joint decoding com-
bines information from the POS tagging model, the token
level normalization scores, and the n-gram language model
probabilities. Our experimental results demonstrate that nor-
malization has a significant impact on POS tagging and our
proposed method also improves both POS tagging and nor-
malization accuracy and outperforms the previous work for
both tasks. In addition, to our knowledge, we are the first
to provide a tweet data set that contains both POS annota-
tions and text normalization annotations for English corpus.
Although our proposed method is more computationally ex-
pensive than the pipeline approach, it is applicable in prac-
tice when choosing suitable parameters, without performance
loss. In the future, we plan to create a training set which has
both POS tag and normalization annotation, allowing us to
use the joint training strategy to train the POS tagging model
and normalization model at the same time.

References

[Aw et al., 2006] Aiti Aw, Min Zhang, Juan Xiao, and Jian
Su. A phrase-based statistical model for sms text normal-
ization. In Processing of COLING/ACL, 2006.

[Collins, 2002] Michael Collins. Discriminative training
methods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings of
EMNLP, 2002.

[Cook and Stevenson, 2009] Paul Cook and Suzanne Steven-
son. An unsupervised model for text message normaliza-
tion. In Proceedings of NAACL, 2009.

[Damerau, 1964] Fred J Damerau. A technique for computer
detection and correction of spelling errors. Communica-
tions of the ACM, 7(3):171-176, 1964.

[Foster et al., 2011] Jennifer Foster, Ozlem Cetinoglu,
Joachim Wagner, Joseph Le Roux, Stephen Hogan,
Joakim Nivre, Deirdre Hogan, Josef Van Genabith, et al.
hardtoparse: Pos tagging and parsing the twitterverse.
In Proceedings of AAAI 2011.

[Gimpel et al., 2011] Kevin Gimpel, Nathan Schneider,
Brendan O’Connor, Dipanjan Das, Daniel Mills, Jacob
Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey
Flanigan, and Noah A. Smith. Part-of-speech tagging for
twitter: Annotation, features, and experiments. In Pro-
ceedings of the ACL, 2011.

[Han and Baldwin, 2011] Bo Han and Timothy Baldwin.
Lexical normalisation of short text messages: Makn sens a
#twitter. In Proceeding of ACL, 2011.

[Levenshtein, 1966] Vladimir I Levenshtein. Binary codes
capable of correcting deletions, insertions and reversals.
In Soviet physics doklady, volume 10, page 707, 1966.

[Li and Liu, 2012a] Chen Li and Yang Liu. Improving text
normalization using character-blocks based models and
system combination. In Proceedings of COLING, 2012.

[Li and Liu, 2012b] Chen Li and Yang Liu. Normalization of
text messages using character- and phone-based machine

translation approaches. In Proceedings of Interspeech,
2012.

[Li and Liu, 2014] Chen Li and Yang Liu. Improving text
normalization via unsupervised model and discriminative
reranking. In Proceedings of the ACL, 2014.

[Liu et al., 2011] Xiaohua Liu, Shaodian Zhang, Furu Wei,
and Ming Zhou. Recognizing named entities in tweets. In
Proceedings of ACL, 2011.

[Liu e al., 2012] Xiaohua Liu, Ming Zhou, Xiangyang
Zhou, Zhongyang Fu, and Furu Wei. Joint inference of
named entity recognition and normalization for tweets. In
Proceedings of ACL, 2012.

[Martins and Smith, 2009] Andre F. T. Martins and Noah A.
Smith. Summarization with a joint model for sentence
extraction and compression. In Proceedings of the ACL
Workshop on Integer Linear Programming for Natural
Language Processing, 2009.

1269

[Owoputi et al., 2013] Olutobi Owoputi, Brendan
O’Connor, Chris Dyer, Kevin Gimpel, Nathan Schneider,
and Noah A. Smith. Improved part-of-speech tagging
for online conversational text with word clusters. In
Proceedings of NAACL, 2013.

[Pennell and Liu, 2010] Deana Pennell and Yang Liu. Nor-
malization of text messages for text-to-speech. In ICASSP,
2010.

[Pennell and Liu, 2011] Deana Pennell and Yang Liu. A
character-level machine translation approach for normal-
ization of sms abbreviations. In Proceedings of IJCNLP,
2011.

[Petrovic et al., 2010] Sasa Petrovic, Miles Osborne, and
Victor Lavrenko. The edinburgh twitter corpus. In Pro-
ceedings of NAACL, 2010.

[Ritter ef al., 2010] Alan Ritter, Colin Cherry, and Bill
Dolan. Unsupervised modeling of twitter conversations.
In Proceedings of the NAACL, 2010.

[Ritter et al., 2011] Alan Ritter, Sam Clark, Oren Etzioni,
et al. Named entity recognition in tweets: an experimental
study. In Proceedings of EMNLP, 2011.

[Yang and Eisenstein, 2013] Yi Yang and Jacob Eisenstein.
A log-linear model for unsupervised text normalization.
In Proceedings of EMNLP, 2013.

[Zhang and Clark, 2008] Yue Zhang and Stephen Clark.
Joint word segmentation and POS tagging using a single
perceptron. In Proceedings of ACL, 2008.

