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Abstract

Hashing, as a popular approximate nearest neighbor
search, has been widely used for large-scale similar-
ity search. Recently, a spectrum of machine learning
methods are utilized to learn similarity-preserving
binary codes. However, most of them directly en-
code the explicit features, keywords, which fail to
preserve the accurate semantic similarities in bi-
nary code beyond keyword matching, especially on
short texts. Here we propose a novel text hashing
framework with convolutional neural networks. In
particular, we first embed the keyword features into
compact binary code with a locality preserving con-
straint. Meanwhile word features and position fea-
tures are together fed into a convolutional network to
learn the implicit features which are further incorpo-
rated with the explicit features to fit the pre-trained
binary code. Such base method can be successfully
accomplished without any external tags/labels, and
other three model variations are designed to inte-
grate tags/labels. Experimental results show the
superiority of our proposed approach over several
state-of-the-art hashing methods when tested on one
short text dataset as well as one normal text dataset.

1 Introduction

Due to computational and storage efficiencies of compact
binary codes, hashing methods have been widely used for Ap-
proximate Nearest Neighbors (ANN) search, which is an es-
sential component in a variety of large-scale machine learning
problems, such as information retrieval [Zhang ef al., 2013],
near-duplicates detection [Manku er al., 2007], tag predic-
tion [Wang er al., 2013al, cross-view similarity search [Zhang
and Li, 2014], etc.

The existing hashing methods can be roughly divided into
two categories: data-oblivious and data-aware. The for-
mer, such as famous Locality-Sensitive Hashing (LSH) [An-
doni and Indyk, 2006], is useful for the case without pre-
assigned training dataset, while we focus on the latter which
can be further divided into three streams. The first stream
is unsupervised method [Salakhutdinov and Hinton, 2009;
Weiss et al., 2009; Zhang et al., 2010c; Gong et al., 2013],
where only unlabeled data is used to learn hash functions. The

other two streams are semi-supervised and supervised meth-
ods [Zhang et al., 2010a; Liu et al., 2012; Wang et al., 2013b;
Lin et al., 2014], in which the tags/labels are exploited to
guide hash function learning.

The key problem is that the most existing hashing methods
directly embed texts into a low-dimension binary space from
the explicit feature space, such as word-count vectors and
term frequency-inverse document frequency (TF-IDF) vectors,
which usually fail to fully preserve the semantic similarity.
For example, there are two texts “President write his first com-
puter program’” and “Obama kick off hour of code”, hashing
methods based on the explicit features cannot see the similarity
between the keyword features “President” and “Obama” or
“program” and “code”. In order to address this problem, some
researchers introduce latent semantic approaches to construct
similarity relationship in the implicit feature space, such as La-
tent Dirichlet Allocation (LDA) [Wang et al., 2013b], Latent
Semantic Analysis (LSA) and Restricted Boltzmann Machines
(RBM) [Salakhutdinov and Hinton, 2009]. Although these
methods can capture semantic features, they are still trained
based on bag-of-words (BoW) and ignore the contextual infor-
mation or word order.

Recently, a promising way to alleviate this problem is word
embedding and Deep Neural Networks (DNN). With the help
of word embedding, true meaningful syntactic and semantic
regularities can be captured, and DNN has been proved to be
efficient in terms of constructing text representations [Lai er
al., 2015]. Recently, Convolutional Neural Networks (CNN),
applying convolving filters to local features, have achieved
a better performance in many Neural Language Processing
(NLP) applications, such as sentence modeling [Blunsom et al.,
2014], semantic matching [Hu et al., 2014], web search [Shen
et al., 2014] and other traditional NLP tasks [Collobert et al.,
2011]. Despite the fact that these works with CNN and word
embedding prove a solid success in many NLP tasks, most of
them mainly focus on short texts or sentence level datasets and
do not always outperform TF-IDF on normal texts in practice.

Besides, word position may result in different meanings on
the same term. For example, the word “code”, as a noun term,
usually exists in the ends of one sentence, meanwhile the verb
term usually exists in the middle of one sentence. And text
length, playing an important role in semantic match [Lu et al.,
2014], should also be utilized for text hashing.

Inspired by all these, in this paper, we aim at addressing
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Figure 1: The proposed framework of text hashing with convolutional neural networks (THC). Four model variations: THC-I is
our base model which is unsupervised, without external tags/labels at all; THC-II is a supervised model where tags/labels are
integrated in the stage of binary code pre-training; THC-III is also a supervised model where tags/labels are integrated in the
stage of hash function training; THC-IV integrates tags/labels both in the two stages.

the above problems and systematically exploring the power
of text hashing via convolutional neural networks. An overall
architecture of the proposed Text Hashing with Convolutional
neural networks (abbr. to THC) is illustrated in Figure 1, which
has two stages. In stage I, we first embed the original features
X into binary code B with a locality preserving constraint.
Meanwhile, we extract word vectors WF and position vectors
PF by looking up word embeddings and position embeddings,
and then feed them into a convolutional neural network to
learn the implicit representation. Before the output layer, the
implicit feature m is integrated with the explicit vector x, TF-
IDF used in this paper. Finally, we treat the pre-trained code B
as the supervision to learn the CNN model which can generate
the optimal hash code Y. This is the proposed base model
THC-I which is unsupervised, without any external tags/labels
at all. If the external tags/labels are available, we integrate
these supervised information in stage I and II respectively, and
get three supervised variants THC-II, THC-III and THC-IV as
described in Figure 1.

Our main contributions are three-fold: 1). We propose a
flexible framework, CNN for text hashing, which is able to
accommodate both unlabeled and labeled texts. To our best
knowledge, this is the first time to exploit CNN to solve text
hashing systematically. 2). Besides word embeddings, we
also encode the relative distances of each word to the two
ends of one text into vectors (referred as position features
in this paper) which both include word position and the text
length information, and we design a collapsing operation fol-
lowing one-dimensional convolution to couple word features
and position features which show further improvement in our
experiments. 3). We adapt a simple but effective method by
directly incorporating the implicit features and the explicit
features to address the limitation that the works via CNN do
not always work well on normal texts. Meanwhile, we test and
verify experiments on two publicly available text datasets. The
experimental results indicate that our approaches can achieve
better performances compared with the state-of-the-art meth-
ods on both short text dataset and normal text dataset.

2 Related Work

Hashing As described before, hash-based methods can be
mainly divided into two categories. One category is data-
oblivious hashing. As the most popular hashing technique,
Locality-Sensitive Hashing (LSH) [Andoni and Indyk, 2006]
based on random projection has been widely used for similar-
ity search. However, they do not aware of data distribution,
which may lead to generating quite inefficient hash codes in
practice [Zhang et al., 2010al. Recently, more researchers
focus attention on the other category, data-aware hashing, by
using machine learning algorithms. For example, the Spectral
Hashing (SpH) [Weiss et al., 2009] generates compact binary
codes by forcing the balanced and uncorrelated constraints
into the learned codes. Iterative Quantization (ITQ) [Gong
et al., 2013] reduce the dimensionality of input data and bi-
narizes the outcome through minimizing the quantization er-
ror. Self-Taught Hashing (STH) [Zhang et al., 2010c] is a
method which decomposes the learning procedure into two
steps: generating binary code and learning hash function. A
supervised version of STH is proposed in [Zhang et al., 2010a]
denoted as STHs. Inspire of these methods, Lin et al. [2013;
2014] design a two-step hashing framework (TSH) and use
decision trees as hash function in a fast supervised hashing
(FastHash). However, the previous hashing methods, directly
working in keyword feature space, usually fail to fully pre-
serve semantic similarity for text hashing due to the sparseness
of text representations.

Neural Networks Recently, there is a revival of interest in
DNN. Among this upsurge, there are two classes of most
related works to our work, one is word embedding, and the
other is DNN for hashing. For the former, in NLP, more
and more tasks have got promising results based on word
embeddings, which is primarily based on learning a distributed
representation for each word. There are some famous word
embeddings. The skip-gram and continuous bag-of-words
models of [Mikolov er al., 2013] propose a simple single-
layer architecture based on the inner product between two
word vectors. Pennington et al. [2014] introduce a new model
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for word representation, called GloVe, which captures the
global corpus statistics. For the latter, there are two most
related works, one is [Salakhutdinov and Hinton, 2009] which
uses deep auto encoder to learn hash codes by assuming that
the top hidden layer only contains binary units. During the
fine-tuning procedure, they use backpropagation to find codes
that are good at reconstructing the word-count vector. In the
other one, Xia et al. [2014] proposed an image hashing via
representation learning, which nevertheless is quite different
from NLP tasks. And to our best knowledge, our work is the
first time to systematically explore the power of CNN for text
hashing with the help of word embeddings.

3 Algorithm Description

As described in Figure 1. Given a dataset of n training texts
denoted as: X = {x;,X5...,X,} € R¥™, where d is the
dimensionality of the keyword feature. Denote their tags as:
t = {t1,t2...,t,} € {0,1}°%™, where c is the total number
of possible tags associated with each text. A tag with label 1
means a text is associated with a certain tag, while a tag with
label 0 means a missing tag or the text is not associated with
that tag. The goal of THC is to obtain the optimal hash code
Y = {y1,y2..,yn}? € {—1,1}"*", and a hash function
f:R? — {~1,1}", which embeds the query text x, to its
compact hash code y, with r bits (r < d). To achieve the
similarity-preserving property, we require the similar texts to
have similar binary codes in Hamming space.

3.1 Binary Code Pre-training

In this stage, we pre-train binary code B based on the key-
word features with a locality preserving constraint, and choose
Laplacian affinity loss, also used in [Weiss et al., 2009;
Zhang et al., 2010c]. Although many other types of loss func-
tions can be utilized (e.g., KSH [Liu ez al., 2012], ITQ [Gong
et al., 2013], FastHash [Lin et al., 2014]), a comparison of
those loss functions is beyond the scope of this paper. The
optimization can be written as:

n
. 2
jn 32 i 1bi = b "
st.Be{-1,1}"", BT1=0, BTB =1,
where S;; is the pairwise similarity between texts x; and x;,
and |[|-|| » is the Frobenius norm. The problem is relaxed by dis-
carding B € {—1,1}""", and the r-dimensional real-valued
vectors B can be learned from Laplacian Eigenmap. Then, we
get the binary code B via the media vector m = median(B).
In particular, we construct the n x n local similarity matrix S
by using heat kernel as follows:
2
Sij_{cifexp( %), if x; €N (x;) or x; ENg(x;)
0, otherwise
@)
where, o is a tuning parameter (default is 1), N (x) represents
the set of k-nearest-neighbors of x and c¢;; is an adjustment
coefficient. For THC-I and THC-IIL, we fix c;; to 1, while for
THC-II and THC-IV, we set c;; a higher value a if two texts x;
and x; share a common tag/label and we set ¢;; a lower value
b if x; and x; do not share any tag/label. In our experiments,
we consistently set the a = 1 and b = 0.1.

3.2 Hash Function Training and Prediction

Learned Features

— Word Representation. Each input word w; is transformed
into a vector WF; € R% by looking up word embedding
E™) which is a distributed representation of a word. Since
there are many high-quality trained word embeddings that are
freely available [Turian et al., 2010; Collobert er al., 2011;
Mikolov et al., 2013; Pennington et al., 2014]. This work
directly chooses these word embeddings and further give a
simple comparison in Section 5.2.

— Position Representation. As the input text in Figure 1, the
relative distance of the word “code” to the two ends of the text
is (6,1) which both include word position and the text length
information. We also encode the relative distance into a vector
features PF; € R9% (referred as position features) by looking
up position embedding E®) which is randomly initialized and
suitable for the input of neural networks.

Convolutional Neural Networks

— Convolution. By combining the learned features WF and
PF, each word is represented as XF; = [WF;,PF;] €
R@wtds)  and the text matrix is constructed as S =
[(XF], .., XFT € Rt (@wtds) where t is the token num-
ber in one text. In this paper, we apply a one-dimensional con-
volution of the wide type W € R (dwtdp)xn1 o S where
w 1is the filter width and n; is the size of feature maps. For
convenience, we introduce the matrix of diagonals to indicate
the j-th convolutional filter:

\fZV\; = [diag(W 1. ;), ..., diag(W, . ;)]. 3)

After the j-th one-dimensional convolution, we get a re-
sulting matrix C; € ROFw—1x(dwtds)  generated from a
window of embedding features by:

Cji=W,[XF; i1, XF]  ie[l,t+w—1], (4)

XF;,
XF; = { 0

— Collapsing. Since we use one-dimensional convolution,
word feature and position feature are independent until now.
In order to couple these two features, we introduce a simple
operation called collapsing. For the j-th resulting matrix C;,
collapsing directly compresses the dimension (d., +d,,) to one.
After the collapsing layer, the feature matrix C; is compressed
(0)

J

where,
if1<i<t
else

S

into a vector C "/, and

dw+dy
0) _
Cj,p - Z Cj,p,q' (©6)
qg=1

— Pooling. When a K-max-over-time pooling is applied over

the j-th feature vector C;O), the K highest values Cg.o) are
selected. Then, we apply a non-linear operation and select the

tanh activation function to C(©) = [C§°), ey ng)] as follows:
m = tanh(C?), (7)

where, m € R™¥ isan implicit semantic vector.
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Methods SearchSnippets 20Newsgroups
mP@50 mP@I00 mP@I50 mP@200 mP@50 mP@I00 mP@I150 mP@200

THC-II 79.89 79.24 78.54 71.77 79.49 78.07 76.75 75.92
§ THC-1II 79.32 78.67 78.00 77.27 66.21 64.02 62.11 60.31
‘s THC-IV 80.56 79.90 79.21 78.50 79.53 78.13 76.80 75.96
¥, TSH-KSH 71.09 70.87 70.76 70.34 75.83 75.74 75.57 75.24
&  FastHash 61.23 60.97 60.52 60.22 73.76 73.54 73.34 73.17
STHs 69.31 68.39 67.27 66.05 77.78 76.80 75.26 73.23
9 THC-I 78.07 77.46 76.80 76.08 65.83 63.73 61.82 60.03
.2 STH-RBF 6894 67.51 66.38 65.18 63.82 61.82 59.88 57.95
g STH 65.44 63.70 62.45 61.24 63.63 61.16 58.98 56.88
53 ITQ 35.03 33.24 31.73 30.45 48.31 46.55 44.87 43.17
& LCH 54.20 52.36 51.09 50.05 32.75 30.41 28.89 27.69
= SpH 32.74 29.47 27.28 25.72 32.81 27.84 24.85 22.78

Table 1: Comparison of mP@N(%) results of our THC and baseline methods on two text datasets with 64 hash bits

— Output. At the last layer of CNN, we integrate the implicit
feature m with the explicit keyword features x € R? by a
linear transformation:

o) = Wzm + aWox, ®)

where, « is a combination coefficient, Q) € R" is the output
vector, Wy € R™™ME and W € R™%? are weight matrices.
To binary the output for hash code representation Y and fit
the pre-trained binary code B, we apply r logistic operations
to O as follows:

(any __exp(0y™)
’ 1+ exp(Ol(-H))

Additionally, for THC-IIT and THC-IV, we add c output
units which correspond to the tags of the training texts. Corre-
spondingly, an additional output vector is given by:

€))

0 = W',m+ aW'ox, (10)

where, O(©) € Re¢ is the output vector, W', € RexmK
and W’ € R¥! are weight matrices. In order to match the
tags/labels t, we apply c logistic operations to the additional
output vector O(©) as follows:

exp(OEC))

(C) = —
1+ exp(Ogc))

i 11)
Backpropagation Training
All of the parameters to be trained are defined as:

0 ={E" E®) W, W, Wo, W, Wyl (12

Given the training text collection X, the pre-trained binary
code B and the tags/labels t, the log likelihood of the parame-
ters can be written down as follows:

n

J(0) = (logp(bi[xi,0) + log p(ti|x;,0)).  (13)

i=1
We maximize the log likelihood using stochastic gradient

descent to compute the optimal parameter §:
dlog p(b[x;, 0) Ing(ti|Xia9))
00 00 '

0 0+ X( (14)
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After backpropagation training, we can obtain the optimal
hash code Y for the training texts and the network parameter 6.
Given a query text X, we can get its hash code y, by comput-
ing the hash function f(x,|#). Then, the similarity search can
be conducted by exploring the Hamming ball volume around
the probe query y,.

4 Datasets and Experimental Setup

4.1 Datasets

We test our algorithms on two public text datasets, and the
summary statistics of the datasets are described in Table 2.

SearchSnippets'. This dataset was selected from the re-
sults of web search transaction using predefined phrases of 8
different domains [Phan et al., 2008]. We do not remove any
stop words or symbols in the text.

20Newsgroups. We select the popular bydata version and
use the stemmed version® pre-processed by Ana Cardoso-
Cachopo [2007], and we further remove the texts with length
more than 300.

For these datasets, we denote the category labels as tags,
generate vocabulary from the training sets and randomly select
10% of the training data as the development set.

Dataset C  Train/Test L(mean/max) V]
Snippets &  10060/2280 17.3/38 26265
20News 20 10443/6973 92.8/300 41877

Table 2: Statistics for the text datasets. C: the number of class;
Train/Test: the train/ test set size; L(mean/max): the mean and
max length of texts, |V is the vocabulary size.

4.2 Pre-trained Word Vectors

By default, our experiments ultilize the GloVe embeddings?
trained by Pennington et al. [2014] on 6 billion tokens of
Wikipedia 2014 and Gigaword 5. We also give some com-
parisons with other word embeddings, such as Senna em-
beddings* [Collobert et al., 2011] and even initialized ran-
domly embeddings. The coverage of these embeddings on two

"http://jwebpro.sourceforge.net/data-web-snippets.tar.gz.
Zhttp://web.ist.utl.pt/acardoso/datasets/.
3http://nlp.stanford.edu/projects/glove/.
*http://ml.nec-labs.com/senna/.



B Feature Sets SearchSnippets 20Newsgroups

THC-I THC-I THC-II THC-IV THC-I THC-IT THC-II THC-IV

Tmp. Fea. WF 7534 76.76 76.59 78.11 56.09  68.50 57.94 69.64

+PF 76.21 78.03 71.75 78.87 56.52  69.60 59.04 70.03

Exp. Fea. TF-IDF 68.65  69.96 69.00 70.34 60.29  72.80 60.35 72.85

Combination All 7746  79.24 78.67 79.90 63.73  78.07 64.02 78.13

Other word All (Senna)  75.11 75.27 75.16 75.69 63.52  77.98 63.64 77.98

embeddings All (rand) 65.78  68.31 65.96 68.37 63.50  77.84 63.67 77.83

Table 3: mP@ 100(%) results for various sets of learned features with 64 hash bits. Imp. Fea. is the implicit feature learned from
word feature and position feature, and Exp. Fea. is the explicit feature extracted from raw texts and using TF-IDF weighting.

datasets are listed in Table 4, and the words not present in the
set of pre-trained words are initialized randomly.

GloVe Senna
Datset —pr = [v[__[T]
Snippets 18301 201147 16249 196748
(69%) (94%) (61%) 91%)
20News 20793 1317799 16300 1246474
49%)  (81%) (38%)  (17%)

Table 4: Coverage of word embeddings on two datasets. |V|
is the vocabulary size and |T| is the number of tokens.

4.3 Comparisons

Eight widely used hashing methods compared with our
methods are Spectral Hashing (SpH) [Weiss et al., 2009],
Laplacian Co-Hashing (LCH) [Zhang et al., 2010b], Self-
Taught Hashing (STH) [Zhang et al., 2010c], STH with
RBF (STH-RBF) [Zhang et al., 2010al, Iterative Quantiza-
tion (ITQ) [Gong er al., 2013], the supervised version of STH
(STHs) [Zhang et al., 2010al, Two Step Hashing with KSH
and RBF (TSH-KSH) [Lin et al., 2013] and Fast Supervised
Hashing (FastHash) [Lin er al., 2014]. The former five meth-
ods do not used any tags, and the later three methods utilize
tag information. The results of all baseline methods are ob-
tained by the open-source implementation provided on their
corresponding author’s homepage. For ITQ, we use LDA?
to reduce dimensions of original features to 512 due to the
dimensionality curse. Note that we do not select Semantic
Hashing (SH) [Salakhutdinov and Hinton, 2009] as a com-
parison because that SH has been surpassed by the baseline
method SpH [Weiss et al., 2009].

In order to evaluate our approach’s performance, mean pre-
cision of top N retrieved texts (mP@N) based on Hamming
distance ranking is used throughout the paper as a main crite-
ria, which is also used in [Zhang et al., 2013; Lin et al., 2013;
Wang er al., 2013b]. For the original keyword feature space
cannot well reflect the semantic similarity, even worse for
short texts, we simply test if the two texts share any com-
mon tag/label to decide whether a semantic similar text. This
methodology is used in [Salakhutdinov and Hinton, 2009;
Zhang et al., 2010c; Wang et al., 2013b]. The results reported
are the average of 5 trials.

>http://jgibblda.sourceforge.net/: -alpha 0.5 -beta 0.1.
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Figure 2: mP@100 results of our THC and baseline methods
with various numbers of hash bits on two text datasets.

4.4 Hyperparameter Settings

In our experiments, the most of parameters are set uniformly
for these datasets. The parameter %k in Equation 2 is fixed to 7
when constructing the graph Laplacians in our approach, as
well as in the baseline methods, STH, STH-RBF and STHs.
We set the width of the convolutional filter w as 3, the size of
feature map n; as 80, the value of K in max pooling layer as
2, the dimension of word embeddings d,, as 50, the dimension
of position embeddings d,, as 8 and the learning rate A as 0.01.
Moreover, the feature weight « at the output layer are tuned
through the grid from 0.001 to 1024. The optimal weights are
o = 16 on SearchSnippets and o = 128 on 20Newsgroups.

5 Results and Analysis

5.1 Comparison Experiments

Table 1 shows the mP@N results of our THC and other com-
parison methods on two text datasets. We can see that our
base method THC-I significantly outperform these unsuper-
vised baseline methods about 9%-10%/2%-3% on SearchSnip-
pets/20Newsgroups. Compared with the supervised baseline
methods, THC-II and THC-IV also give a better performance.
THC-IV is the most effective method and THC-II is better than
THC-III in most situations. Furthermore, THC-I even achieves
a better performance than these supervised baseline methods
on SearchSnippets, but does not achieve the same effect on
20Newsgroups. The possible reason is that some topics of
the 20Newsgroups are very closely related to each other (e.g.
comp.sys.ibm.pc.hardware/ comp.sys.mac.hardware) [Wang
et al., 2013b], which cause confusion to the methods with-
out utilizing any external tags. Meanwhile, Figure 2 shows
the mP@100 results with various length of hash bits. The
results indicate that our methods, both supervised approaches
(solid line in Figure 2) and unsupervised ones (dashed line),
get consistent improvement compared with the correspond-
ing baselines in all the cases, except the case of THC-III on
20Newsgroups. In fact, THC-III’s performance is almost the



< 80+ 77.4620.30 74 2140 24]
I3
% 70l = Comb. 68.65£0.36|
& Imp. :
S Exp.
60 I I Il Il Il Il Il
10° 107 10" 1 10t 10t 10
(@) The values of parameters o on SearchSnippets
67 ; :
= 63.7340.03
x
S m:’; ' 60.29+0.26
R .
€ Exp. 56.5240.17
53 I P I | I | | |

10° 107 10" 1 100 1 100
(b) The values of parameters o on 20Newsgroups

Figure 3: Influence of parameter o for THC-I with 64 hash
bits. Comb., Imp. and Exp. have the same meanings as
Combination, Imp. Fea. and Exp. Fea. in Tabel 3 respectively.

same as unsupervised ones, such as THC-I, in the case of
20Newsgroups. It seems that the external tags/labels do not
show the expected effect, and why? An explanation maybe
that the way in which the hash approaches use the external
tags/labels is count. Specifically, from Figure 1, we know that
for THC-IV and THC-II as well as STH-KSH, the tags/labels
are used in the stage I, while for THC-III, the tags/labels are
used in the stage II. So we guess that not only whether or
not to use the external label, but also that where and how to
use the tags/labels, maybe even more important for improving
hashing’s performance.

5.2 Influence of Learned Features

In this experiment, we study the effect of the implicit features
learned from word features and position features, and the ex-
plicit features, TF-IDF. The mP@ 100 results are presented in
Table 3. By adding position feature, the proposed methods
achieve consistently, approximately 1%-2%, improvements
compared with only using word embeddings. Further, by
adding the explicit features, the performance further improve
about 1%-2%/5%-7% on SearchSnippets/20Newsgourps. Ex-
plicit features give a more remarkably performance’s improve-
ment on 20Newsgroups than on SearchSnippets. The reason
may be that Searchsnippets is a short text dataset, for which
the implicit features rather than the explicit features is more
useful for alleviating the sparsity problem, while 20News-
groups is a normal text dataset, for which the effect of explicit
features is more useful. And when we combine the implicit
features with the explicit features together, we get the best
performance. For the same reason above, we can see that pre-
trained word embeddings, such as GloVe embedding (default
used in our methods) and Senna Embedding, are more useful
for our methods to get a better performance, compared with
random initialized ones, especially on shorter text dataset.

5.3 Influence of Hyperparameters

Here, we first study the performance of THC with respect
to the combination coefficient o. We tune the parameter «
from 0.001 to 1024 and report the results on two datasets in
Figure 3. It is clear that the combination of implicit feature and
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Figure 4: mP@100 results of THC-I with different network
architecutres corresponding to Tabel 5 on two texts datasets
with 64 hash bits.

explicit feature get the best performance on two text datasets
consistently, although the specific optimal values of « are
sightly different. Meanwhile, when « is set to a small value,
implicit features contribute more to the performance, and when
« is set to a large value, explicit feature give more contribution.
The result indicates that implicit features contribute more in
the case of short text, and explicit ones do more in the case
of normal text. The reason is the same as Table 3 analysed in
Section 5.2.

For CNN architecture, we fix the word dimension, learn-
ing rate and the width of the convolutional filters following
previous studies [Collobert et al., 2011; Zeng et al., 2014].
Moreover, we fix the number of neurons at the layer of implicit
representation to 160 just for easily giving some compared
network structures as listed in Table 5, and the results are illus-
trated in Figure 4. We can see that the performances on two
datasets almost unchange when the parameter K in the max
pooling layer is smaller than 4. Meanwhile, the more maps at
the convolutional layer, the more computational complexity,
and Arc-2 used in this paper is a good trade-off.

- Arc-1  Arc-2 Arc-3 Arc-4 Arc-5
Maps num. 160 80 40 20 10
K-max 1 2 4 8 16

Table 5: Some compared network architectures. Maps num. is
the number of maps at the convolutional layer and K-max is
the value of K for the max pooling.

6 Conclusion

In this paper, we design a text hashing via convolutional neural
network. The implicit features learned from CNN and the
explicit features extracted from the raw texts are successfully
integrated for hashing task. We also propose a collapsing
operation following one-dimensional convolution to couple
word features and position features, and the influence of the
learned features are further evaluated in the experiments. And
the experimental results on two text datasets indicate that the
proposed approaches achieve remarkable improvements. For
the future work, as our approach has exhibited a promising
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results, we guess that it has a potential to further improve the
performance by exploring some sophisticated neural networks
to model normal texts.
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