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Abstract

Hypernymy identification aims at detecting if iSA
relationship holds between two words or phrases.
Most previous methods are based on lexical pat-
terns or the Distributional Inclusion Hypothesis,
and the accuracy of such methods is not ideal. In
this paper, we propose a simple yet effective super-
vision framework to identify hypernymy relations
using distributed term representations (a.k.a term
embeddings). First, we design a distance-margin
neural network to learn term embeddings based
on some pre-extracted hypernymy data. Then, we
apply such embeddings as term features to iden-
tify positive hypernymy pairs through a supervi-
sion method. Experimental results demonstrate that
our approach outperforms other supervised meth-
ods on two popular datasets and the learned term
embeddings has better quality than existing term
distributed representations with respect to hyper-
nymy identification.

1

In this paper, we are concerned with the problem of hyper-
nymy identification. Specifically, given a pair of words or
phrases (X,Y"), our goal is to check if the hypernymy rela-
tionship (a.k.a. the isA relationship) holds between X and Y,
that is, if X names a broad category that includes Y [Snow et
al., 2004].

Introduction

1.1 The Hypernymy Relationship

Given a hypernymy pair (X,Y"), we call X a hypernym
of Y and Y a hyponym of X. Examples of hypernymy
pairs include (scientist, Einstein), (car brand,
jaguar), (mammal, jaguar), etc.

Hypernymy relationship plays a critical role in language
understanding because it enables generalization, which lies at
the core of human cognition. As a result, the hypernymy rela-
tionship is the backbone of almost every taxonomy, ontology,
and semantic network. To understand its significance, con-
sider two terms @ and b, and R(a, b), which denotes a certain
relationship between a and b. It can be shown that the hyper-
nymy relationship may be used to generalize R, or in other
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words, it may enable us to know more about R. For exam-
ple, if we know b’ is a hypernym or hyponym of b, chances
are R(a,b’) also holds. More specifically, let R denote the
head-modifier relationship, that is, R(a, b) holds if a is more
likely to be the head and b the modifier when a and b appear
together. For instance, we may have R(charger, iphone)
because when people search for charger iphone, their
intent is usually to find a charger for an iphone. Now,
given that we know (smart phone, iphone) is a hy-
pernymy pair, then it is very likely R(charger, smart
phone) also holds. This kind of inferencing can be ex-
tended and we may derive R(case, iphone), R(charger,
galaxy s4), simply because case and charger are co-
hyponyms for the concept of accessory, and iphone and
galaxy s4 are co-hyponyms for the concept of smart
phone.

Clearly, the hypernymy relationship is powerful for infer-
encing, and as a result, hypernymy identification has many
applications, including ontology construction [Suchanek et
al., 2008], machine reading [Etzioni et al., 2006], question
answering [McNamee et al., 2008], etc.

1.2 State-of-the-Art Approaches

Hypernymy identification is a long-standing and challeng-
ing research topic. We briefly review two major approaches,
namely pattern-based methods and distributional models.

Pattern-based methods. Much work [Miller, 1995; Liu
and Singh, 2004; Suchanek et al., 2007; Wu et al., 2012] has
focused on creating a large data set of hypernymy pairs. To
tell if the hypernymy relationship holds for a pair (X,Y),
it simply checks if (X,Y") is in the data set. To create the
dataset, it relies on information extraction over large corpra
using some syntactic patterns that indicate the hypernymy re-
lationship. A well-known syntactic pattern for this purpose
is the Hearst pattern [Hearst, 1992], for instance, the pattern
“.. NPy suchas NP;, NP,, ..” may indicate NP, is a
hypernym of N P;, N P, etc.

This method is simple and efficient, but generally it has
low precision and low recall because information extraction
is error prone and the text corpus is always sparse (peo-
ple do not express every possible hypernymy relationship in
a Hearst pattern and in an information extraction friendly
way). Consider two sentences : ...cities in Asian



countries such as Tokyo... and ...cities
in Asian countries such as Japan... Naive
extraction may lead to (Asian country, Tokyo) or
(city, Japan). The ambiguity of a natural language com-
pounded by data sparsity makes syntactic patterns based
methods less robust.

Distributional models. Another approach for hypernymy
identification is based on the Distributional Inclusion Hy-
pothesis (abbreviated DIH) [Zhitomirsky-Geffet and Dagan,
2005; 2009], which assumes that hypernyms have broader
contexts than hyponyms. Distributional models typically rep-
resent a term by its textual contexts in the form of a high-
dimensional vector [Turney and Pantel, 2010]. For exam-
ple, the context features of iphone may include imac,
handset, psp, smart phone, etc., and the values for
those features are certain statistics (e.g., PPMI) between the
term and the feature. The DIH states that if X is a hyper-
nym of Y, then most context features of Y are also features
of X. For example, if X is animal and Y is cat, most fea-
tures of cat are also features of animal, but at least some
features of animal do not apply to cat. For instance, the
term rights co-occurrs with animal frequently, but not
so much for cat.

Several measures [Weeds et al., 2004; Clarke, 2009;
Kotlerman et al., 2010; Lenci and Benotto, 2012] have been
proposed to identify the hypernymy relationship based on the
DIH. For example, Weeds et al [2004] proposed a very simple
measure to compute the weighted inclusion of features of Y
within the features of X:

ZfeFxﬁFy wy (f)
Zfer wY(f)

Here, F'x is the set of features of X and wx (f) is the weight
of feature f for X.

There are two major issues for this approach. First, the
inclusion hypothesis is not always correct, that is, hyper-
nyms do not always have broader context features. For exam-
ple, American is a hypernym of Obama, but Obama defi-
nitely have some features that are not strongly associated with
American. Second, the proposed measures in the distribu-
tional space are not able to perfectly discriminate the hyper-
nymy relationship from other semantic relationships such as
co-hyponym and meronymy.

Recently, Roller et al. [2014] propose a simple supervi-
sion distributional model to weight the importance of differ-
ent context features. The hypernymy identification task ben-
efits greatly from this feature selection approach, and its ac-
curacy is significantly improved. But problems are that the
supervised models are still based on the DIH, and the selected
features are domain dependent, which means they are heav-
ily related to the training set and are not global indicators of
hypernymy.

WeedsPrec(X,Y) =

1.3 Our Approach

In this paper, we propose a new approach for hypernymy
identification. We use term embeddings to encode hyper-
nymy properties. Term embeddings typically represent a
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term by a dense, low-dimensional, real-valued vector. Much
previous work [Bengio et al., 2003; Collobert ef al., 2011,
Mikolov et al., 2013a] has focused on learning such repre-
sentations from term co-occurrence data so that similar terms
have similar embeddings. However, co-occurrence based
similarity is not enough for our purpose, for we need to tell
if two terms form a specific relationship instead of just fre-
quently co-occur. To go beyond co-occurrence based simi-
larity, we design a neural network model to learn term em-
beddings that encode hypernymy properties. We use as train-
ing data a set of hypernymy pairs extracted from a web cor-
pus [Wu er al., 2012]. Our model is shown to be able to gen-
eralize from the training dataset to encode hypernymy prop-
erties for unseen pairs. We then use term embeddings as input
features to further train a supervised classifier for identifying
hypernymy. Compared with the state-of-the-art supervised
distributional method [Roller et al., 2014], our approach gets
better accuracy, and the learned term embeddings are not do-
main dependent; moreover, we show that our term embed-
dings are superior to other traditional embeddings in the task
of hypernymy identification since using our term embeddings
achieves much higher accuracy than using other embeddings.

1.4 Paper organization

The rest of this paper is organized as follows. In Section 2,
we describe hypernymy relationships in data driven knowl-
edge bases and background of term embeddings. In Section
3, we introduce the learning method for term embeddings and
the architecture of our neural network model. In Section 4,
we present our embedding-based hypernymy classifier. We
report experimental results in Section 5, and give conclusion
in Section 6.

2 Background

Training Corpus. We use data in Probase [Wu ez al., 2012]
for training term embeddings. Probase extracts hypernymy
data from billions of Web pages using pattern-based method.
We denote each hypernymy relation as a triple (v,u,q),
where v is the hypernym term, u is the hyponym term, and
n(v,u) is the number of times u and v occur together
in hypernymy patterns. We filter out some rare examples to
clean the data. Specially, we filter out i) triplets that have fre-
quency ¢ less than 5, and terms that have frequency less than
10. At last we obtain a training corpus of 5, 796, 987 triplets,
including about 1 million unique terms, 906, 241 hyponym:s,
and 221, 612 hypernyms. We use S, = {u1, ua, ..., u;, } and
Sy = {v1,v2, ..., v, } to represent the set of hyponym and hy-
pernym respectively. Note that S,, N .S, # ¢. From another
point of view, the training set can be regarded as a matrix,
whose rows represent hyponym terms and columns represent
hypernym terms, and the cell value is the frequency g.

Term Embeddings. Term embedding is a dense, low-
dimensional, and continuous valued representation of word
and phrase. Compared with distributional representation of
terms, term embeddings are more compact, and they capture
useful syntactic and semantic properties of the terms. For ex-
ample, in the embedding space, the nearest neighbors of cat



include cats, dog, puppy, and so on. Term embeddings
are currently widely used in NLP tasks [Glorot et al., 2011;
Socher et al., 2011; Turney, 2013], and many training ap-
proaches have been proposed [Bengio et al., 2003; Turian
et al., 2010; Collobert et al., 2011]. Recently, Mikolov et
al. [2013a] introduced a log-linear model, namely the Skip-
gram, to efficiently induce term embeddings on a very large-
scale corpus. The Skip-gram model adopts log-linear clas-
sifiers to predict context terms within a predefined range
given the current term embedding as input. The embed-
dings (denoted as word2vec) are trained to maximize the log-
likelihood over the entire corpus through stochastic gradi-
ent descent (SGD) method. Many applications have shown
the good performance of word2vec [Mikolov et al., 2013a;
Kim, 2014; Hill ef al., 2014], and in this study, we compare
our term embeddings with word2vec embeddings in the task
of hypernymy identification.

3 Dynamic Distance-Margin Model

In this section, we introduce a dynamic distance-margin
model based on neural networks to encode hypernymy prop-
erties into term embeddings.

3.1 Embeddings for the Hypernymy Relationship

We give each term x two embeddings, namely, the hypOnym
embedding O(z) and the hypErnym embedding F(z). The
reason we give each term two embeddings is because hyper-
nymy is not a symmetric relation: we need to discriminate the
roles of the two terms in a hypernymy relation. We use O(z)
to represent © when x functions as a hyponym, as for exam-
ple,birdin(animal, bird), and we use F(x) to represent
z when z functions as a hypernym, as for example, bird in
(bird, robin).

We want to learn embeddings that encode the hypernymy
relationship. More specifically, we hope that the learned em-
beddings have the following three properties:

1. hyponym-hypernym similarity: If « is a hyponym of v,
then O(u) is similar to E(v), for example, O(dog) ~
E(animal);

co-hyponym similarity: If 4 and v are co-hyponyms, i.e.
they have some same hypernyms, then O(u) is similar
to O(v), for example, O(dog) ~ O(cat);
co-hypernym similarity: If v and v share a lot of hy-

ponyms, then E(u) and E(v) are similar, for example,
E(car) ~ E(auto).

3.2 Learning Embeddings

Let S, be the set of all hyponyms, and S, be the set of all
hypernyms. We aim to train two functions to map terms into
a d-dimensional embedding space R.

0:85, — R?

E:S, =R
For a hypernymy relationship = (v, u, ¢), our goal is to
ensure O(u) is close to E(v). We choose 1-norm distance as

the distance measure since it is simple yet effective to com-
pute the degree of similarity between two embeddings, and it
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enables fast SGD learning. The distance measure function of

T is:
f(@) =1|0(u) = E(0)||x ()
We adopt a pairwise training strategy. Specifically, let
x = (v,u,q) be a positive hypernymy relationship, and let
2’ be a negative hypernymy relationship, which in the form
of 2/ = (v, u,0) or ' = (v,u’,0). We want to ensure f(x)
is smaller than f(z’) by a certain margin. More specifically,
our objective function for one pairwise training is:

fz) < f(a) —m(a,2")

where m(z, z') is the margin.

Not every hypernymy relationship is equal. For a hyper-
nymy example (v, u, q), the frequency ¢ denotes the strength
or the popularity of the relationship. We adopt two mecha-
nisms to reflect this in our training.

2)

e For each hypernymy relationship © = (v, u,q) in the
training set, we randomly create g corrupted relation-
ships #, - -+, x7, and we perform pairwise training for
every pair (x,z}). This means our model places more
weight on popular hypernymy relationships than those
rare ones. We create corrupted relationships as follows:
we replace u or v with a random v’ € S, or v’ € S,.
The result is a corrupted triple in the form of (v, ’, ¢’)
or (v, u,q’), where ¢’ is the frequency. In practice, we
often have ¢’ = 0, because it is unlikely a randomly cor-
rupted pair of terms exist in the training set.

The margin in Eq 2 is not a constant, but a function of x
and its corrupted version z’. We devise the margin func-
tion m(z,x’) to put more emphasis on popular hyper-
nymy relationships. Specifically, we define the margin
as follows:

q+1

m(z,2") =log(q +1) —log(¢' +1) = log

In other words, we require a popular sample to have a
bigger margin than a rare sample to their corresponding
negative samples. This is why we call our model a dy-
namic distance-margin model.

We give the overall loss function J across all training data
as follows:

/
T, T;

T= 3 S mar(o, f@) - f(x)) +ml

z=(u,v,q) j=1

) (3)

We argue that, by minimizing the loss function J, the re-
sulting embeddings satisfy the three properties we mentioned
above. It is easy to understand how hyponym-hypernym sim-
ilarity is achieved, because our training objective is to make
O(u) and E(v) similar so that the 1-norm distance between
them will be small enough to minimize J. For example,
as shown in Table 1, for hyponym-hypernym similarity, the
l-norm distance between O(iphone) and E(device) is
15.4, while that between O(iphone) and F(animal) is
30.6. To see how co-hyponym similarity is achieved, con-
sider term v = dog and term v = cat. Because they share a
hypernym w = animal, both O(u) and O(v) are optimized



output layer

summarize layer

difference layer

input layer

0
OJ gl2)= |z|
0]’

log(q+1)

Figure 1: The Architecture of our dynamic margin model. The input is a concatenation vector of embeddings O(u) and E(v), and the
output is f(z) + log(q + 1). For the corresponding corrupted =, we can get f(z') + log(q’ + 1) as the output. Then we compute the loss
J = f(z) — f(z') +log(q+ 1) — log(¢’ + 1), and optimize the embeddings through SGD.

to have small distances to E(w), that is, O(u) ~ F(w) and
O(v) ~ E(w). In other words, w draws O(u) and O(v)
closer to each other. Furthermore, since w can take other val-
ues such as mammal, pet, and so on, each of which makes
O(u) and O(v) closer, we will finally get O(u) ~ O(v). As
shown in Table 1, google is much closer to yahoo than to
banana in the embedding space. For the same reason, for
two terms, such as company and f£irm, that share a number
of hyponyms, their embeddings are likely to be close in the
embedding space.

property type example distance

: -, iphone-device 15.4

Eflnrl) ﬁgﬁglhypemym positive iphone-phone 16.0
) 1 . iphone-animal 30.6
O(u) ~ E(v) negative iphone-fruit 37.9
co-hyponym positive google-yahoo 6.1
similarity: googlle-?)mazon égia
N . google-banana .

O(u) ~ O(v) negative google-cat 275
co-hypernym positive company-firm 12.1
similarity: company-bral}d 14.5
E(u) ~ E(v) negative company—f{ult 249
company-animal 30.5

Table 1: Some examples of the three similarity properties

3.3 Neural Network Architecture

We minimize the loss function J using the stochastic gradi-
ent descent (SGD) method [Robbins and Monro, 1951] over
the neural network architecture shown in Figure 1. The di-
mensionality of the input layer is 2d, as we concatenate of
the hyponym embedding O(u) and the hypernym embedding
E(v), each of which is d-dimensional. At the beginning of
the training, we initialize all embeddings to be uniformly ran-
dom in [~0.1,+0.1]%. The difference layer captures the er-
ror between O(u) and F(v) on each dimension. The acti-
vation function of this layer is g(z) = |z|, where z is a d-
dimensional vector and z* = O(u)? — E(v)*. That is, the iz,
neuron only computes the error between O(u)* and E(v)*.
Therefore, the weight of edge 2* +» O(u)" is 1 and the weight
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of edge z* +» E(v)* is -1, and all other edges’ weights are 0.
As shown in Figure 1, the activation function on each layer is
linear and simple, and all parameters (w, b) in the neural net-
work are constant numbers. Thus, in the training process, we
only need to update the term embeddings without optimizing
parameters, which markedly simplify the training process.

4 Supervised Hypernymy Identification

Our learned term embeddings have a property that for a pair
of positive and negative hypernymy relationships = and x’, we
have f(x) < f(z'). The question is, can we directly use this
property for hypernymy identification? That is, does there
exist a threshold § such that for any x that satisfies f(z) < ¢
then x is a positive hypernymy relationship, and if not then a
negative one?

Unfortunately, it is hard to find a uniform threshold to ide-
ally separate all positive and negative hypernymy pairs, be-
cause the distance-margin is only able to determine the mar-
gin between f(x) and f(z’). It does not provide an abso-
lute threshold for hypernymy identification for any x. In
fact, certain positive and negative hypernymy pairs have sim-
ilar distances. For example, the 1-norm distance between
O(goldfish) and E(pond fish) is 21.4, and pond
fish is a hypernym of goldfish. However, the distance
between O(salmon) and E(crop) is also 21.4, but crop is
not a hypernym of salmon (see Table 2 for more examples).

hyponym hypernym distance | isHypernymy
goldfish pond fish 214 true
salmon crop 21.4 false
tokyo large urban area 23.9 true
robin snake 23.9 false

Table 2: The 1-norm distances between some positive and negative
hypernymy examples. The distance alone cannot distinguish posi-
tive hypernymy relations from negative ones.

Instead of using the distance between O(u) and E(v) to
decide whether (v, ) is a positive hypernymy pair, we build
a classifier that uses O(u), E(v), and other signals as features



for hypernymy identification. Specifically, we use a Sup-
port Vector Machine (SVM) for this purpose. Given a pair
of terms (v, u), the input feature is the concatenation of u’s
embedding and v’s embedding as well as the 1-norm distance
between them, or simply, O(u) + E(v) + ||O(u) — E(v)||1,
where “+” denotes concatenation. The 1-norm distance fea-
ture is further normalized using d’ %. Thus, the
dimension of the feature vector is 2d + 1. As we will show
in the experiment result, the 1-norm distance feature plays an
important role in the task of hypernymy identification.

5 Experiments

We compare our approach with state-of-the-art supervised
distributional methods [Roller et al., 2014]. To evalu-
ate the quality of our term embeddings, we compare with
word2vec [Mikolov ef al., 2013b] as input to SVM for hy-
pernymy identification.

5.1 Evaluation Data Sets

We use two datasets, BLESS [Baroni and Lenci, 2011] and
ENTAILMENT [Baroni et al., 2012] for evaluation. BLESS
contains 200 distinct, unambiguous concepts, each of which
is involved with other words in some relations. We extract
from BLESS 14,547 tuples to form 3 datasets: hypernymy-
meronymy, hypernymy-coordinate, and hypernymy-random.
Specifically, i) hypernymy-meronymy consists of tuples of ei-
ther hypernymy relation or meronymy relation (a.k.a. part-
of relation, e.g. (dog, paw)); ii) hypernymy-coordinate con-
sists tuples of either hypernymy relation or coordinate rela-
tion (two terms that have the same concepts, e.g. (dog, cat));
and iii) hypernymy-random consists of tuples of hypernymy
relation or random relation (e.g. (dog,laptop)). The EN-
TAILMENT dataset consists of 2,770 pairs, with equal num-
ber of positive and negative examples of hypernymy rela-
tions. Altogether, there are 1,376 unique hyponyms and 1,016
unique hypernyms. The negative examples are generated by
randomly permuting the hypernyms of the positive examples.

5.2 Supervised Models
We evaluate the following three supervised models.

(1) SVM+Emb This is our method that uses SVM and hy-
pernymy embeddings. The input is a 2d+1-dimensional vec-
tor: (O(u); E(v);]|O(u)—E(v)]|1), where d is the dimension
of our hypernymy embeddings. SVM is trained using a RBF
kernel with v = 0.03125 and penalty term C' = 8.0.

(2) SVM+Word2Vec The model is configured the same
way as SVM+Emb, but the input is word2vec embed-
dings, that is (w2v(u); w2v(v); [|w2v(u) — w2v(v)||1). The
word2vec embeddings are trained using the Skip-gram
Model [Mikolov et al., 2013b] on One Billion Word Lan-
guage Modeling Benchmark [Chelba et al., 2013].

(3) Diff+TypeDM3qo This is a supervised logistic regres-
sion model proposed by Roller et al. [2014]. We se-
lect this model for its good performance. We first rep-
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resent terms in a distributional vector space that is ex-
tracted from TypeDM tensors [Baroni and Lenci, 2011].
The TypeDM contains a large number of weighted tuples
in the form of ({(w1,l,ws), o), where w; and ws are con-
tent terms, [ is a syntagmatic relationship, and o is a weight
estimating the saliency of the relationship. For example,
({marine, use, bomb), 82.1) is a TypeDM tuple.

We construct vectors for every unique noun w; using the
set of (I, ws) pairs as dimensions and the corresponding o as
dimension values. We further reduce this distributional space
to 300 dimensions using Singular Value Decomposition, so
every term is represented as a 300-dimensional vector. Given
a pair of terms (v, u) (here we also use v, u to denote their re-
duced distributional vectors), the input feature vector includes

two parts (f; g), where f; = ”Z—H — ﬁ,gi = f2.

5.3 Experiment 1

For each BLESS dataset (hypernymy-coordinate,
hypernymy-meronymy, hypernymy-random), we hold
out one target concept and train on the remaining 199 ones.
The hold-out concept and its relatum constitute the test data,
and we exclude from the training set any pair containing a
relatum that appears in the test set. We report the average
accuracy across all concepts. For ENTAILMENT data, we
do the evaluation using the same method — we hold out one
hyponym for test and train on all remaining hyponyms, and
we also compute the average accuracy across all hyponyms.
In this experiment, both our term embeddings and word2vec
embeddings are 100 dimensional (denoted as the subscript
100). Furthermore, to see the effect of 1-norm distance, we
remove the distance value from the input features. That is,
for SVM+Emb model, the input feature vector is changed
to (O(u); E(v)), and for SVM+Word2Vec model, the input
feature vector is changed to (w2v(u); w2v(v)). We use the
superscript 2 to denote this setting.

Results Table 3 shows the performance of the three su-
pervised methods on both BLESS and ENTAILMENT data
sets.  First, we compare the results of SVM+Embygg,
SVM+Word2Vec;gg and Diff+TypeDMjsqq. It is obvious that
our approach, which uses (O(u); E(v); ||O(u) — E(v)]1)
as input features, has the highest average accuracy for all
data sets. The Diff+TypeDMj3o9 model performs slightly
worse, while the SVM+Word2Vecyg model gets the worst
result, especially for the hypernymy-coordinate data set and
hypernymy-meronymy data set. This is because word2vec
embeddings capture only co-occurrence based similarity,
which is not enough for the classifier to discriminate hyper-
nymy from other semantic relationships, especially the co-
ordinate and meronymy. For example, as far as word2vec
is concerned, cat is highly similar to dog, paws, and
animal. But in fact, (cat, dog) is of the coordi-
nate relationship, (cat, animal) the hypernymy rela-
tionship, and (cat, paws) the meronymy relationship.
Their word2vec input features are too similar for the classifier
to make correct predication.

Our term embeddings, however, enable the classifier to per-
form hypernymy identification. The reason is that, in our in-



BLESS

Data set i ENTAILMENT
yper-coord hyper-mero hyper-random
SVM+Embj 92.3 88.7 91.8 87.5
SVM+Emb?,, 88.2 86.9 90.1 85.9
SVM+Word2Vecgg 75.8 72.9 84.3 81.6
SVM+Word2Vec?,, 75.7 72.6 84.4 81.2
Diff+TypeDMsqg 86.5 85.7 88.2 84.6

Table 3: Average accuracy (%) of the supervised models obtained on BLESS and ENTAILMENT.

. . Training Time BLESS
Dimension (s/epoch) hyper-coord hyper-mero hyper-random ENTAILMENT
50 52 89.7 86.2 89.9 86.1
100 &9 92.3 88.7 91.8 87.5
200 156 92.7 89.0 92.3 88.0
300 263 92.6 89.0 92.4 88.1

Table 4: The training time for embeddings and the average accuracy (%) for SVM+Emb model that uses different dimensional embeddings.
We ran a single-threaded program on one machine powered by an Intel Core(TM) i5-2400 3.1-GHz with 8 GB memory, running Linux.

put features (O(u); E(v);]|O(u) — E(v)||1), the two func-
tions O and E are able to characterize the hypernymy rela-
tionship held by u and v. Let us consider the same example
as above. For cat, we use O(cat) as its embeddings, and
the candidate hypernyms dog, paws and animal are repre-
sented by O(dog), E(paws) and E(animal). These hyper-
nym embeddings are not similar to each other, and it is easier
for the classifier to identify animal is a hypernym of cat
because only E(animal) is similar to O(cat).

From the results of SVM+Emb1o9 and SVM+Emb?,,, we
conclude that the 1-norm distance plays an important role in
our model. It improves the average accuracy on all test data
sets. However, the distance feature is not so important for
the SVM+Word2Vec model. Naturally, for our term embed-
dings, the 1-norm distance between a hyponym and a hyper-
nym is able to reflect the hypernymy relationship more or less,
but the distance between two word2vec embeddings does not
have this signal.

5.4 Experiment 2

To further demonstrate the generalization ability of our term
embeddings, we carry out the following two experiments. i)
We train a classifier on BLESS data and use the same classi-
fier for testing on ENTAILMENT data. Concretely, for each
hyponym in ENTAILMENT, we take the pairs containing that
hyponym as test data, and we use the BLESS hypernymy-
random data set for training. Again, we exclude from the
training set any pair containing a term that appears in the
test set. At last, we compute the average accuracy across
all hyponyms in ENTAILMENT. ii) We use ENTAILMENT
data for training and we perform test on BLESS hypernymy-
random data. Since the SVM+Word2Vec model is not as
good as other supervised models in identifying hypernymy
relationships, here we only compare our approach with the
Diff+TypeDM300 model.

Results We see from Table 5 that our model performs
much better than Diff+TypeDMsgg. Although using dif-
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Model Training Set | Test Set iverage
ccuracy

BLESS ENTAIL 837

SVM+Emb1o ENTAIL BLESS 87.1

. BLESS ENTAIL 72.3

Diff+TypeDMasoo ENTAIL BLESS 74.6

Table 5: Average Accuracy (%) of our SVM+EMB 100 model and
Diff+Word2Vecsoo model obtained on BLESS and ENTAILMENT.
Every time we use one data set for training and use the other one for
test (ENTAIL represents ENTAILMENT and BLESS refers to the
hypernymy-random data set).

ferent domain data for training and test could bring down
the performance of both models, the accuracy achieved by
Diff+TypeDMj300 has a much bigger decline than the accu-
racy achieved by our model. This demonstrates that the hy-
pernymy properties encoded in our term embeddings have a
great generalization ability, and they can be used as global
features to indicate hypernymy relationship. However the
performance of Diff+TypeDM3sgy model is heavily depen-
dent on the training data, because the selected features (i.e.
the terms on which the model puts more weights) are di-
rectly related to the training data. For example, after training
on BLESS, most of the selected features belong to animal,
plants and artifacts, since the concept terms in BLESS are
mainly from the three broader categories. This is one limit
of Diff+TypeDMj3p9 model, and it is also an issue that the
authors [Roller et al., 2014] want to solve in future work.

5.5 Experiment 3

We learn embeddings of different dimensions (50, 200, and
300) using our dynamic distance-margin model. We then use
them for hypernymy identification to see whether the perfor-
mance is related to the size of embeddings.

Table 4 shows the training time of embeddings as well
as the performance of our SVM+Emb model on all data
sets. With the increase of dimension, the average accuracy
achieved by our model improved slowly. When the dimension



increases from 50 to 200, the accuracy is improved slightly,
after that, increasing the dimension nearly has no effect on
the performance. We argue that for the task of hypernymy
identification, dimension between 100 and 200 is enough to
capture all useful information.

6 Conclusion

We propose a supervised distributed approach for hyper-
nymy identification. We introduce a dynamic distance-
margin model to learn term embeddings that capture hyper-
nymy properties, and we train an SVM classifier for hyper-
nymy identification using the embeddings as features. Our
approach has better accuracy than state-of-the-art supervised
distributional methods, and our learned hypernymy embed-
dings have good generalization ability. Moreover, compared
with other co-occurrence based term embeddings, our em-
beddings have a great advantage for the task of hypernymy
identification.
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