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Abstract

Domain adaptation aims at learning robust clas-
sifiers across domains using labeled data from a
source domain. Representation learning methods,
which project the original features to a new fea-
ture space, have been proved to be quite effec-
tive for this task. However, these unsupervised
methods neglect the domain information of the in-
put and are not specialized for the classification
task. In this work, we address two key factors to
guide the representation learning process for do-
main adaptation of sentiment classification — one
is domain supervision, enforcing the learned repre-
sentation to better predict the domain of an input,
and the other is sentiment supervision which uti-
lizes the source domain sentiment labels to learn
sentiment-favorable representations. Experimental
results show that these two factors significantly im-
prove the proposed models as expected.

1 Introduction
Domain adaptation [Daumé III and Marcu, 2006] aims at
learning a robust classifier with labeled data on a source do-
main, and at the same time attemps to enforce the classifier to
work well on a target domain. The demand for quick trans-
fer between domains are commonly seen in text classification
tasks, particularly urgent in sentiment analysis.

The key challenge in domain adaptation is that the data
distribution or feature representation may be quite different
across domains. For instance, we may use quite different vo-
cabularies in writing reviews, say attractive, boring in books
reviews while reliable, affordable in electronics reviews. The
simplest solution is to train a classifier for each domain, un-
fortunately, this requires heavy annotation on every single do-
main. Another solution may be to train a robust classifier
with labeled samples from a source domain, and to enforce
the classifier to work well on a target domain.

Several models had been proposed for domain adapta-
tion such as instance reweighting [Huang et al., 2006;
Mansour et al., 2009], joint feature representation learning
[Blitzer et al., 2006; Xue et al., 2008; Glorot et al., 2011b;
Chen et al., 2012] , and feature projection [Bollegala et al.,

2014]. Among these methods, Stacked Denoising Auto-
encoders (SDA) for domain adaptation [Glorot et al., 2011b]
, one of the joint feature representation learning methods, has
been reported to be quite effective. The SDA model learns
a neural network using reviews from all domains, and then
trains a SVM sentiment classifier on the source domain using
the learned representations. The SVM classifier is then ap-
plied to other domains and gains remarkable improvements
over other methods.

Intuitively, if the learned representations have a good
separation for domain-specific and sentiment-specific con-
stituents, a sentiment classifier will be less susceptible to
those domain-specific features and more favorable for domain
adaptation. Furthermore, if the learned representations are
specialized for sentiment classification during training, more
sentiment information can be encoded and thus improve the
performance of sentiment classification.

However, despite the success of SDA, the model simply
mixed all samples from different domains during the train-
ing process. Such an oversimplified strategy does not encour-
age the model to discriminate domain-specific and sentiment-
specific features. There is also no supervision for training
sentiment-favorable representations which are more related
to the classification goal.

This is what we do in this paper. We guide the represen-
tation learning process with two types of supervision — one
is domain supervision, endowing the proposed model with
the capability of predicting the domain of the input. We be-
lieve this factor will encourage the model to better discrim-
inate domain-specific and sentiment-specific features. The
other is sentiment supervision which utilizes the source do-
main sentiment labels. In this way, the model will be able to
learn sentiment-favorable representations.

More specifically, on top of SDA, our learning objective
consists of two terms: the reconstruction loss between the in-
put and decoded output; the prediction loss for predicting the
domain or/and sentiment label in the output layer. Therefore,
the domain supervision and sentiment supervision can be eas-
ily introduced by adding the “domain loss” and “sentiment
loss” respectively. Once the representation is constructed, we
use the learned representations to train a classifier on a source
domain, and predict the labels of the data on a target domain.
Experimental results show that the two factors significantly
improve the performance of domain adaptation.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1277



(a) SDA (b) SDA-DS (c) SDA-SS (d) SDA-DSS

Figure 1: Architectures of SDA and the proposed extensions.

To summarize, our main contributions in this work are as
follows:

• We reveal two key factors in representation learning
for domain adaptation — domain supervision to better
disentangle domain-specific and sentiment-specific fea-
tures, and sentiment supervision which guides the model
to learn sentiment-favorable representations.

• We proposed three modified SDAs for representation
learning — SDA-DS, SDA-SS and SDA-DSS. Experi-
mental results show that our models can learn better rep-
resentations and significantly improve the performance
of domain adaptation.

The rest of the paper is structured as follows: We survey
related work in section 2, introduce our method in detail in
section 3, and present the experiments in section 4. We dis-
cuss our work in section 5 and summarize the work in section
6.

2 Related Work
Domain adaptation, first introduced by Daumé III and Marcu
[2006], aims to generalize classifiers across domains. Our
work is mainly related to the following approaches for do-
main adaptation. These works fall into three types.

The first type is instance reweighting in which instances are
assigned different weights so that these weighted instances
have similar feature distributions. Huang et al. [2006] pro-
posed kernel mean matching (KMM), a kernel-based method,
to assign weights to instances. Mansour et al. [2009] inves-
tigated domain adaptation with multiple sources. They re-
weighted the patterns in different data sources by estimating
the data distribution.

The second type is to transform the data representations
of the source and target domains to a joint learned feature
space. The idea is to share feature distributions across all
domains so that a classifier trained on one domain is ap-
plicable for other domains. Blitzer et al. [2006] proposed
Structural Corresponding Learning (SCL) to learn a low-rank
representation of the data. They heuristically selected those
features that is frequent in both source and target domains.
Ben et al. [2007] analysed the effect of representation trans-
forming. Pan et al.[2010] proposed spectral feature align-
ment (SFA) which used domain independent words to align
domain-specific words into unified clusters and discover ro-
bust representations across different domains. Glorot et al.

[2011b] proposed to use a deep learning approach (SDA),
which can encode complex nonlinear feature mapping, to
learn representations for domain adaptation and obtained re-
markable improvements. A large amount of data across all
domains are mixed together to train the SDA model. As an
extension to SDA, mSDA is proposed to accelerate the train-
ing of SDA by hundreds of times and has comparable per-
formance [Chen et al., 2012]. A vital property of mSDA is
that it has a closed form solution. A particularly interesting
conjecture is that the success of SDA may derive from the
fact that domain-specific and sentiment-specific features are
separated in the learned representations. Along this line, we
find that much improvements can be obtained by employing
domain or sentiment supervision. By mixing the source and
target data in different proportion as training set, Chopra et
al.[2013] combined several SDAs together to improve perfor-
mance of domain adaptation.

Bollegala et al. [2014] proposed a third type called fea-
ture projection. Different from feature representation learn-
ing which projects different domains to a shared space, they
project the source domain feature space to the target domain
using Partial Least Squares Regression (PLSR).

Our work is also related to neural network for sentiment
classification. Glorot et al. [2011a] showed that rectifier units
(hard (max(0, t)) or soft (log(1+et))) outperform other non-
linear functions for sentiment classification. We use the hard
version rectifier since it can produce sparse coding (exactly
zero).

3 Method
3.1 Background
Representation learning attempts to project the original fea-
tures to a new feature space, using shallow or deep learning
architectures (usually neural networks). Several forms of rep-
resentation learning models, like Restricted Boltzmann Ma-
chines (RBMs) [Hinton et al., 2006] and auto-encoders [Ben-
gio et al., 2007], have been developed for deep learning. We
mainly discuss auto-encoder here. A simplest auto-encoder
is composed of two steps: an encoder h maps the input x to
a hidden representation h(x), and a decoder g tries to recon-
struct x from h(x), i.e. r(x) = g(h(x)). The auto-encoder is
trained to minimize the reconstruction loss between r(x) and
x. Square error and KL divergence are two commonly used
loss functions. The hidden layer h(x) is regarded as a new
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representation of x after training, and can be concatenated
with x to form a new input to task-specific classifiers.

Denoising auto-encoder (Figure 1(a)), referred as denoiser,
is a slightly modified version of auto-encoder. It introduces
a corruption process before the hidden layer, and tries to re-
construct x from this corrupted input x̃, i.e. r(x̃) = g(h(x̃)).
The corruption process could be a masking noise (each ele-
ment of x has a probability of p to be set to 0). A denoiser
is also trained to minimize the loss between x and its recon-
struction form r(x̃). A typical architecture of denoiser is fully
connected from the corrupted input x̃ to the hidden layer h(x̃)
and from the hidden layer h(x̃) to the output layer r(x̃), and
different nonlinear activation functions can be used. Several
denoisers can be stacked together to form a stacked denoising
auto-encoder (SDA) [Vincent et al., 2008].

3.2 SDA for Domain Adaptation
Glorot et al. [2011b] apply SDA to domain adaptation for
sentiment classification. The input x is a zero-one vector
indicating the absence or presence of a word in a review
(bag-of-words representation), thus the dimension of x is
the same as the vocabulary size. They use hard rectifier
rec(t) = max{0, t} as nonlinear function for the hidden
layer h(x̃) and sigmoid σ(t) = 1

1+e−t for the output layer
r(x̃). The objective function is an element-wise KL diver-
gence between r(x) and x:

OSDA =
∑
x

loss(x, r(x̃))

=
∑
x

∑
i

xi log
xi
r(x̃)i

+ (1− xi) log
1− xi

1− r(x̃)i
(1)

where xi and r(x̃)i are the i-th element of x and r(x̃). A L1

norm of the hidden layer ||h(x̃)||1 can also be added to the
objective to encourage sparsity of the representation.

The training process is to minimize the objective function
on a large amount of data across all domains. After the SDA
is constructed, new representations are obtained by simply
concatenating the input x and the hidden layer h(x̃). A stan-
dard sentiment classifier (SVM, logistic regression, etc.) is
trained on the source domain using the new representations,
and then applied to other target domains.

Glorot et al. [2011b] studied both single-layer and multi-
layer SDAs (“layer” here refers to “denoiser”), and reported
that a single-layer SDA was good enough for domain adapta-
tion. We’ll mainly discuss the single-layer SDA here.

3.3 SDA with Domain Supervision (SDA-DS)
As depicted in Figure 1(b), in addition to reconstructing the
input in the output layer, we add a fully connected layer and
use softmax as nonlinear function to predict the domain dis-
tribution d(x̃) of the input. The hidden layer h(x̃) is required
not only to reconstruct the input, but also to predict the do-
main label. In this way, the proposed model is encouraged
to extract domain-specific constituents better in the learned
representation. This is what we expected, and several papers
have reported that domain adaptation may benefit from such
a property [Glorot et al., 2011b; Chen et al., 2012].

The reference domain distribution d̂(x) is an indicating
vector with 1 corresponding to the domain that x comes from
and 0 elsewhere. Thus, the domain supervision can be formu-
lated as the KL divergence between d̂(x) and d(x̃),

loss(d̂(x), d(x̃)) = KL(d̂(x)||d(x̃)) =
∑
i

d̂(x)i log
d̂(x)i
d(x̃)i

where d̂(x)i and d(x̃)i are the i-th element of d̂(x) and d(x̃),
respectively. By combining the reconstruction error and do-
main supervision, we obtain the objective of SDA-DS as fol-
lows:

OSDA−DS =
∑
x

λ · loss(x, r(x̃)) + loss(d̂(x), d(x̃)) (2)

where λ ∈ (0, 1) is used to control the balance of the two
terms. Similar to SDA, a L1 norm of the hidden layer
||h(x̃)||1 can be added to the objective function.

The training process is to minimize the objective function
across all domains. For domain adaptation, a standard senti-
ment classifier is trained using the new representations (con-
catenate x and h(x̃)) on the source domain and then applied
to other target domains.

3.4 SDA with Sentiment Supervision (SDA-SS)
Since our final task is to discover new features for senti-
ment classification, a simple idea is to guide the represen-
tation learning process with sentiment supervision so that the
learned representations are sentiment-specialized and can im-
prove performance of sentiment classification.

Figure 1(c) shows how we incorporate sentiment supervi-
sion into SDA. Using a fully connected layer and sigmoid
nonlinear function, we output y(x̃) indicating the probabil-
ity of how likely the sentiment of x is positive. Since not
all samples have sentiment labels, we construct the sentiment
reference ŷ(x) as follows: for those labeled samples in the
source domain, the reference ŷ(x) is just its sentiment label
(1 for positive, 0 for negative), for those unlabeled or target
domain samples, we just set ŷ(x) = 0.5 as a reference distri-
bution 1. Thus, the sentiment supervision can be formulated
as:

loss(ŷ(x), y(x̃)) = KL(ŷ(x)||y(x̃))

= ŷ(x) log
ŷ(x)

y(x̃)
+ (1− ŷ(x)) log 1− ŷ(x)

1− y(x̃)

The objective function of SDA-SS is a combination of the
reconstruction error loss(x, r(x̃)) and sentiment supervision
loss(ŷ(x), y(x̃)):

OSDA−SS =
∑
x

λ · loss(x, r(x̃)) + loss(ŷ(x), y(x̃)) (3)

The training process is the same as SDA-DS.

1This is equivalent to the maximum entropy principle.
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Figure 2: Transfer losses of the 12 domain pairs on 4 domains: books (b), dvds (d), electronics (e) and kitchen (k). The four
SDAs outperform baseline, and the three SDAs with extra supervisions (SDA-DS, SDA-SS, SDA-DSS) perform much better
compared with SDA.

3.5 SDA with both Domain and Sentiment
Supervision (SDA-DSS)

Since we have introduced domain supervision and sentiment
supervision in previous sections, a natural idea is to combine
them together, enforcing the learned representation domain-
distinguishable and sentiment-favorable.This simple combi-
nation of SDA-DS and SDA-SS is depicted in Figure 1(d),
and we name it as SDA-DSS.

The objective function of SDA-DSS is thus a com-
bination of the reconstruction error loss(x, r(x̃)), do-
main supervision loss(d̂(x), d(x̃)) and sentiment supervision
loss(ŷ(x), y(x̃)):

OSDA−DSS = λ · loss(x, r(x̃)) + η · loss(d̂(x), d(x̃))
+ loss(ŷ(x), y(x̃)) (4)

where λ and η control the weights of the three terms in the
objective function. The training process is the same as SDA.

4 Experiments
4.1 Data Preparation
We experiment on a benchmark dataset — products reviews
from Amazon, first collected by Blitzer et al. [2007]2. This
dataset contains about 340,000 reviews of 22 different prod-
ucts. Each review is either unlabeled or labeled as positive
or negative. We conduct domain adaptation experiments on
reviews of four products (12 pairs for domain adaptation) —
book (b), dvds (d), electronics (e) and kitchen (k). Table 1
shows the number of positive and negative reviews, and unla-
beled reviews from these four domains.

4.2 Experiment Settings
Parameter Settings
The preprocessing stage of the reviews is the same as [Blitzer
et al., 2007]: we use bag-of-words schema, namely a zero-
one vector indicating the absence or presence of a word, to
represent a review. Only the top 5,000 frequent unigrams and

2http://www.cs.jhu.edu/ mdredze/datasets/sentiment/

domain positive negative unlabeled
books 1,000 1,000 4,465
dvds 1,000 1,000 3,586

electronics 1,000 1,000 5,681
kitchen 1,000 1,000 5,945

Table 1: The statistics of the corpus.

bigrams are kept here. The hidden layer size is 5,000 for all
the four networks.

We use the standard backward propagation and batch
gradient descent method to train all the four neural net-
works. There are some hyper-parameters to be tuned and
we attempt the following settings: masking noise proba-
bility p ∈ {0.3, 0.5, 0.8}, L1 regularization penalty l1 ∈
{0, 10−4, 10−3}, batch size bs ∈ {10, 20}, epoch number
ep ∈ {1, 2, 3, 4, 5}, step length sl ∈ {0.1, 0.2, 0.01, 0.02},
weight control coefficient in SDA-DS, SDA-SS, SDA-DSS
λ ∈ {0.01, 0.1} and η = {1, 0.5}. All these parameters are
selected by minimizing the cross validation error (5-fold) on
the source domain training data.

After the networks are constructed, the new representations
(concatenation of x and h(x̃)) are used to train a logistic re-
gression classifier3 on the source domain and this classifier is
then applied to the target domains.

Compared Methods
The baseline is a logistic regression classifier trained on the
original raw bag-of-words features using the labeled data
from the source domain.

The other methods to be compared are including: Struc-
tural Correspondence Learning (SCL) which was used in do-
main adaptation of sentiment classification by Blitzer et al.
[2007]; Spectral Feature Alignment (SFA) proposed by Pan
et al. [2010]; SDA proposed by Glorot et al. [2011b].

3Note that we did not choose SVM here as previous work just
because SVM training is much slower than LR.
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Figure 3: PAD Measures

Evaluation Metrics
As described in [Glorot et al., 2011b], transfer error e(S, T )
is defined as the test error on the target domain T of a model
which is trained on the source domain S. Therefore, e(T, T )
which is called in-domain error is the cross validation error
on domain T , and eb(T, T ) refers to in-domain error of the
baseline (the logistic regression model trained with bag-of-
words feature). We compare different models (including the
baseline) using transfer loss which is defined as t(S, T ) =
e(S, T )− eb(T, T ).

4.3 System Comparison
The domain adaptation results of the 12 domain pairs and
the mean value are shown in Figure 2. As can be seen, the
three proposed models significantly outperform other meth-
ods. The mean transfer losses are: Baseline (0.0750), SCL
(0.0558), SFA (0.0518), SDA (0.0476), SDA-DS (0.0341)
SDA-SS (0.0403) and SDA-DSS (0.0353). SDA-DS per-
forms better than other baseline methods in 10 of the 12 tasks,
SDA-SS is better in 9 tasks and SDA-DSS is better in 11
tasks.

Our hypothesis is justified by the results — supervising the
representation learning process with domain and sentiment
information helps to learn better representations and thus sig-
nificantly improve the performance of domain adaptation.

The results also show that domain supervision is more ef-
fective than sentiment supervision, the reason may be that the
domain label of all samples are available while only those
source domain labeled data have sentiment labels (note that
we have much more unlabeled data than labeled data, see Ta-
ble 1).

4.4 Proxy-A-Distance
Proxy-A-Distance (PAD) [Ben-David et al., 2007] measures
the difference between two domains. It is defined as 2(1−2ε),
where ε is the cross validation error when distinguishing the
two domains. Ben-David et al. [2007] argued that low PAD
measure is favorable for domain adaptation (low PAD⇒ high
ε⇒ the two domains are similar and difficult to distinguish⇒
favorable for domain adaptation). The PAD measures of SDA
and the proposed models are shown in Figure 3 (5-fold cross
validation is used). For each domain pair d1 − d2, we report

Source b d e k mean
Baseline – – – – 836

SDA 609 748 703 932 748.00
SDA-DS 428 557 416 521 480.50
SDA-SS 782 911 627 721 760.25

SDA-DSS 500 639 508 454 525.25

Table 2: Number of Overlapping Features in the Learned
Representations (smaller values mean less overlapping, or
better disentangled features). b (books), d (dvds), e (elec-
tronics), k (kitchen) refers to which domain is used as source
domain.

the mean PAD of the two representations — transferring from
d1 to d2 and reverse.

The results are shown in Figure 3. On one hand, results
show that low PAD measures correlated with better domain
adaptation performance. As can be seen, domain pair b − d
and e−k have the lowest PAD measures among the 6 domain
pairs and we can also see from Figure 2 that the transfer losses
of b → d, d → b, e → k and k → e are particularly low in
the 12 domain transfer pairs. This observation is consistent
with the observation of Ben-David et al. [2007].

On the other hand, the proposed models produce not only
high PAD values but also better domain adaption perfor-
mance (SDA-DS and SDA-DSS against SDA and baselines).
A reasonable explanation is that those domain-specific and
sentiment-specific constituents are better disentangled in the
learned representations, and thus improve both domain pre-
diction and sentiment classification.

The PAD measure of SDA is slightly higher than the base-
line while SDA-DS and SDA-DSS are much higher especially
in the e-k setting. This is mainly because we introduce do-
main supervision in SDA-DS and SDA-DSS, and thus their
learned representations are well trained for domain classifi-
cation. This is exactly what we expected at the beginning.
We enforce SDA-DS and SDA-DSS to predict the domain of
the input so that those domain-specific and sentiment-specific
features are better disentangled, and thus can improve the per-
formance of domain adaptation.

4.5 Feature Overlapping Test
The motivation that we incorporate domain supervision into
SDA is to guide the representation learning process to better
disentangle those domain-specific and sentiment-specific fea-
tures. In this section, we want to directly analyse the overlap
of active features for domain prediction and sentiment predic-
tion.

A feature is called active if it can provide “sufficient” in-
formation for classification. Given a classification task (either
domain prediction or sentiment prediction), in order to iden-
tify these active features, we can train a logistic regression
model with L1 sparse regularization (most of the coefficients
are driven to 0). After training, each feature fi is associated
with several coefficients w(1)

i , w
(2)
i , ..., w

(n)
i (n is 1 in binary

classification and is the number of classes in multi-class clas-
sification). If one of these n coefficients is nonzero, we regard
fi as an active feature.
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Source b d e k mean
Baseline 0.150 0.156 0.168 0.174 0.162

SDA 0.139 0.143 0.153 0.163 0.150
SDA-DS 0.133 0.132 0.144 0.160 0.142
SDA-SS 0.130 0.134 0.142 0.154 0.140

SDA-DSS 0.138 0.134 0.148 0.151 0.143

Table 3: Sentiment Cross Validation Error (bold text means
statistically significant).

We apply the original input (bag-of-words representation)
and the learned representations (only the hidden layer h(x̃))
to two tasks: sentiment classification (binary) and domain
classification (4-class). If a feature fi in the representation
is active in both tasks, it is called an overlapping feature. Ob-
viously, if those domain-specific and sentiment-specific fea-
tures are disentangled in the learned representations, the num-
ber of overlapping features should be small.

For each method in each source domain, there is an optimal
parameter setting which is obtained by minimizing the cross
validation error on source domain. The results are shown in
Table 2. The number of overlapping features in the learned
representations is much smaller than the baseline (original
bag-of-words representation). SDA-DS and SDA-DSS also
have a much smaller number of overlapping features com-
pared with the original SDA. Without domain supervision,
SDA-SS does not reduce the number of overlapping features.

This overlapping test strongly supports our claim that in-
corporating domain supervision in representation learning
helps to learn better disentangled representations for domain
adaptation. The domain supervision significantly reduces the
number of overlapping features.

4.6 Cross-validation of Sentiment Classification

We propose to learn sentiment-favorable representations by
incorporating sentiment supervision. These learned represen-
tations are expected to improve sentiment classification per-
formance. We verify this claim in this section.

Using the original input or the learned representations
(only the hidden layer), we test the sentiment cross validation
error (5-fold) of the logistic regression model on the target
domains.

Specifically, given a method m and a source domain d, we
report the mean sentiment cross validation error on the other
three domains (except d). For example, the cross validation
error of SDA-DS on b, is averaged from the cross validation
errors of that model on d, e, and k. Thus, m is associated
with four errors, one for each domain.

The results are shown in Table 3. As can be seen, sen-
timent supervision (SDA-SS, SDA-DSS) reduces the cross
validation error on the target domains even though it only
utilizes labeled data from source domain. The results demon-
strate that incorporating sentiment supervision is able to learn
sentiment-favorable representations. The cross validation er-
ror of SDA-DS is also reduced. This means that disentangling
domain-specific and sentiment-specific features can also im-
prove sentiment classification performance.

Source b d e k mean
Baseline – – – – 1629

SDA 1,963 1,868 1,905 2,400 2,034.00
SDA-DS 1,303 1,472 1,285 1,550 1,402.50
SDA-SS 2,103 2,245 1,708 1,910 1,991.50

SDA-DSS 1,455 1,593 1,430 1,368 1,461.50

Table 4: Domain Active Features.

5 Discussion
We list the number of domain active features in table 4. The
results show that with domain supervision, the number of
domain active features in our models (SDA-DS, SDA-DSS)
is largely reduced, demonstrating that those domain-specific
constituents are more centralized with less feature overlap-
ping. We also note that the number of active features in SDA
and SDA-SS is increased. The reason may be that when we
project the original discrete feature space to a continuous fea-
ture space without supervision, domain information will dis-
perse in more dimensions. Unlike SDA which disentangles
domain and sentiment features implicitly, our proposed mod-
els give more specific and clear signals to the presentation
learning process.

The training of SDA and SDA-DS is irrelevant to which
domain is the source and which are the targets. In other
words, only one SDA or SDA-DS need to be trained to trans-
fer across all domains. But SDA-SS and SDA-DSS do not
have such a property since different source domains have dif-
ferent annotated data. However, the source domain is always
given in reality, so there is no much difference in the applica-
bility of these three methods.

Glorot et al. [2011b] reported that stacking several denois-
ers together could learn even better representations and im-
prove domain adaptation performance. But training such a
network is extremely time-consuming and further improve-
ment is relatively small, so we just test the one-layer archi-
tecture in our work.

6 Conclusion
In this paper, we investigate two key factors (do-
main/sentiment supervision) for domain adaptation and pro-
pose three models (SDA-DS, SDA-SS, SDA-DSS) to learn
better representations for this task. We find that domain su-
pervision helps to disentangle domain-specific and sentiment-
specific constituents in the learned representations, and that
sentiment supervision helps to learn sentiment-favorable rep-
resentations. Experimental results show that the proposed
models obtain significant improvements over some compet-
itive baselines such as SCL, SFA, SDA, etc.

Though we have supplied clear signals to disentangle
domain-specific and sentiment-specific constituents in the
learned representation, as future work, we are planning to
design neural network structures that are able to explicitly
represent the two kinds of information.
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