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Abstract

Sentiment classification aims to automatically pre-
dict sentiment polarity (e.g., positive or negative) of
user generated sentiment data (e.g., reviews, blogs).
In real applications, these user generated sentiment
data can span so many different domains that it
is difficult to manually label training data for all
of them. Hence, this paper studies the problem
of domain adaptation for sentiment classification
where a system trained using labeled reviews from
a source domain is deployed to classify sentiments
of reviews in a different target domain. In this pa-
per, we propose to link heterogeneous input fea-
tures with pivots via joint non-negative matrix fac-
torization. This is achieved by learning the domain-
specific information from different domains into
unified topics, with the help of pivots across all
domains. We conduct experiments on a bench-
mark composed of reviews of 4 types of Amazon
products. Experimental results show that our pro-
posed approach significantly outperforms the base-
line method, and achieves an accuracy which is
competitive with the state-of-the-art methods for
sentiment classification adaptation.

1

With the rise of social media (e.g., blogs, social networks,
etc.), more and more user generated sentiment data have been
shared on the web. They exist in the form of user reviews
on shopping or opinion sites, in posts of blogs or customer
feedbacks. This has created a surge of research in sentiment
classification (or sentiment analysis), which aims to automat-
ically determine the sentiment polarity (e.g., positive or neg-
ative) of user generated sentiment data (e.g., reviews, blogs).

Machine learning algorithms have been proved promis-
ing and widely used for sentiment classification [Pang et al.,
2002; Pang and Lee, 2008; Liu, 2012; Zhou et al., 2014b;
2015]. Applications to many different domains have been
presented, ranging from movie reviews [Pang er al., 2002]
and congressional floor debates [Thomas et al., 2006] to prod-
uct recommendations [Snyder and Barzilay, 2007; Blitzer et
al., 2007].
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These user generated sentiment data can span so many dif-
ferent domains that it is difficult to manually label training
data for all of them. In real applications, users may use differ-
ent vocabularies (or domain-specific words) to express senti-
ment in different domains. For example, in the Electronic
domain the words “durable” and “light” are used to express
positive sentiment, whereas “expensive” and “short battery”
often indicate negative sentiment. On the other hand, in the
Book domain the words “exciting” and “thriller” are used to
express positive sentiment, whereas the words “boring” and
“lengthy” usually express negative sentiment. In all these ex-
amples, the source domain and the target domain have dif-
ferent input feature spaces - we refer to this problem setting
as Heterogeneous Input Features (HIF). As a re-
sult, a classifier trained on one domain might not perform well
on a different domain because it fails to learn the sentiment
of domain-specific words. Thus domain adaptation is highly
desirable to reduce the gap between domains and manually
labeling cost.

Domain adaptation also poses new challenges from the al-
gorithm perspective since multiple domains seem to be totally
uncorrected with each other if their examples are in different
input features. Here our key observation is that in many real
applications, there might exist some correspondence among
certain input dimensions of different domains. In the exam-
ple of domain adaptation for sentiment classification, some
domain-specific words are linked via the same sentiment po-
larity. The correspondence across different input features pro-
vides an important connection among multiple domains. In
this paper, such correspondence is represented by pivots,
which consists of tuples of input dimensions from multiple
domains bearing the same correspondence.

Inspired by the above observation, we propose a novel
learning framework, called Linking Heterogeneous Input
Features via Pivots via Joint Non-negative Matrix Factor-
ization (PJNMF). PINMF assumes that there exists a set of
domain-specific features for each of the domain, and there
also exists a set of pivot features for the source and target
domains. In PJNMF, documents in each domain are repre-
sented as a term-document matrix. The term-document ma-
trix is then approximated as the product of two matrices: one
matrix represents the domain-specific features as well as the
pivot features, the second matrix denotes the document repre-
sentation based on the latent features. An objective function



is defined to learn the mappings from the heterogeneous input
features to a common space and the prediction model in this
space. In this framework, to make full use of the pivot infor-
mation, we enforce the input dimensions mapped to the same
pivot be projected to the common space in a similar way. To
demonstrate the effectiveness of the proposed approach, we
conduct experiments on a benchmark composed of reviews
of 4 types of Amazon products. Experimental results show
that the proposed approach significantly outperforms several
baselines, and achieves an accuracy which is competitive with
best known method for sentiment classification adaptation.
The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related work. Section 3 describes our
proposed linking heterogeneous input features via pivots for
domain adaptation. Section 4 presents the experimental re-
sults. In section 5, we conclude with ideas for future research.

2 Related Work

Sentiment classification has gained widely interest in natural
language processing (NLP) community, we point the read-
ers to recent books [Pang and Lee, 2008; Liu, 2012] for an
in-depth survey of literature on sentiment analysis. In this
section, we briefly describe the related work of domain adap-
tation for sentiment classification.

In real applications, user generated sentiment data can span
so many different domains that it is difficult to manually label
training data for all of them. A classifier trained on one do-
main might not perform well on a different domain because it
fails to learn the sentiment of unseen words. To address this
problem, domain adaptation for sentiment classification has
been widely studied in the literature. Blitzer et al. [2007] pro-
posed a structural correspondence learning (SCL) algorithm
to train a cross-domain sentiment classifier. SCL is motivated
by a multi-task learning algorithm, alternating structural opti-
mization (ASO), proposed by Ando and Zhang [2005]. Given
labeled data from a source domain and unlabeled data from
both source and target domains, SCL attempts to model the
relationship between “pivot features” and “non-pivot fea-
tures”. Pan et al. [2010] proposed a spectral feature alignment
(SFA) algorithm to align the domain-specific words from the
source and target domains into meaningful clusters, with the
help of domain-independent words as a bridge. In the way,
the cluster can be used to reduce the gap between domain-
specific words of two domains. In SCL and SFA. there is
no constrain on the domain-specific words to prevent them
from capturing the information from the pivot features. Nei-
ther is there a constrain that stops leakage of domain-specific
words into the pivot features. In this paper, our PINMF uses a
regularization term on the pivots and domain-specific words,
ensuring that the pivots capture only correspondence aspects
and the domain-specific words capture only individual as-
pects. Besides, the formulation and optimization of PJNMF
in this paper are different from that in [Blitzer er al., 2007;
Pan et al., 2010].

We also note that our PINMF is related to transfer common
knowledge across domains via matrix factorization in [Li et
al., 2009]. However, Li et al. [2009] explored the matrix
factorization and knowledge transfer by optimizing the two
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objective functions separately, e.g., maximizing the empiri-
cal likelihood on the source and target domains, respectively.
Actually, these two objective functions are complementary to
each other and optimizing them simultaneously can make the
solution smoother and further improve the accuracy on the
target domain. Recently, Zhou et al. [2014a] also explored
PINMF for community question retrieval. On the contrary,
this paper focuses on domain adaptation for sentiment classi-
fication, giving rise to the different task description and model
formulation.

Finally, other studies also address domain adaptation for
sentiment classification from different perspectives. He et
al. [2011] employed a joint sentiment-topic model for cross-
domain sentiment classification; Bollegala et al. [2011] used a
sentiment sensitive thesaurus to perform cross-domain senti-
ment classification; Glorot et al. [2011] and Chen et al. [2012]
employed a deep learning approach to perform domain adap-
tation for large-scale sentiment classification; Li et al. [2013]
proposed an active learning algorithm for cross-domain sen-
timent classification. In contrast, our paper conducts domain
adaptation for sentiment classification from a new perspective
via pivots transfer under a constraint framework.

3 Linking Heterogeneous Input Features with
Pivots

In this section, we propose the learning scheme for domain
adaptation with pivots, followed by the optimization algo-
rithm and convergence analysis.

3.1 Learning Scheme

Given two domains X, and X;, where X, and X, are referred
to a source domain and a target domain, respectively. Sup-
pose we have a set of labeled sentiment documents as well
as some unlabeled documents in a source domain X, with
size ng, containing terms from a vocabulary V' with size m.
The documents in source domain X can be represented as

a term-document matrix X, = {xgs)7 e ,ngs)} € Rmxns,
where each element denotes the weight of the corresponding
term, for example tf-idf used in this paper. The labels on sen-
timent documents can be described using a ns X 2 matrix Y
where Y(i,1) = 1 if the i-th document expresses positive
sentiment, and Y 4(¢,2) = 1 for negative sentiment [Li ef al.,
2009].

Similarly, suppose we have a set of unlabeled sentiment
documents in a target domain X; with size n;, containing
terms from a vocabulary V with size m. The documents in
target domain X; can also be represented as a term-document
matrix X; = {xgt), . ,ngt)} € R™*"t where each element
denotes a tf-idf weight of the corresponding term. The task of
cross-domain sentiment classification is to learn a robust clas-
sifier to predict the polarity of unseen sentiment documents
from X;. Note that we only consider one source domain and
one target domain in this paper. However, our proposed al-
gorithm is a general framework and can be easily adapted to
multi-domain problems. B

Without loss of generality, let Uy [Up,Ug] €
R *(kotka) pe the term-topic matrix corresponding to do-
main d, where kg is the number of pivot topics, kg is the



number of domain-specific topics corresponding to domain
d, and d € {s,t}. Term-topic matrix Uy can be represented
as Uy = [ugo), e ,ug;)] € R™*ko_in which each column
corresponds to a pivot topic. While the term-topic matrix
U, can be represented as Uy = [ugd), . ,u,&d)] € Rmxka,
The total number of topics in domain d is kg + kgq. Let

VT = wi? . v{P] e Rrax(ko+ka) e the document-
topic matrix corresponding to domain d, in which each col-
umn denotes the document representation in the topic space.
We also denote V2 = [HT, LT], where H; € R¥0*"4 and
Ly € RFaXma correspond to the coefficients of shared topics
Uy and domain-specific topics Uy, respectively.

Given a sentiment document collection X in a source do-
main with unlabeled and labeled data, the document represen-
tation based on non-negative matrix factorization (NMF) [Lee
and Seung, 2001] can be formulated as follows:

Os = [|X: = [Uo, UV, |}

ey

where || - ||% is the Frobenius norm.

In a target domain, we transfer the pivot topics Uy from the
source domain X to the target domain X, as a bridge. Spe-
cially, given a set of unlabeled sentiment document collection
X in a target domain, the sentiment classification problem
based on non-negative matrix factorization can be formulated
as follows:

O; = || Xe — [Uo, Ul Vi |2 2

Once obtaining the representation of documents from the
two domains, a natural avenue is to integrating the two objec-
tive functions seamlessly into one unified framework. How-
ever, this direct solution has a crucial drawback in segregating
the pivot and individual feature spaces: there is no constraint
on the individual feature spaces to prevent them from captur-
ing basis vectors from the pivot spaces. Neither is there a con-
straint that stops leakage of individual basis vectors into the
pivot space. Of those two issues, the first is important when
we are interested in the individual aspects of the two domains.
While the second issue is more important when looking from
the point of view of transfer learning. This is because when
the pivot matrix Uy captures some topics or basis vectors cor-
responding to the individual aspect of one domain and used
later for modeling the other domain, this leakage degrades
performance.

To circumvent the above problems, we propose to add a
regularization on the pivot and domain-specific feature spaces
which can avoid both of the above problems. It not only en-
sures that U, and U; capture only the individual basis vec-
tors but also that Uy captures only the common basis vectors.
With this regularization, our optimization cost function is to
minimize the following form

O = A||Xs = [Uo, U] Vi |2+ X[ X — [Uo, U Ve[,
+R(UO7U55U1)
s.t. UOstaUtaVsth >0
where \; £ || X[ 72 A £ || X¢|| 7% and R(Uo, U, Uy) isa

regularization term used to penalize the “similarity” between
feature spaces spanned by matrices Uy, Uy and U;.

3
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When seeking feature spaces which do not capture the
similar basis vectors and be complementary to each other,
one way to formulate them is by considering them as mu-
tually orthogonal. Note for example that if the feature spaces
spanned by matrices Uy, Uy, are mutually orthogonal, we
have UOTUS = 0. To impose this constraint, we choose to
minimize the sum-of-squares of entries of the matrix UOTUS,
ie., |[UI'U4||%Z which uniformly optimizes each entry of
Ul'U,. With this choice, the regularization term of equation
(3) is given by

R(Uo, Uy, Uy) = al|Ug Us|7 + 8][UG Uil + 1|0V
(C))
where «, 3 and ~ are the regularization parameters.

3.2 Optimization Algorithm

Note that the optimization problem in equation (3) is not
convex in variables {Uy, Ug, Uy, Vg, V,} together. How-
ever, when considering one variable at a time, the cost
function turns out to be convex. For example, given
{U,,Us, V5, Vi }, the cost function is a convex function
w.rt. Ug. Therefore, although we cannot expect to get a
global minimum of the above problem, we shall develop an
algorithm which is not only simple and efficient but its con-
vergence can also be guaranteed.

The equation (3) is a constrained optimization problem
due to the nonnegative constraints on the factorization matri-
ces, and can be solved using the Lagrange multiplier method.
Let A“0(i,j) be the Lagrangian multiplier for constraints
Uq(i,j) > 0 and A% = [A"0(q, )], let Tr[-] denote the
trace of a matrix. Similarly if A%, A"t A¥ A" are the
Lagrangian multiplier matrices for nonnegative constraints of
matrices Ug, U;, V, and V4, then the above cost function
in an unconstrained form (denoted by £) can be written as
below

L= XX = [Uo, U] Ve[| 7 + Al | Xs — [Uo, U] Ve |3
+D(UO7U57Ut7V57Vt)
where D(Ug, U, Uy, Vi, V) is defined as

D(U01 US, Uta VS, Vt) £ O‘HUOTUSH% + B||U§Ut|‘%‘
+|[UTU % + Tr(A™UT) + Tr(A“ UT) + Tr(A“ UT)
+Tr(A VD) + Tr(A V)

Optimize Uj given {U,, U;, V,, V;}

The first derivative of the cost function £ with respect to ma-
trix Uy is given by

Vuo £ = 2[As(X! — X)HT + A (X" — X )LY )
+ (@U, UL + UU/ Uy + A
A

L

where X" [UE)T'),UgT)]HgT) and XET')
(r)

) uim! Using Karush-Kuhn-Tucker (KKT)
conditions A*0 (7, j)Ug(4,7) = 0 with the expression of the
gradient V £, for any stationary point, we get the following

(X = XO)HT + A (X7 - X, )HY +

T T . .o ©)
(aU,U; + U, U, )Uo|(4,j)Uo(i,5) = 0



which leads to the following update equation

DX HT + 2 XHT)
XHT + M X(VH, + (U, UT + U, UT) U]

Up «+ U (7

where H is element-wise division.
Optimize U; given {U,, U;, V,, V;}
The first derivative of the cost function £ with respect to ma-
trix Uy is given by
Vu, £ =2[A: (X = XOLT + (@UoUY + 71U, UT)U, + A™#]

Similar as  above, using KKT  conditions
A¥s(i,5)Us(i,j) = 0 with the expression of the gra-
dient VL, for any stationary point, we get the following
update equation

A X LT

U; «+ Ug ol
[)\SXST LT + (U UT + ’yUtUtT)US]

®

Similarly, optimizing for U given {Uy, U, V5, Vi }, we
get the following update equation
[\ X HY |

U; «+ U, () aT T
[(AX;”H + (BUoUJ +~1U,UT)U]

)
Update equations for matrices V5, V; and W, are similar
to standard NMF and are given by

(07X,
[070.V.]'

(U7 X4

VS(*VS W

Vi+ 'V, (10)

We note that multiplicative update rules given by equations
(7)~(10) are obtained by extending the updates of standard
NMF [Lee and Seung, 2001]. There are alternative ways of
optimizing the objective function £ such as alternating least
squares and the active set method [Kim and Park, 2008] or the
projected gradients approach [Lin, 2007], which often have
better convergence behavior. Nonetheless, the multiplica-
tive updates derived in this paper have reasonably fast con-
vergence behavior as shown empirically in the experiments.
Besides, we also note that a good initialization of matrices
Uy, Ug, Uy, Vi and V; may lead to quicker convergence
of the proposed algorithm. Several methods have been pro-
posed for NMF to address this issue [Langville et al., 2006;
Boutsidis and Gallopoulos, 2008]. However, it is difficult to
use them for initializing matrix U and the corresponding co-
efficient matrix V4 and V. Other matrices such as U, and
U, also depend on U, given the data. Therefore, we initialize
these matrices by random nonnegative values.

With the optimization results of {Ug, U,}, a linear classi-
fier is trained on the transformed labeled data of the source
domain. Support Vector Machines (SVM) being known to
perform well on sentiment classification [Pang et al., 2002],
we use a linear SVM with squared hinge loss. This classifier
is eventually tested on the target domain.

3.3 Convergence Analysis

Without loss of generality, we only show the convergence of
multiplicative update given by equation (8). We first intro-
duce the definition of the auxiliary function as follows.

Definition 1. F (X, X’) is an auxiliary function for L(X) if
L(X) < F(X,X') and equality holds if and only if L(X) =
F(X, X).

Lemma 1. [Lee and Seung, 2001] If F is an auxiliary func-
tion for L, L is non-increasing under the update

X+ — arg m}én F(X,X™)

Proof. By Definition 1, £(X("t1D) < F(Xr+) X)) <

F(X0, XMy = £(XM) O

Lemma 2. Let E(Ugr)) denote the sum of all terms in L that

contain Uy), the following function is an auxiliary function
for £(Ugr))

F(U,U") = £(U") + (U, —-U) v £(Ul)
+ 50, - UYL

AXLT 4 (aUoUE + U U7 U]

S(Ugm)) = [U(-T)]

Following the similar convergence analysis as shown
above, we can prove the updating rules for the rest variables.

Theorem 1. The objective function L(Uy, Uy, Uy, Vi, V)
is non-increasing under the alternating multiplicative update
rules of equations (7)~(10).

Proof. Since we are minimizing £(U;) using the aux-
iliary function F (US,UFST)). Therefore, evaluating

VF(U,, U = 0 and utilizing the results of Lemma 1 and
Lemma 2, we get the following update equation

Uity = vl - [veul) /o)) (an
Noting that VE(UgT))
= (XY — XOH! +aUUg U +4U Ul U] (12)

and substituting S (Uff)) from Lemma 2, we get the desired
update of equation (8). O

3.4 Algorithm Complexity

In this section, we analyze the computational complexity of
the learning algorithm described in equations (7)~(10). Be-
sides expressing the complexity of the algorithm using big O
notation, we also count the number of arithmetic operations
to provide more details about the run time. Computational
complexity of learning matrix Ug is O(m x n X ko) per it-
eration where n = max(ns,n;). Similarly, for each itera-
tion, learning matrices U and Uy takes O(m x ng X k) and
O(m x ny x ki), respectively. Learning matrices V; and V,
takes O(m x ngs x (ko + ks)) and O(m x ny x (ko + kt))
operations per iteration. Therefore, overall complexity of the
algorithm, dominated by computation of matrices V4 and Vy,
is O(m x n x k) where k = max(ko + ks, ko + k¢). This
is also the order of complexity of NMF algorithm [Lee and
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Table 1: Average results (accuracy+tstandard deviation) for cross-domain sentiment classification on the Amazon product
benchmark of 4 domains. The bold formate indicates the best results, T indicates that the difference between the results of our
proposed approach PINMF and SDA is significant with p < 0.05 under a McNemar paired test for labeling disagreements, and

¥ indicates the mildly significant with p < 0.08.

Task baseline SCL MCT SFA SDA CODA PJINMFE
BD | 76.414+0.31 78.68+0.26 78.92+0.23 80.58+0.18 81.12+0.17 80.64+0.16 ¥81.85+0.17
ED | 71.954+0.19 7551 +0.27 72.67+0.35 76.02+0.12 76.63+0.25 76.10+0.23 *77.35+0.20
KD | 73.354+0.20 76.8840.29 74.05+0.28 76.55+0.16 76.85+0.28 76.62+0.21 178.6240.28
DB 73.86 £ 0.24 78.274+0.18 75.67+£0.30 77.58+0.23 78.22+0.33 77.834+0.17 179.27+0.25
EB 72.14+£026 75.06+0.21 72.90+0.27 75.384+0.27 7550+£0.19 75.46+0.25 76.30+0.22
KB 71.254+0.18 73.084+024 74.01+£0.31 7415+0.34 74474025 75414022 175874023
BE 71.754+0.32 75.214+0.18 75.62+0.26 7535+0.26 T75.77+0.27 76.34+0.18 ¥76.28+0.27
DE | 72384020 7595+0.25 76.82+0.34 77.134+0.23 77.65+0.22 77.944+0.20 ¥77.86+0.24
KE |8335+0.13 8518+0.15 84.244+0.25 85.014+0.23 84.65+0.34 84.50+0.32 785.92+0.32
BK | 74.4440.30 77.064+021 78314022 7828+0.25 7854+0.23 78.354+0.26 ¥79.15+0.29
DK | 75.11+0.33 78.96+0.19 80.574+0.24 80.35+0.29 80.774+0.31 80.65+0.24 ¥81.26 +0.33
EK | 85.11+0.13 85.08+0.16 85.33+£0.26 85.91+0.19 87.25+0.20 86.08+0.27 86.37+0.21

avg. | 75.094+0.23 77.91+0.20 77.43+0.28 7852+023 7895+0.25 78.83+0.23 79.68+0.25

Seung, 2001] for each iteration. Note that, for implementa-
tion efficiency, when computing matrices such as U, ULV,
we should compute U, U7 first and then multiply it to matrix
V. Similarly, when computing USUSTUO, we should com-
pute UTU|, first and pre-multiply by U,. The main idea is to
group the matrix multiplications by their inner-products first
rather than their outer products.

4 Experiments

4.1 Data Set

Domain adaptation for sentiment classification has been
widely studied in the NLP community. A large majority ex-
periments are performed on the benchmark made of reviews
of Amazon products gathered by Blitzer et al. [2007]. This
data set contains 4 different domains: Book (B), DVDs (D),
Electronics (E) and Kitchen (K). For simplicity and com-
parability, we follow the convention of [Blitzer er al., 2007,
Pan et al., 2010; Glorot et al., 2011] and only consider the
binary classification problem whether a review is positive
(higher than 3 stars) or negative (3 stars or lower). There are
1000 positive and 1000 negative reviews for each domain,
as well as approximately 4,000 unlabeled reviews (varying
slightly between domains). The positive and negative reviews
are also exactly balanced. Following the literature [Pan et al.,
2010], we can construct 12 cross-domain sentiment classifi-
cation tasks: DB, EB, KB, KE, DE, BE, BD, KD, ED, BK,
DK, EK, where the word before corresponds with the source
domain and the word after corresponds with the target do-
main. To be fair to other algorithms that we compare to, we
use the raw bag-of-words unigram/bigram features as their in-
put and pre-process with tf-idf. Table 2 presents the statistics
of the data set.

4.2 Compared Methods

As baseline, we train a linear SVM on the raw bag-of-words
representation of the labeled source and test it on farget. In
the original paper regarding the benchmark data set, Blitzer et
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Table 2: Amazon review statistics. This table depicts the
number of training, testing and unlabeled reviews for each
domain, as well as the portion of negative training reviews of

the data set.
Domain [ #Train | #Test | #Unlab. [ % Neg. |

Books 1600 400 4465 50%
DVDs 1600 400 5945 50%
Electronics 1600 400 5681 50%
Kitchen 1600 400 3586 50%

al. [2007] adapt Structural Correspondence Learning (SCL)
for sentiment analysis. Li and Zong [2008] propose the Multi-
label Consensus Training (MCT) approach which combines
several base classifiers trained with SCL. Pan et al. [2010]
first use a Spectral Feature Alignment (SFA) algorithm to
align words from different source and target domains to help
bridge the gap between them. Glorot et al. [2011] first employ
stacked Denoising Auto-encoders (SDA) to extract meaning-
ful representation for domain adaptation. Chen et al. [2011]
propose a state-of-the-art domain adaptation algorithm called
CODA, which is based on sample and feature selection, ap-
plied to tf-idf features. For SCL, SDA and CODA, we use
implementations provided by the authors. For SFA and MCT,
we re-implement them based on the original papers. The
above methods serve as comparisons in our empirical evalu-
ation. All hyper-parameters are set by 5-fold cross validation
on the source training set'.

Table 1 shows the accuracy of classification results for all
methods and for all source-target domain pairs. We can check
that all compared methods achieve the similar performance
with the results reported in the original papers. From Ta-
ble 1, we can see that our proposed approach outperforms all

"We keep the default value of some of the parameters in SCL
and SFA, e.g., the number of stop-words removed and stemming
parameters — as they were already tuned for this benchmark set by
the authors.
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Figure 1: Convergence curve of PINMF.

other six comparison methods in general. The baseline
performs poorly on all the 12 tasks, while the other five do-
main adaptation methods, SCL, MCT, SFA, SDA and CODA,
consistently outperform the baseline method across all
the 12 tasks, which demonstrates that the transferred knowl-
edge from the source domain to the target domain is useful
for sentiment classification. Nevertheless, the improvements
achieved by these five methods over the baseline are much
smaller than the proposed approach. Surprisingly, we note
that the deep learning based method (SDA) does not achieve
the satisfactory results with ours, the reason may be that un-
supervised feature learning typically only model the syntac-
tic context of words but ignore the sentiment of text. This
is problematic for sentiment analysis as they usually map
words with similar context but opposite sentiment polarity,
such as good and bad, to neighboring word vectors [Tang et
al., 2014]. We also conduct significance tests for our pro-
posed approach and SDA using a McNemar paired test for la-
beling disagreements [Gillick and Cox, 1989]. In general, the
average result on the 12 source-target domain pairs indicates
that the difference between our proposed approach PINMF
and SDA is mildly significant with p < 0.08.

4.3 Convergence Behavior

In subsection 3.3, we have shown that the multiplicative up-
dates given by equations (7)~(10) are convergent. Here, we
empirically show the convergence behavior of PINMF. Figure
1 shows the convergence curve of PINMF on the training data
set. From the figure, y-axis is the value of objective function
and x-axis denotes the iteration number. We can see that the
multiplicative updates for PINMF converge very fast, usually
within 200 iterations.

4.4 Further Analysis

In this subsection, we would like to see how similarity the two
domains are from each other. Ben-David et al. [2007] showed
the A-distance as a measure of how different between the two
domains. They hypothesized that it should be difficult to dis-
criminate between the source and target domains in order to
have a good transfer between them. In practice, computing
the exact A-distance is impossible and one has to compute
a proxy. Similar to [Glorot er al., 2011], the proxy for the
A-distance is then defined as 2(1 — 2¢), where € is the gener-
alization error of a linear SVM classifier trained on the binary
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Figure 2: Proxy A-distance between domains of the Amazon
benchmark for the 6 different paris.

classification problem to distinguish inputs between the two
domains. Figure 2 presents the results for each pair of do-
mains. Surprisingly, the distance is increased with the help
of pivot features. We explain this effect through the fact that
PINMF can ensure that the pivots capture only correspon-
dence aspects and the domain-specific words capture only in-
dividual aspects.

5 Conclusion

This paper proposes a joint non-negative matrix factorization
framework by linking heterogeneous input features with piv-
ots for domain adaptation, where different domains have het-
erogeneous input spaces. This is achieved by learning the
domain-specific information from different domains into uni-
fied topics, with the help of pivots across all domains. An
objective function is defined to learn the mappings from the
heterogeneous input features to a common space, and then
construcct a single prediction model in this space. To demon-
strate the effectiveness of the proposed approach, we con-
duct experiments on a benchmark composed of reviews of
4 types of Amazon products. Experimental results show that
our proposed approach significantly outperforms the baseline
method, and achieves an accuracy which is competitive with
the state-of-the-art methods for sentiment classification adap-
tation. There are some ways in which this research could be
continued. First, since each word has its sentiment polarity
(e.g., positive, negative), a natural avenue for future research
is to encode the domain-independent lexical prior knowledge
into our framework. Second, we will try to investigate the
scalability of the proposed approach on a larger industrial-
strength data set of 22 domains [Glorot et al., 2011].
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