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Abstract
Statistical machine translation models have made
great progress in improving the translation qual-
ity. However, the existing models predict the tar-
get translation with only the source- and target-side
local context information. In practice, distinguish-
ing good translations from bad ones does not only
depend on the local features, but also rely on the
global sentence-level information. In this paper,
we explore the source-side global sentence-level
features for target-side local translation prediction.
We propose a novel bilingually-constrained chunk-
based convolutional neural network to learn sen-
tence semantic representations. With the sentence-
level feature representation, we further design a
feed-forward neural network to better predict trans-
lations using both local and global information.
The large-scale experiments show that our method
can obtain substantial improvements in translation
quality over the strong baseline: the hierarchical
phrase-based translation model augmented with the
neural network joint model.

1 Introduction
Recently, statistical machine translation (SMT) models, such
as phrase-based models [Koehn et al., 2007], hierarchi-
cal phrase-based models [Chiang, 2007], and linguistically
syntax-based models [Liu et al., 2006; Galley et al., 2006],
have achieved great progress in improving the translation per-
formance. In these translation models, the target sentence
is generated by compositing several local translations with
reordering models or synchronous grammars, and the local
translations are rendered with the help of the source- and
target-side local context information. In most cases, the trans-
lation of source language words can be determined by local
context features. However, there are many cases in which the
target translation does not only depend on the local context,
but also rely on the global sentence-level information.

Take the Chinese sentence and its English translation in
Figure 1 as an example. For the underlined Chinese word,
molecule is the most possible translation. Even with the help
of the local context information, it cannot figure out the cor-
rect translation. Given the sentence-level semantics talking

Figure 1: An example for Chinese to English translation in
which the translation of the Chinese word in red needs the
global sentence information of the Chinese sentence.

about preventing illegal immigrants and unsafe people from
entering Japan, we can make sure that the best target transla-
tion for the underlined Chinese word should be people. Ob-
viously, the global sentence-level semantic information plays
an important role in local translation prediction.

Two questions arise: 1) how to represent the global
sentence-level semantics? 2) how to make full use of the sen-
tence semantic representation in statistical machine transla-
tion models?

For the first problem, the neural network methods are
proposed recently to learn sentence representations. These
methods include recurrent neural networks [Kalchbrenner
and Blunsom, 2013; Sutskever et al., 2014; Bahdanau et
al., 2014], recursive neural networks [Socher et al., 2011;
2013], sentence to vector [Le and Mikolov, 2014] and con-
volutional neural networks [Kim, 2014; Kalchbrenner et al.,
2014; Hu et al., 2014; Zeng et al., 2014]. It should be noted
that most of the above approaches learn the distributed sen-
tence representations for specific tasks, such as classification,
sequence labelling, and structure prediction. The seman-
tic meaning of the sentence is not fully expressed by these
sentence representations. In this paper, we focus on learn-
ing the sentence semantic representation. Although there is
no gold sentence semantic representation available for super-
vised learning, we have a large amount of parallel sentence
pairs which share the same semantic meaning. Accordingly,
sentence translation equivalents can supervise each other to
learn their semantic representations. Furthermore, we design
the chunk-based convolutional neural network in order to well
handle the sentence length variation and retain as much infor-
mation as possible at the same time. In this network, we just
need to decide how many chunks we want to segment a sen-
tence. Therefore, combining the two ideas together, we pro-
pose the bilingually-constrained chunk-based convolutional
neural network (BCCNN) for sentence semantic representa-
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Figure 2: Chunk-based convolutional neural network architecture for modelling sentence representation.

tion.
For the second problem, we incorporate the sentence se-

mantic representation during the decoding process to better
generate the target translation. Following the idea in [De-
vlin et al., 2014], we design a feed-forward neural network
which takes the learnt sentence semantic representation as
a new input feature to predict the conditional probability of
the target word given both the local and global information.
As an informative feature, this conditional probability is in-
tegrated into the log-linear model of the hierarchical phrase-
based translation system [Chiang, 2007].

In this paper, we make the following contributions:

• Our idea of the bilingually-constrained method circum-
vents the problem of lacking gold labelled data and pro-
vides a good way to learn sentence representations.

• To deal with the variable length of the sentences and
meanwhile retain as much semantics as possible, we pro-
pose the chunk-based convolutional neural network in
which we can choose the number of chunks.

• When integrating the sentence semantic representation
into the decoding process, we can achieve significant im-
provements in translation quality over a strong baseline.

2 Sentence Semantic Representation
Convolutional neural network (CNN) consisting of the con-
volution and pooling layers provides a standard architecture
[Collobert et al., 2011] which maps variable-length sentences
into fixed-length distributed vectors. This section starts with
introducing a new variant of the standard CNN called chunk-
based CNN in order to keep more semantics of the sentence.

2.1 Chunk-based Convolutional Neural Network
The model architecture is illustrated in Figure 2. The data
flow is similar to the standard CNN: the model takes as in-
put the sequence of word embeddings in a sentence, sum-
marizes the sentence meaning by convolving the sliding win-
dow and pooling the saliency through the sentence, and yields
the fixed-length distributed vector using other layers, such as
dropout layer, more convolution and pooling layers, linear
and non-linear layers.

Specifically, suppose we are equipped with a word embed-
ding matrix L ∈ Rk×|V | 1 trained on the large-scale mono-
lingual data using unsupervised algorithm (e.g. word2vec
[Mikolov et al., 2013]). Given a sentence w1w2 · · ·wn, each
word wi is first projected into a vector Xi through the word
embedding matrix. Then, we concatenate all the vectors in
order to form the input of the model:

X = [X1, X2, · · · , Xn] (1)

Convolution Layer involves a number of filters W ∈
Rh×k which summarize the information of h-word window
and produce a new feature. For the window of h words
Xi:i+h−1, a filter Fl (1 ≤ l ≤ L, and L denotes the num-
ber of filters) generates the feature yli as follows:

yli = σ(W ·Xi:i+h−1 + b) (2)

Where σ is a non-linear activation function (e.g. Relu or Sig-
moid), and b is a bias term. When a filter traverses each win-
dow in the sentence from X1:h−1 to Xn−h+1:n, we get the
output of the feature map corresponding to the filter Fl:

yl = [yl1, y
l
2, · · · , yln−h+1] (3)

Here, yl ∈ Rn−h+1. It should be noted that the sentences dif-
fer from each other in length n (from several words to more
than 100 words), and then yl has different dimensions for dif-
ferent sentences. It raises a key question of how to transform
the variable-length vector yl into a fixed-length vector.

Pooling Layer is designed to perform this task. In most
cases, we apply a standard max-over-time pooling operation
[Collobert et al., 2011; Kim, 2014] over yl and choose the
maximum value ŷl = max{yl} as the most important feature
of the filter Fl. This idea is simple and easy to implement.
However, its disadvantages are two-fold: 1) most of the in-
formation in the sentence is lost, and 2) the word order in-
formation is missing. Kalchbrenner et al. [2014] proposed to
take the top-K maximum values over yl to keep more infor-
mation, but the word order information is still missing. Hu
et al. [2014] designed a max-pooling over every two-unit, but
they require the fixed-length inputs. In this paper, we design

1Each word is represented by a dense real-valued vector in di-
mension k and |V | is the vocabulary size. |V | word embeddings are
organized as a matrix L.
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Figure 3: Bilingually-constrained Chunk-based convolutional neural network architecture for learning sentence semantic rep-
resentation.

a simple but effective chunk-based max-pooling algorithm
so as to retain more semantics of the sentence and keep the
order information as well.

Given the predefined number of chunks C (e.g. C = 4
in Figure 2), we first divide evenly yl into C segments, and
then takes the maximum value from each segment. Note that
n−h+1 does not have to be divisible byC and the last chunk
can have the size of the modulus. Then, we can transform the
variable-length vector yl into a fixed-length vector with C
values:

ylC = chunkMax{[yl1, yl2, · · · , yln−h+1]}
= [ylc1 , y

l
c2 , · · · , y

l
C ]

(4)

If there are FL filters, the output of the pooling layer will be a
vector in FL ×C dimension. In our model, the pooling layer
is followed by a dropout layer, and two fully connected linear
layers with non-linear activation Relu. Finally, we can obtain
a fixed-length output vector for each sentence.

This idea of chunk-based CNN is inspired by the inherent
structure of a sentence. From the perspective of shallow struc-
tures, a sentence is organized by subject-verb-object (English
and Chinese word order). Then, we can assign C a small
number (e.g 2 or 3) to summarize this kind of semantic infor-
mation. From the perspective of deep structures, a sentence
can be described as a sequence of noun phrase (NP), verb
phrase (VP), adjective phrase (ADJP), prepositional phrase
(PP) and so on. Accordingly, we can set C to a relatively
large number to capture these kinds of information. There-
fore, the chunk-based CNN can retain more semantics of a
sentence and retain as well the sentence structure to some ex-
tent.

2.2 Bilingually-constrained Chunk-based CNN
The convolutional neural network is usually tuned to optimize
an objective function for a specific task, such as sentiment and
relation classification [Kim, 2014; Zeng et al., 2014]. The
result sentence representation is class sensitive but does not
encode adequate semantic meaning of the sentence. Since our
goal is to learn sentence semantic representations, we need to
find a well-defined objective function.

However, there are no gold sentence semantic represen-
tations available in the real world. Fortunately, we know
the fact that if two sentences share the same meaning, their
semantic representations should be identical. As we know
in machine translation that, there are lots of parallel sen-
tence pairs for different languages, such as Chinese-English,
Arabic-English. Thus, we can make an inference from this
fact that if a model can learn the same representation for
any parallel sentence pair sharing the same meaning, the
learnt representation must encode the semantics of the sen-
tences and the corresponding model is our desire. Inspired
by the work on word and phrase embeddings using a bilin-
gual method [Zou et al., 2013; Zhang et al., 2014a], we
propose the Bilingually-constrained Chunk-based CNN (BC-
CNN), whose basic goal is to minimize the semantic distance
between the sentences and their translations.

As illustrated in Figure 3, given a source language sentence
f and its translation e, the chunk-based CNN can generate
respectively the fixed-length output vectorsOf andOe. Then,
Of and Oe are projected into a shared semantic space, and
become O′f and O′e (e.g. O′f = σ(W t · Of + bt), where
W t denotes transformation matrix). In the shared space, two
representation vectors can calculate their distance easily with
dot-product. The basic objective function is to minimize the
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distance dis(f, e; Θ) = dis(O′f , O
′
e) between O′f and O′e.

We know that a good model should not only make the rep-
resentations of translation equivalents as similar as possible,
but also enforce the representations of non-translation pairs
to be as different as possible. Therefore, our objective func-
tion is also designed to maximize the distance dis(f, e∗; Θ)
if (f, e∗) is a non-translation pair. Then, we design our ob-
jective function to be a max-margin loss:

j(f, e, e∗; Θ) = max(0, 1 + dis(f, e∗; Θ)− dis(f, e; Θ))
(5)

Here, Θ includes all the parameters of the bilingually-
constrained chunk-based CNN. For any translation equiva-
lent (f, e), we can choose randomly a sentence e∗ (e∗ 6= e)
from the target language monolingual data and obtain the
non-translation pair (f, e∗). The final objective function over
the large-scale parallel sentence pairs (F,E) of size N is:

J(F,E; Θ) =
1

N

∑
(f,f)∈(F,E)

j(f, e, e∗; Θ) +
λ

2
||Θ||2 (6)

3 Integrating Sentence Semantic
Representations in Translation Models

With the trained chunk-based convolutional neural network,
we can obtain the semantic representation for any sentence.
In this section, we introduce how to make full use of the sen-
tence semantic representations in SMT models.

3.1 Sentence Representation for Translation
Probability Estimation

Formally, given a source sentence s, machine translation aims
to find from the search space T the best target translation
hypothesis t which has the highest conditional probability
p(t|s). If we focus on each target word, the conditional prob-
ability can be decomposed as follows:

p(t|s) =

|t|∏
i=1

p(ti|t1, t2, · · · , ti−1, s) (7)

Devlin et al. [2014] approximated the target single word
probability p(ti|t1, t2, · · · , ti−1, s) following the target n-
gram language model and using the source-side local context,
called joint model:

p(t|s) ≈
|t|∏
i=1

p(ti|ti−n+1, · · · , ti−1,Si) (8)

In which Si includes the source-side local context associated
with the current target word ti. We know that machine trans-
lation models, such as hierarchical phrase-based model, gen-
erate the target hypothesis with translation rules 2 from which
we can find the source word sai

that is aligned to ti (sai
and

ti are translations of each other). Devlin et al. [2014] take the
m-word source-side local context centered at sai

:

Si = sai−m−1
2
, · · · , sai

, sai+
m−1

2
(9)

2Word alignment information in the translation rules are retained
during decoding.

Figure 4: Local translation prediction with both the local con-
text and the global sentence semantic representations.

However, just as we discussed in the Introduction section
that besides the local context, the global sentence semantic
information plays an indispensable role in accurate transla-
tion prediction. Therefore, we augment Equation 8 with the
global sentence semantics:

p(t|s) ≈
|t|∏
i=1

p(ti|ti−n+1, · · · , ti−1,Si, s) (10)

In this way, translating every target word during decoding is
aware of the source-side global sentence-level information.

In our experiments, following [Devlin et al., 2014] we use
n = 4 and m = 11. It is easy to see that the data sparsity
will become a serious problem if we employ the traditional
method to perform the probability estimation. Therefore, we
resort to the neural networks that perform probability estima-
tion in a distributed continuous space.

The neural network architecture shown in Figure 4 is al-
most identical to the original feed-forward neural network
described in [Bengio et al., 2003; Vaswani et al., 2013;
Devlin et al., 2014]. It consists of two hidden layers besides
the input and output layer. The input includes two parts: 1)
the localm+n−1 context vector used in [Devlin et al., 2014]
(n−1 target history words andm source-side context words),
where each word is mapped to a 192-dimensional vector; 2)
the global 192-dimensional sentence semantic representation
vector obtained with the learnt chunk-based CNN.

Through two 512-dimensional hidden layers with rectified
linear activation function (Relu, σ(x) = max(0, x)), we ap-
ply the softmax function in the output layer to calculate the
probability for each target word in the vocabulary. Following
[Devlin et al., 2014], input vocabulary contains 16,000 source
words and 16,000 target words. The output vocabulary con-
tains 32,000 target words.

This feed-forward neural network will be trained to max-
imize the log-likelihood over the target side of the bilingual
training data for machine translation.

3.2 Decoding with Neural Network Probability
To calculate the target word conditional probability with neu-
ral network, we need the information of n − 1 target history
words, m source context words and the whole source sen-
tence, which are all easy to obtain during SMT decoding.
Thus, the neural network probability can be integrated into
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any SMT model. In this paper, the hierarchical phrase-based
model (HPB) [Chiang, 2007] is employed.

The HPB model translates the source sentences using syn-
chronous context free grammars (SCFG). The SCFG trans-
lation rules are in the form of X → (α, γ,∼), where X is
the non-terminal symbol, α and γ are sequences of lexical
items and non-terminals in the source and target side respec-
tively, and ∼ indicates one-to-one correspondence between
non-terminals in α and γ in the standard version. Here, in or-
der to retrieve easily the central source word aligned to each
target word during decoding, we also retain the alignments
between source- and target-side lexical terms in the rules.
That is, ∼ contains all the correspondences between termi-
nal or non-terminals in α and γ.

The HPB SMT adopts a log-linear model to search for the
best translation candidate. The powerful features in the log-
linear model includes: 1) forward and backward rule prob-
ability, 2) forward and backward lexical probability, 3) a 5-
gram language model, 4) rule counts and translation length
penalty, and 5) a glue rule reordering model. The condi-
tional probability p(ti|ti−n+1, · · · , ti−1,Si, s) calculated in
the previous section will serve as the sixth kind of informa-
tive feature to be integrated in the log-linear model.

4 Experiments
Before elaborating the experimental results, we first introduce
the details of neural network training and the experimental
settings.

4.1 Neural Network Training Details
For the bilingually-constrained chunk-based CNN, the ini-
tial 192-dimensional word embeddings are trained with
word2vec [Mikolov et al., 2013]: the embedding for English
words is learnt on ∼1.1B data, while that for Chinese words
is learnt on∼0.7B data. We set the context window h = 3 for
convolution. We will test multiple settings of the chunk num-
ber (C = 1, 2, 4, 8) to see which one performs best. We apply
L = 100 filters. The two fully connected linear layers both
contain 192 neurons. The dropout ratio in the dropout layer is
set 0.5 to prevent overfitting. The standard back-propagation
and stochastic gradient descent (SGD) algorithm is utilized to
optimize this network.

For the feed-forward neural network, we also apply the
SGD algorithm. A key issue of this neural network is that the
computation in the softmax layer is too time consuming since
normalization is required over the entire huge vocabulary. In-
spired by [Vaswani et al., 2013], we adopt the Noisy Con-
trastive Estimation (NCE) [Gutmann and Hyvärinen, 2010]
to avoid the normalization in the output layer.

4.2 Experimental Setup
The SMT evaluation is conducted on Chinese-to-English
translation. The bilingual training data 3 from LDC contains
about 2.1 million sentence pairs. This bilingual data is also
utilized to train the two neural networks. The 5-gram lan-
guage model is trained on the English part of the bilingual

3LDC2000T50, LDC2002L27, LDC2003E07, LDC2003E14,
LDC2004T07, LDC2005T06, LDC2005T10 and LDC2005T34.

Data Chinese Sent. Num. English Sent. Num.
bilingual data 2,086,731 2,086,731
Xinhua News ∼ 10,912,683

NIST03 919 919×4
NIST05 1,082 1,082×4
NIST06 1,000 1,000×4
NIST08 691 691×4

Table 1: Data statistics of the SMT experiment.

System MT03 MT05 MT06 MT08
HPB 35.98 34.66 35.25 27.80
+NNJM 36.93 35.55+ 35.77 28.64+

+AVE SENT 37.16 35.88+ 36.07+ 29.19+

+BCCNN-1 37.32 36.06+ 36.42+ 29.35+∗

+BCCNN-2 37.75 36.24+ 36.65+∗ 29.97+∗

+BCCNN-4 37.98 36.22+ 36.78+∗ 30.02+∗

+BCCNN-8 37.64 36.29+∗ 36.49+ 29.98+∗

Table 2: Experimental results of different translation systems.
Significance test is performed on the test sets. ”+” means that
the model significantly outperforms the baseline HPB with
p < 0.01. ”∗” indicates that the model is significantly better
than +NNJM with p < 0.01. ”+BCNN-4” denotes that this
model adopts 4 chunks in the pooling layer.

training data and the Xinhua portion of the English Giga-
word corpus. NIST MT03 is used as the tuning data. MT05,
MT06 and MT08 (news data) are used as the test data. Table
1 shows the detailed data statistics. Case-insensitive BLEU
is employed as the evaluation metric. The statistical signif-
icance test is performed with the pairwise re-sampling ap-
proach [Koehn, 2004].

4.3 Experimental Results
To have a comprehensive understanding about the capacity
of our proposed model, we compare our method with several
baselines. The information of different systems is detailed as
follows:

• HPB: the hierarchical phrase-based translation system.

• +NNJM: HPB system incorporating feed-forward neu-
ral network joint model in which the probability is pre-
dicted with 3 target history words and 11 source-side lo-
cal context words.

• +AVE SENT: it is similar to +NNJM, but the neural net-
work probability is augmented with source-side global
sentence representation which is obtained by averaging
all the word embeddings in the sentence.

• +BCCNN: it is similar to +AVE SENT. Instead of av-
erage embedding, the sentence semantic representation
is learnt using the bilingually-constrained chunk-based
convolutional neural networks.

Table 2 gives the detailed results. First, let us look at the
performance of the neural network joint model using the lo-
cal contexts (+NNJM). Compared to the hierarchical phrase-
based model HPB, this model performs significantly better
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on test set MT05 and MT08. The biggest improvement can
be up to 0.95 BLEU score. Devlin et al. [2014] has reported
that this model can outperform HPB by more than 1.0 BLEU
score on Chinese-to-English translation. Although our im-
provement is not so promising, we demonstrate that it is much
helpful to apply the neural network joint model using source-
and target-side local contexts.

When the model +NNJM is augmented with the global sen-
tence representations, we can obtain more gains (see last 5
lines in Table 2). Specifically, if the sentence representation
is generated by just averaging all the word embeddings, it
can get slight improvements over the model +NNJM. How-
ever, +AVE SENT cannot perform significantly better than
+NNJM. These results indicate that the sentence representa-
tion is beneficial to improving the translation quality. Due
to the lack of adequate semantics, it does not lead to great
improvements.

As we can see, if the sentence representation is learnt by
the bilingually-constrained chunk-based CNN (BCCNN), the
models can achieve much more BLEU score improvements
no matter how many chunks we adopt. Note that using only
one chunk is equivalent to the max-over-time pooling. From
Table 2 we see that using more chunks perform better than
the max-over-time pooling. The results indicate that partition-
ing the sentence into several chunks and summarizing respec-
tively their important semantics can result in better sentence
semantic representations.

Overall, the model using 4 chunks (+BCCNN-4) performs
best. It obtains three bests out of four sets and it significantly
outperforms the model +NNJM on test sets MT06 and MT08.
The largest gains can be up to 1.38 BLEU score on MT08.
It is interesting that the model with 8 chunks just performs
similarly to that with 2 chunks. We speculate that too many
chunks may bring some noise. However, it deserves deep in-
vestigation. Nevertheless, we can say that the global sentence
semantic representation much benefits the target translation
prediction.

5 Related Work
Our work mainly includes two key issues: one is learning
the sentence semantic representation, and the other is apply-
ing global sentence-level information to better predict target
translations. We discuss the related work in these two aspects.

On sentence representation learning, many researchers per-
form this task using the neural network methods. Sutskever
et al. [2014] and Bahdanau et al. [2014] applied the recurrent
neural networks to encode the source sentence and decode
from the source sentence representation. And it takes long
time to train their models. Socher et al. [2013] designed the
recursive neural networks for syntactic parsing and sentiment
analysis, in which sentence representation is the by-product.
Le and Mikolov [2014] used a simple feed-forward neural
network to learn sentence and paragraph representations, but
one disadvantage is that test sentence representation must
be learnt by performing the training process. Kim [2014],
Kalchbrenner et al. [2014], Hu et al. [2014] and Zeng et
al. [2014] adopted the convolutional neural networks to learn
sentence representations for different classification tasks.

The sentence representations learnt with the above meth-
ods are mainly task dependent. For example they are sensitive
to sentiment (relation or structure) of the sentence [Socher et
al., 2013; Kim, 2014; Zeng et al., 2014]. These representa-
tions do not encode adequate semantics of the sentence. In
contrast, we aim at encoding as much semantics as possible
in the sentence representation by designing the bilingually-
constrained chunk-based convolutional neural networks.

On applying more information for translation prediction,
Devlin et al. [2014] developed a neural network joint model
to make full use of the source- and target-side local contexts.
However, they ignored the global sentence-level information.
Recently, some researchers exploited the information beyond
the sentence level. For example, Eidelman et al. [2012], Su
et al. [2012] and Zhang et al. [2014b] attempted to apply the
topic information of the document to distinguish good trans-
lation rules from bad ones during SMT decoding. But, their
methods require the sentence’s document information which
is difficult to satisfy in practice, since we usually translate
a sentence without knowing which document this sentence
comes from. Instead, we just focus on the sentence-level fea-
tures. We have designed two neural networks: one for sen-
tence semantic representation learning, the other for target
word probability prediction.

6 Conclusions and Future Work
In this paper, we have explored the source-side global sen-
tence representations for target translation prediction. We
presented a new bilingually-constrained chunk-based convo-
lutional neural network to learn sentence semantic represen-
tations. In order to integrate the sentence representation in
SMT model, we further applied a feed-forward neural net-
work joint model to better predict translation probability with
both local and global information. The extensive experiments
have shown that the proposed model can significantly outper-
form the strong hierarchical phrase-based translation model
enriched with broader context features.

At present, the number of chunks in the chunk-based CNN
is determined manually. We plan to analyse the sentence
structure and design a theoretical model to choose the number
of chunks. We would also like to apply our sentence semantic
representations to other tasks such as question answering and
paraphrase detection.
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