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Abstract

Taxonomies hierarchically organize concepts in a
domain. Building and maintaining them by hand
is a tedious and time-consuming task. This paper
proposes a novel, unsupervised algorithm for auto-
matically learning an IS-A taxonomy from scratch
by analyzing a given text corpus. Our approach is
designed to deal with infrequently occurring con-
cepts, so it can effectively induce taxonomies even
from small corpora. Algorithmically, the approach
makes two important contributions. First, it per-
forms inference based on clustering and the distri-
butional semantics, which can capture links among
concepts never mentioned together. Second, it uses
anovel graph-based algorithm to detect and remove
incorrect is-a relations from a taxonomy. An em-
pirical evaluation on five corpora demonstrates the
utility of our proposed approach.

1 Introduction

Domain ontologies play an important role in many NLP tasks,
such as Question Answering, Semantic Search, and Textual
Entailment. Taxonomies are considered the backbone of on-
tologies, as they organize all domain concepts hierarchically
through is-a relations, which enables sharing of information
among related concepts.

Many handcrafted taxonomies have been built that cap-
ture both open-domain (e.g., WordNet) and domain-specific
(e.g., MeSH, for the medical domain) knowledge. Yet, our
knowledge is constantly evolving and expanding. Conse-
quently, even domain-specific, handcrafted taxonomies in-
evitably lack coverage, and are expensive to keep up-to-
date. This has motivated the interest in automatically learn-
ing taxonomies from text. Initially, systems focused on ex-
tending existing taxonomies [Widdows, 2003; Snow et al.,
2006]. Recently, there has been growing interest in automat-
ically constructing entire taxonomies from scratch. Existing
approaches learn taxonomies by analyzing either documents
on the Web [Kozareva and Hovy, 2010; Wu ef al., 2012] or
a combination of a domain-specific corpus and the Web [Ve-
lardi et al., 2013; Yang, 2012].

This paper presents TAXIFY, a novel domain-independent,
unsupervised approach that learns a taxonomy solely from
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a domain-specific corpus. This helps focus a learned tax-
onomy on the most important concepts in a specific cor-
pus and minimizes the risk of including unrelated concepts
extracted from irrelevant documents. TAXIFY learns accu-
rate taxonomies that include infrequently observed concepts
and relations that frequentist approaches typically discard
[Kozareva and Hovy, 2010; Yang, 2012]. Specifically, instead
of discarding single-source edges, TAXIFY propagates evi-
dence from multi-source edges to single-source edges ex-
tracted from the same context.

Algorithmically, we make two important contributions.
First, we use a clustering-based inference strategy that ex-
ploits distributional semantics to improve a taxonomy’s cov-
erage. In contrast, previous approaches improved coverage by
either only considering pairwise concept similarities [Snow
et al., 2004] or performing purely syntactic inference [Ve-
lardi et al., 2013]. Second, we propose a novel graph-based
algorithm to detect and remove incorrect edges from a tax-
onomy in order to improve its precision. In contrast, exist-
ing pruning techniques [Kozareva and Hovy, 2010; Velardi
et al., 2013] attempt to maximize a taxonomy’s connectiv-
ity, and only specifically search for incorrect edges in special
cases (e.g., breaking a cycle). Furthermore, they typically as-
sume that edges covered by multiple paths are more likely to
be correct. However, we argue and show empirically that in
certain cases removing edges that appear in many paths can
significantly improve a learned taxonomy’s precision.

Empirically, we compare TAXIFY to two state-of-the-
art approaches, Kozareva and Hovy [2010] and Velardi et
al. [2013], on five different domains. We find that TAXIFY
outperforms them on the tested corpora. Additionally, an ab-
lation study shows that (i) our clustering-based inference
increases the number of correct edges by between 25.9%
and 68.6%, and (ii) our pruning strategy increases precision
by between 8.0% and 15.0% on average. Finally, TAXIFY’s
source code, data, and a demo are publicly available at
http://dtai.cs.kuleuven.be/software/taxify.

2 Taxonomy Learning

We first introduce some basic terminology. A concept is an
entity (either abstract or concrete) relevant for a certain do-
main, expressed as a simple noun (e.g., dolphin) or a noun
phrase (e.g., Siberian tiger). When two concepts appear in
an is-a relation (e.g., mammal — fox), we refer to the most-



specific concept (e.g., fox) as the subtype, and to the broader
one as the supertype (e.g., mammal).

Given a plain-text domain-specific corpus, TAXIFY learns
an is-a taxonomy. The taxonomy is modeled as a directed
acyclic graph G = (C, E), where C'is a set of vertices, each
denoting a concept, and F is a set of edges, each denoting
an is-a relationship. An edge (z,y) € F, written as © — y,
denotes that subtype y € C has supertype x € C. Using
a graph instead of a tree allows a concept to have multiple
supertypes, which reflects how humans classify objects.

At a high level, TAXIFY works in four phases. First, an
initial set of is-a relations is identified, validated and added
to the taxonomy. Second, coverage is increased through a
clustering-based inference procedure. Third, precision is im-
proved by identifying and discarding incorrect edges. Fourth,
a confidence value is computed for each fact.

2.1 Constructing the initial taxonomy
TAXIFY builds the initial taxonomy as follows.

Identify seed set of is-a relations. To identify an initial set
of is-a relations, TAXIFY applies the Hearst patterns [Hearst,
1992] shown in Table 1 to the corpus. However, Hearst pat-
terns often overspecify is-a relations, by including generic
words (e.g., “large”) in a concept. As a handcrafted blacklist
of modifiers may not generalize well across different corpora,
TAXIFY computes a TF-IDF-like domain-specificity score for
each word w:

— fcorpus (w) . 1
feng(w)  lognpng(w)

where the first part models the term frequency normalized by
its overall frequency in English [Liu et al., 2005], while the
second part favors rare terms. ngng(w) and fg,q(w) are the
absolute and relative frequency of w in English as approxi-
mated by the Google Ngram frequency [Michel et al., 2011].

Next, TAXIFY canonicalizes each concept by processing
the concept modifiers from left to right until it encounters the
first modifier w such that ds(w) > «j, where oy is a user-
defined parameter. All modifiers before w are discarded from
the concept. After canonicalizing both a subtype y and its su-
pertype x, the edge © — y is added to G.

ey

ds(w)

Increase connectivity and coverage by syntactic inference.
TAXIFY identifies additional relationships to include in the
taxonomy by performing syntactic inference on concepts con-
taining modifiers (e.g., whale shark) as these represent a spe-
cialization of another concept. Concretely, whenever TAXIFY
adds a multi-word concept to the taxonomy, it also adds
its linguistic head as direct supertype (e.g., shark — whale
shark). Then, TAXIFY expands the coverage of the taxonomy
by, for each non-leaf concept x, scanning the corpus to (i) find
all noun phrases (NPs) appearing at least twice whose head is
x and (ii) add these NPs to the taxonomy as subtypes of x.

Improve precision by domain-specific filtering. Domain-
specific filtering [Liu er al., 2005; Velardi et al., 2013] is
one way to increase the precision of a taxonomy. Given a
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x such as {y;,}* {(or|and) yn }
x including {y;,}* {(orland) y» }
y1 {, yi }* and other z

y1 {, yi }* or other z

Table 1: Hearst patterns used by TAXIFY. Both subtypes (y;)
and their supertype (z) must be noun phrases (NPs).

capital

[ ‘Munich ‘ Rome

cluster

Lyon ]

Figure 1: The solid edges are known is-a relations and the
dotted line is an inferred one. By clustering together Munich,
Rome and Lyon, TAXIFY infers that Munich is a city and not
a capital.

domain-specificity threshold a., TAXIFY removes all single-
word concepts ¢ from the taxonomy for which ds(c) < aq,
where ds is computed by Equation (1).

2.2 Inferring novel facts

Since Hearst patterns occur infrequently, many interesting
concepts will not be extracted. One way to improve cover-
age is to search for semantically-related concepts within the
corpus. A well-studied solution is to exploit concepts that co-
occur in lists [Cederberg and Widdows, 2003; Snow et al.,
2004; Davidov and Rappoport, 2006]. This approach suffers
from two main drawbacks.

First, it can only capture links between concepts that ex-
plicitly co-occur. To overcome this limitation, TAXIFY adopts
an approach based on distributional semantics [Harris, 1968].
To identify similar concepts, our approach extracts relations
from the corpus. Two concepts are similar if they often appear
in the same argument position of similar relations. For exam-
ple, knowing that cows chew grass and deer chew grass pro-
vide some evidence that cows and deer are related concepts,
as they share a common property. This allows TAXIFY to cap-
ture links between concepts that appear in separate sentences,
or even documents.

Second, explicit co-occurrence does not necessarily imply
that two concepts have the same immediate supertype. For ex-
ample, knowing capital - Rome and that Rome is similar to
Munich, may lead to the erroneous inference capital — Mu-
nich. To address this problem, TAXIFY clusters related con-
cepts, searches for their most specific common ancestor, and
assigns it as supertype for the new concepts. As illustrated in
Figure 1, clustering Munich with Rome and the known con-
cept Lyon, TAXIFY finds city as common ancestor, and thus
infers that Munich is a city, and not a capital.

Computing pairwise similarity. TAXIFY runs a state-of-
the-art OpenlE relation extractor [Fader er al., 2011] on
the entire corpus to obtain a list of triples of the form
r(Csub, Cobj) (e.g., chew(cow,grass)), where cCgyp,Cob; €



Crcana are candidate concepts, and » € R is a relation. To
reduce noise, TAXIFY removes from C,,4 all concepts that
appear in only one triple. Then, it creates a matrix myfeqr =
|Ceandl X 2|R| where:

e each row represents a concept ¢ € Ceand;

e cach column is a pair (r,pos) with pos €
{subject, object};

e cach cell value (c,7pos) is computed as log(1 + ),
where z is the number of times ¢ was extracted in posi-
tion pos for relation 7.

Each cell is then weighted by the negative entropy of the col-
umn vector that contains the cell, in order to reward features
that are more discriminative in terms of a concept’s seman-
tics [Turney, 2005]. Intuitively, m fcq¢ uses the list of triples
where the concept appears as a set of features that capture
contextual information about the concept.

Finally, TAXIFY creates a symmetric similarity matrix
Msim = |Ceand| X |Ceand| by defining the following pair-
wise concept similarity:

SREe)

1€l - [lezll

simfer,c2) = ) VamaEniEn - o
The first term is the cosine similarity between concepts ¢; and
€5 in M yeqt. The second term weights the similarity based on
the number of relations that a concept appears in, which gives
higher weight to similarities backed by more evidence.

Clustering concepts. TAXIFY then infers new is-a rela-
tions in the following way. First, it uses K-Medoids to cluster
the concepts based on the pairwise similarity values defined
in mg;.m,. For each cluster that contains at least two known
concepts (i.e., already in the taxonomy) and at least one new
concept (i.e., found in a relational triple), it searches for the
lowest common ancestor (LCA) among the known concepts
(i.e., their most-specific common abstraction) and, if it exists,
assigns it as the supertype to all new concepts in the clus-
ter. Requiring each cluster to have two known concepts helps
avoid incorrect inferences such as the one in our example with
Rome and Munich. This procedure is repeated several times
to minimize the impact of the initial random seed selection in
K-Medoids. At the end of this iterative procedure, all edges
inferred at least once are added to G.

Since this procedure needs to walk the graph, before exe-
cuting it we break all present cycles.

2.3 Detecting incorrect edges

Learned taxonomies contain incorrect edges. TAXIFY at-
tempts to detect incorrect edges in an unsupervised fashion
by exploiting the following insight: when people provide il-
lustrative examples of a subtype, they tend to use closely re-
lated supertypes [Kozareva and Hovy, 2010]. That is, we are
more likely to write “mammals such as bottlenose dolphins”
than “organisms such as bottlenose dolphins”, even though
both are true. Based on this observation, we postulate that it
is unlikely for a taxonomy to contain a long path connecting
z and y, if x — y was extracted by a Hearst pattern. If it does,
it increases the chance that one of the edges in this long path

is incorrect. Thus, the odds that an edge is incorrect increase
each time it appears in such a path.

Figure 2 illustrates this on a portion of our learned animal
taxonomy, where the red edge is the best candidate for ex-
clusion from the taxonomy, as it appears in three long paths
covered by three is-a relations extracted by a Hearst pattern,
represented by dashed edges.
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Figure 2: Part of our unpruned animal taxonomy. Dashed
edges represent Hearst pattern extractions that cover long
paths. The count associated with each edge represents the
number of times that the edge is part of a path covered by
a dashed edge. The red edge is incorrect.

Algorithm 1 outlines our procedure for detecting incorrect
edges. As input, it receives the taxonomy G and a threshold 3
that discriminates between short and long paths. The proce-
dure loops through the following steps until there is no edge
covered by a long path. First, it counts how often each edge
appears in a path longer than § that is covered by an edge
extracted by a Hearst pattern. Second, it removes the highest-
count edge from the taxonomy as well as all edges extracted
by the same Hearst pattern in the same sentence, as their prob-
abilities of being incorrect are correlated.

TAXIFY computes 3 for each corpus separately by using a
standard outlier detection technique and sets 5 = avg(L) +
2.5 - std(L) [Healy, 1979], where L is a list of integers. L
contains one integer for each edge (z,y) € E extracted by
a Hearst pattern representing the length of the shortest path
connecting x to y that does not include the edge itself.

Finally, since this procedure creates disconnected compo-
nents in the graph, TAXIFY retains only the largest compo-
nent, as the smaller ones typically diverge from the central
topic of the corpus.

2.4 Assigning confidences to edges

Finally, TAXIFY assigns a confidence value to each edge, dif-
ferentiating among edges: (i) directly extracted by a Hearst
pattern, (ii) derived by syntactic inferences, and (iii) derived
by clustering-based inferences. While not strictly necessary,
confidence values provide richer output as they allow ranking
edges by the strength of their evidence.
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Algorithm 1: DETECTINCORRECTEDGES(G, (3)

m <— empty map of < edge, counter >
Eeyt + getHearstExtractedEdges(E, G)
foreach edge e € E..+ do
P <+ get AllPathsCoveredBy(e, G)
foreach path p € P s.t. length(p) > (3 do
foreach edge ecoverea € p do
inc. counter in m at Key €covered

e* + getHighestCountEdge(m)

if exists e* with count > 0 then
remove e from G
Econtest +— getContextual Edges(e*)
remove all edges in Feonteqrt from G
DETECTINCORRECTEDGES(G, )

else
remove smaller components from G

Extracted edges. The initial confidence value of each ex-

tracted edge is:

ple) =1—05™", 3)
where ngo) is the number of times e was extracted by a Hearst
pattern, as in NELL [Carlson et al., 2010]. This models the
fact that the more times an edge is extracted, the more likely
it is to be correct. However, in smaller corpora many rele-
vant relationships will only be extracted once,' thus a mere
frequency count is unsatisfactory.

To motivate our solution, consider the following example.
Assume that mammal — deer, mammal — otter, and mam-
mal — fox are extracted by the same Hearst pattern from the
same sentence. The first two edges are observed only once,
while mammal — fox is extracted several times. Intuitively,
the additional observations of mammal — fox give further ev-
idence that the first two extractions are correct.

To capture this intuition, we iteratively update n. by incor-
porating evidence from other edges as follows:

Z p(e/)i

e’ € Context(e)

n® = nli—V

“

where p(e’) is given by Equation 3 and i is the iteration. In
the first iteration, C'ontext(e) returns the set of edges ex-
tracted from the same sentence as e that have a higher con-
fidence than e. In subsequent iterations, C'ontext(e) only re-
turns those edges whose confidence became higher than e as

an effect of the previous iteration. Since p(e’ )i2 is always less
than 1, propagated evidence has always a weaker impact than
a direct extraction. Furthermore, the effect of propagated ev-
idence diminishes exponentially to model the intuition that
each iteration increases the probability of introducing errors.
The final confidence is obtained by using the final value of n,

instead of ngo) in Equation 3.

192% — 98% of all edges in the analyzed corpora.
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(0)

As concrete example, suppose ne

and n'”) (mammal — fox) = 3, and thus initially p(mammal
— deer) = 0.5 and p(mammal — fox) = 0.875. Assume

that in iteration 1 Context(mammal — deer) = {mammal
— fox}, then n(l)(mamma/ — deer) = 1+ p(mammal —

(mammal — deer) = 1

(&
fox) = 1.875. Assuming that in iteration 2 Context(mammal
— deer) = (), then the final value for p(mammal — deer) =
1 — 0.5'-87 which is approximately 0.727.

Syntactically-inferred edges. The confidence of a syntac-
tic inference should be functional to the strength of the tie be-
tween a modifier and its head. For instance, we expect p(shark
— whale shark) > p(shark — aggressive shark), as aggres-
sive is a modifier that applies to more concepts and is thus
less informative. To capture this intuition, TAXIFY computes
a variant of the pointwise mutual information that accounts
for statistical significance (PMI;,) [Washtell and Markert,
2009] between the subtype modifier and its head:

Sh) ) F ) (5)

(f(m%f(h))
w

where f(m) and f(h) are respectively the corpus frequen-
cies of the modifier and the head, f(m, h) is their joint fre-
quency, and W is the total number of words in the corpus. To
get the final confidence value for an edge, TAXIFY applies a
log transformation to PM I;, and then normalizes it to be in
[0, 0.8]. This rescaling supports the intuition that an inferred
edge should have a lower confidence than an edge observed
several times in text because (i) if an extracted concept is in-
correct, anything syntactically inferred from it would likely
be incorrect too, (ii) even if an extracted concept is correct, a
syntactic inference from it may be incorrect.

PMIsig(m;h) = log

Edges inferred by clustering. Each edge lca — c¢ inferred
through clustering receives as confidence value:

(6)

where ¢ ranges over the clustering iterations where lca — ¢
was inferred, and p; is defined as:

p(leca — ¢) = maxp;(lca — c)

1 n
pi(leca — ¢) = - Z Piea=e,, - stim(cg, c) (7)
k=1

where [ca is the lowest common ancestor of the known con-
cepts {c1, ..., c,} that appear in the same cluster as c in it-
eration 4, sim(-) is defined by Equation 2, and P, iS
the product of the edge confidences on the path from Ica to
ck. Intuitively, p;(lca — c¢) is a similarity-weighted average
over paths connecting each known concept ¢, to lca. This is
similar in spirit to how Snow et al. [2004] update an edge’s
confidence based on concepts that share a common ancestor
in the graph.

As an example, we would calculate p(city — Munich) for
the clustering shown in Figure 1 as:

1
ploity — M) = (p(city% L) - sim(L, M)

+ p(capital — R)p(city — capital) - sim(R, M))



where R stands for Rome, L for Lyon, and M for Munich.

3 Evaluation

The goal of the empirical evaluation is to address the follow-
ing two questions:

1. How does our approach compare to state-of-the-art al-
gorithms on this task?

2. What is the effect of each of the system’s components
on its overall performance?

Taxonomy evaluation is a hard task, as significantly differ-
ent taxonomies can be equally correct in modeling a domain.
Moreover, domains can be modeled at various levels of speci-
ficity. As a consequence, evaluation methods based on a com-
parison to a reference taxonomy (e.g., Zavitsanos, Paliouras,
and Vouros 2011; Velardi et al. 2012) provide a meaningful
comparison only when the set of concepts is fixed, as they
penalize the introduction of new correct concepts. For these
reasons, to fully compare systems that learn taxonomies from
scratch we proceed in two steps. First, we manually inspect
the learned taxonomies to assess the correctness of concepts
and edges independently from their presence in a particular
reference taxonomy. Second, given a reference taxonomy, we
check how many of its concepts and edges are covered by the
learned taxonomies.

To address the first question, we compare TAXIFY with two
systems that can learn domain-specific taxonomies entirely
from scratch, namely K&H [Kozareva and Hovy, 2010] and
OntoLearn [Velardi et al., 2013]. We implemented our own
version of K&H. Since their bootstrapping approach termi-
nates immediately in limited corpora, we relaxed some con-
straints to obtain a more meaningful comparison. Specifically,
(i) we provided ten seed terms instead of one, (ii) we re-
laxed their patterns to match more than two subtypes, and
(iii) we included basic syntactic inference. All comparisons
with OntoLearn are made against their best run (DAG[0,99]),
provided by its authors.

We use five real-world, plain-text corpora from different
domains to evaluate and compare learned taxonomies, whose
statistics are shown in Table 2. The first two are biomedi-
cal corpora, DD12 and PMc.? We also created three new cor-
pora from Wikipedia, which we call ANIMALS, PLANTS and
VEHICLES, by selecting all article abstracts that contain the
words animals, plants, and vehicles, respectively.

To address the second question, we use a subset of these
corpora to study the effect of each of TAXIFY’s components
on its overall performance.

3.1 Manual evaluation

Methodology. To assess the quality of the learned tax-
onomies, we report two evaluation metrics: precision and the
number of correct facts. We use the number of correct facts
or number of true positives instead of the recall because com-
puting the recall requires a gold standard, which we lack.
Our taxonomies are too large to label each learned is-a re-
lation manually. Therefore, we labelled 400 edges from each

2http://www.cs.york.ac.uk/semeval-2013/task9/
3http://www.ncbi.nlm.nih.gov/pmc/
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#Documents #Sentences #Words
per document
ANIMALS | 25,016 10.5 5,656,301
PLANTS 64,545 7.7 9,370,609
VEHICLES | 20,540 9.7 4,446,830
DbI 714 8.6 137,882
PMmcC 42,928 11.8 11,756,503

Table 2: Statistics on the corpora used in the experiments.

learned taxonomy to assess its accuracy. For K&H and On-
toLearn, we randomly sampled and labelled 400 edges for
each taxonomy. For TAXIFY, we divided all is-a relations into
ten, equal-width bins based on their confidence (e.g., as done
in Schoenmackers et al., 2010). Then we estimated a bin’s
precision and number of correct facts by labeling a random
sample of 40 edges from the bin. An edge x — y is only la-
beled as correct if both (i) “y is an 2 is a valid statement, and
(ii) y and x are relevant concepts for the given domain. For
example, the edge tree — oak would be labeled as incorrect
when evaluating an animal taxonomy.

Since K&H requires root concepts as input, we picked
drug, medication, agent for DDI, and disease, gene, protein,
cell for PMcC. We evaluated both the taxonomies rooted at
these concepts and the unrooted taxonomies, since TAXIFY
and OntoLearn do not need domain-specific inputs. For the
Wikipedia corpora, we rooted all taxonomies at animal, plant,
vehicle and their WordNet synonyms.

Parameter setting. We set TAXIFY’s parameters as fol-
lows. For domain-specific filtering, we set oy = 0.4 and
ag = 1.7 by assessing the accuracy of different filtering
thresholds on approximately 500 manually labeled words on
validation data from the PMC domain and an AI domain
which was only used for algorithm development. s is stricter
than «; because many words are valid as concept modifiers
(e.g., white shark), but not as a single-word concept (e.g.,
white). For the clustering-based inference, we set the num-
ber of clusters k for each corpus as the number of concepts to
cluster divided by a parameter 1. In each iteration, we ran-
domly sampled @ from the interval [3,7]. Randomizing
helps vary cluster compositions across iterations which im-
proves the chance of finding an LCA. We did not try any other
intervals for 1.

Results. Figure 3 reports the results. In general, TAXIFY
outperforms both competing systems. An exception is the
large number of correct edges of OntoLearn on the unrooted
DDbDI taxonomy, which comes at the cost of very low precision,
mainly due to the extraction of several vague or generic con-
cepts (e.g., time, cause, rate). Occasionally, K&H achieves
precision comparable to TAXIFY, but totalling one order of
magnitude fewer correct edges. K&H’s approach is indeed
very conservative, as it is conceived for working at Web
scale. Additionally, we found that TAXIFY’s lower precision
on PMC arises as a few incorrect edges link many irrelevant
concepts to the taxonomy. TAXIFY’s incorrect edge detection
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Figure 3: Comparison of TAXIFY with Kozareva and Hovy [2010] and Velardi ez al. [2013]. Results are plotted as single points

when edge’s confidence scores are not available.

algorithm mitigates this problem, but it is slightly less effec-
tive due to the size and breadth of PMC.

3.2 Comparison with reference taxonomies

To assess the ability of taxonomy learners to cover refer-
ence concepts and edges, we compare the three taxonomies
learned on the Wikipedia corpora to the corresponding Word-
Net subhierarchies rooted at animal#n#1, plant#n#2, and ve-
hicle#n#1. We say that a learned concept ¢ “covers” WordNet
(i.e., ¢ € Cwy) if it appears in the target WordNet subhier-
archy, while an edge * — y covers WordNet if x appears
as a direct or indirect supertype of y in the subhierarchy. Ta-
ble 3 shows that TAXIFY is able to cover a significantly higher
number of concepts and edges compared to the competing
systems on all three domains. However, the absolute num-
bers remain low, suggesting that larger corpora are needed to
achieve a higher coverage of WordNet. We did not replicate
Kozareva and Hovy [2010]’s WordNet experiment because it
is not suitable for evaluating systems that learn taxonomies
from scratch, as previously discussed [Navigli er al., 2011;
Velardi et al., 2012; 2013].

Additionally, we compared the taxonomy learned from the
DDI corpus to the handcrafted biomedical MeSH taxonomy.*
Table 4 shows that out of 545 correct edges extracted by
TAXIFY, 170 appear in the MeSH taxonomy. The remaining
correct edges can be classified into those that refine MeSH,
and those that extend it. We say that two edges x — z’ and
2’ — y refine the MeSH taxonomy if the edge x — y appears
in MeSH as 2’ increases the MeSH’s level of detail. All other
correct edges extend MeSH by either introducing a new con-
cept or assigning an additional supertype to a known concept.

3.3 Evaluation of TAXIFY’s subcomponents

We performed an ablation study on DDI, ANIMALS and VE-
HICLES to analyze the impact of TAXIFY’s components on
its overall performance. We compare the full TAXIFY sys-
tem to three variants: TAXIFY without syntactic inference,

*http://www.ncbi.nlm.nih.gov/mesh

ANIMALS PLANTS VEHICLES
x| Bwn| | [Conl  |Bun] | [Cwn| Bl
TAXIFY 532 314 | 1016 612 120 89
OntoLearn 180 144 81 30 63 52
K&H 275 182 468 211 63 16
\ WordNet totals \ 3999 4356 \ 4487 4699 \ 520 585 \

Table 3: Comparison of the three systems in terms of ex-
tracted concepts (|Cy n|) and edges (|Ew n|) that appear in
the target WordNet subhierarchy.

TAXIFY without clustering-based inference and TAXIFY
without pruning. The results are shown in Figure 4.

First, syntactic inference significantly increases the num-
ber of correct edges in the learned taxonomies. Syntactically-
inferred edges play two important roles in taxonomy learn-
ing. One, they ensure the connectivity of the taxonomy. Two,
they add additional concepts as leaf nodes in the taxonomy,
by capturing relations that are infrequently observed in text.

Second, including the clustering-based inference results
in more correct edges in all domains. Specifically, it in-
creases the number of correct edges by 25.9% on ANIMALS,
68.6% on VEHICLES, and 27.0% on DDI compared to the no
clustering-based inference baseline. The inference adds 2110,
2495, and 84 new concepts, respectively, to the taxonomies.

Third, TAXIFY’s pruning strategy consistently improves
precision across all confidence levels. Averaged over all con-
fidence levels, the edge removal improves precision by 8.0%
on ANIMALS and 15.0% on VEHICLES. On DDI the improve-
ment (0.7%) is marginal, as the unpruned taxonomy is already
highly precise. Averaged across the three corpora, 81% of the
edges removed by our pruning strategy were incorrect.

Finally, we evaluated the benefit that clustering-based in-
ference provides over pairwise inference. We created a variant
of TAXIFY that replaces our clustering method with a pair-
wise approach that assigns each new concept the supertype
of the most similar concept in the taxonomy. Compared to
the pairwise strategy, our clustering approach increased the
number of estimated correct edges by 23.8% on VEHICLES
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Evaluation Count Examples
Already in MeSH 170 (31.2%)  non-steroidal anti-inflammatory drugs — aspirin, psychotropic agents — tranquilizers
Refines MeSH 118 (21.7%)  highly protein-bound drugs — captopril, oral anticoagulants — warfarin
Extends MeSH 257 (47.1%) drugs — Tiagabine, TNF-blocking agents — HUMIRA
Table 4: Comparison of the 545 correct facts of our drug taxonomy against the MeSH taxonomy.
g 10 Animals oo Vehicles Lok DDI I
3 so% S ——— 90% 1
§ 803 S \_\\L* ) 80% ‘\\ 90% W —m—without syntactic
S 70% . o 70% —— inference
(; 60% \\ \\ 60% 4&\‘:4; = \\ 80% ——without
s 50% 50% - N
S . \ e M clustering-based
2 40% 40% inference
g 30% 30% ~~ 70% without removal

500 1000 1500 2000 2500
estimated number of correct edges

3000 500 1000 1500

2000

estimated number of correct edges

100 200 300 400 500
estimated number of correct edges

2500 3000 3500 600 incorrect edges

Figure 4: Results of the ablation study for TAXIFY.

and 11.9% on DDI, but resulted in a decrease of 3.2% on
ANIMALS. The clustering approach also improved precision
on average by 6.2% on ANIMALS, 11.7% on VEHICLES and
0.2% on DDI compared to pairwise inference.’

These results demonstrate that, in general, the full TAXIFY
performs better than any of its variants. In particular, our two
main innovations of using a clustering-based inference ap-
proach and our novel pruning strategy substantially contribute
to TAXIFY’s performance.

4 Related Work

The task of taxonomy learning can be divided into concept
extraction and concept organization. While earlier systems
focused on the first task only [Ravichandran and Hovy, 2002;
Liu et al., 2005], more recent efforts, like TAXIFY, tackle both
tasks simultaneously.

Taxonomy learners typically aim to build either a gen-
eral, open-domain taxonomy, or domain-specific taxonomies.
These settings pose different challenges. Open-domain tax-
onomy learning (e.g., Ponzetto and Strube 2011; Wu et al.
2012) faces challenges such as analyzing very large textual
corpora and coping with lexical ambiguity, but can leverage
the massive redundancy in large corpora. Domain-specific
taxonomies are typically induced from smaller corpora and
thus cannot exploit high data density.

The most relevant related work are the domain-specific tax-
onomy learners [Kozareva and Hovy, 2010; Velardi er al.,
2013]. Kozareva and Hovy [2010] build an initial taxonomy
by iteratively issuing Hearst-like patterns on the Web starting
from seed terms, and then prune it to only retain the longest
paths. Velardi et al. [2013] extract is-a relations from defi-
nition sentences using both a domain corpus and the Web.
In our experiments, we found that definition sentences tend
to extract generic supertypes, creating long chains of irrele-
vant concepts that limit the system’s overall precision. Simi-
lar to Kozareva and Hovy, their pruning strategy optimizes the
trade-off between retaining long paths and maximizing the
connectivity of the traversed nodes. In contrast, TAXIFY can

SGraphs for this experiment are available in the online supple-
ment at http://dtai.cs.kuleuven.be/software/taxify
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automatically discern if a long path is justified by the domain,
or only caused by the presence of an incorrect edge, whose
detection and removal significantly improves precision.

Regardless of the learning setting, several approaches have
explored how to increase the coverage beyond Hearst pat-
tern extractions, typically by searching for concepts similar to
those already in the taxonomy. One line of work uses coordi-
nation patterns [Cederberg and Widdows, 2003; Snow et al.,
2004], which requires explicit concept co-occurrence. More
recent work looks at distributional similarity (e.g., [Snow et
al., 2006]). However, these approaches require massive cor-
pora. In contrast, TAXIFY can capture distributional similarity
from a single smaller corpus. Furthermore, prior work (e.g.,
Cederberg and Widdows, 2003; Snow et al., 2004) tends to
focus on similarities between pairs of concepts, whereas we
show how a taxonomy learner can benefit from concept clus-
tering.

5 Conclusions

We presented TAXIFY, an unsupervised approach for learn-
ing an is-a taxonomy from scratch from a domain-specific
corpus. TAXIFY makes two key contributions. First, it uses
an approach based on the distributional semantics and clus-
tering to introduce additional edges in the taxonomy. Second,
it proposes a novel mechanism for identifying and removing
potentially incorrect edges. Empirically, these two contribu-
tions substantially improve the system’s performance. Fur-
thermore, we found that TAXIFY outperformed two state-
of-the-art systems on five corpora. Our corpora varied in
size from small to medium, and each setting provides differ-
ent challenges. The smaller domains were more focused and
dense, but had more implicit information whereas the larger
domains were sparser and noisier, but had more explicit infor-
mation. Our evaluation indicates that TAXIFY performs well
in these settings, while Web-scale corpora (not tied to a spe-
cific domain) would pose different challenges and require a
different approach.

In the future, we would like to integrate our system into
tasks such as inference rule learning and question answering.
Additionally, we would like to modify TAXIFY to work with



a combination of a domain-specific corpus and the Web.

Acknowledgements

We thank Steven Schockaert for his helpful feedback. This
work was partially supported by the Research Fund KU Leu-
ven (OT/11/051), EU FP7 Marie Curie Career Integration
Grant (#294068) and FWO-Vlaanderen (G.0356.12).

References

[Carlson er al., 2010] Andrew Carlson, Justin Betteridge, Bryan
Kisiel, Burr Settles, Estevam R Hruschka Jr, and Tom M
Mitchell. Toward an architecture for never-ending language
learning. In Proc. of the 24th AAAI, 2010.

[Cederberg and Widdows, 2003] Scott Cederberg and Dominic
Widdows. Using lsa and noun coordination information to im-
prove the precision and recall of automatic hyponymy extraction.
In Proc. of the 7th HLT-NAACL, pages 111-118, 2003.

[Davidov and Rappoport, 2006] Dmitry Davidov and Ari Rap-
poport. Efficient unsupervised discovery of word categories us-
ing symmetric patterns and high frequency words. In Proc. of the
44th ACL, pages 297-304. ACL, 2006.

[Fader et al., 2011] Anthony Fader, Stephen Soderland, and Oren
Etzioni. Identifying relations for open information extraction. In
Proc. of the 2011 EMNLP Conference, pages 1535-1545, 2011.

[Harris, 1968] Z. S. Harris. Mathematical structures of language.
Wiley, 1968.

[Healy, 1979] M Healy. Outliers in clinical chemistry quality-
control schemes. Clin. Chem., 25(5):675-677, 1979.

[Hearst, 1992] Marti A Hearst. Automatic acquisition of hyponyms
from large text corpora. In Proc. of the 14th Conference on Com-
putational Linguistics, pages 539-545. ACL, 1992.

[Kozareva and Hovy, 2010] Zornitsa Kozareva and Eduard Hovy. A
semi-supervised method to learn and construct taxonomies using
the web. In Proc. of the 2010 EMNLP Conference, pages 1110-
1118. ACL, 2010.

[Liu et al., 2005] Tao Liu, XL Wang, Y Guan, ZM Xu, et al.
Domain-specific term extraction and its application in text classi-
fication. In 8th Joint Conference on Information Sciences, pages
1481-1484, 2005.

[Michel et al., 2011] Jean-Baptiste Michel, Yuan Kui Shen,
Aviva Presser Aiden, et al. Quantitative analysis of culture using
millions of digitized books. Science, 331(6014):176-182, 2011.

[Navigli et al., 2011] Roberto Navigli, Paola Velardi, and Stefano
Faralli. A graph-based algorithm for inducing lexical taxonomies
from scratch. In Proc. of the 22nd International Joint Conference
on Artificial Intelligence, pages 1872—-1877, 2011.

[Ponzetto and Strube, 2011] Simone Paolo Ponzetto and Michael
Strube. Taxonomy induction based on a collaboratively built
knowledge repository. Artificial Intelligence, 175(9):1737-1756,
2011.

[Ravichandran and Hovy, 2002] Deepak Ravichandran and Eduard
Hovy. Learning surface text patterns for a question answering
system. In Proc. of the 40th Annual Meeting of ACL, pages 41—
47. ACL, 2002.

[Schoenmackers et al., 2010] Stefan Schoenmackers, Oren Etzioni,
Daniel S Weld, and Jesse Davis. Learning first-order horn clauses
from web text. In Proc. of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing, pages 1088—1098.
ACL, 2010.

1441

[Snow ez al., 2004] Rion Snow, Daniel Jurafsky, and Andrew Y Ng.
Learning syntactic patterns for automatic hypernym discovery.
Advances in Neural Information Processing Systems 17, 2004.

[Snow et al., 2006] Rion Snow, Daniel Jurafsky, and Andrew Y Ng.
Semantic taxonomy induction from heterogenous evidence. In
Proc. of the 44th ACL, pages 801-808. ACL, 2006.

[Turney, 2005] Peter D. Turney. Measuring semantic similarity by
latent relational analysis. In Proc. of the 19th International Joint
Conference on Artificial Intelligence, pages 1136-1141, 2005.

[Velardi et al., 2012] Paola Velardi, Roberto Navigli, Stefano Far-
alli, and Juana Ruiz Martinez. A new method for evaluating au-
tomatically learned terminological taxonomies. In Proc. of the
8th Conference on International Language Resources and Eval-
uation, 2012.

[Velardi et al., 2013] Paola Velardi, Stefano Faralli, and Roberto

Navigli. OntoLearn Reloaded: A Graph-Based Algorithm for
Taxonomy Induction. Computational Linguistics, 39(3):665—
707, 2013.

[Washtell and Markert, 2009] Justin Washtell and Katja Markert. A
comparison of windowless and window-based computational as-
sociation measures as predictors of syntagmatic human associa-
tions. In Proc. of the 2009 EMNLP Conference, pages 628-637,
2009.

[Widdows, 2003] Dominic Widdows. Unsupervised methods for
developing taxonomies by combining syntactic and statistical in-
formation. In Proc. of the 2003 HLT-NAACL Conference, pages
197-204, 2003.

[Wu et al., 2012] Wentao Wu, Hongsong Li, Haixun Wang, and
Kenny Q Zhu. Probase: A probabilistic taxonomy for text un-
derstanding. In Proc. of the 2012 International Conference on
Management of Data, pages 481-492, 2012.

[Yang, 2012] Hui Yang. Constructing task-specific taxonomies for
document collection browsing. In Proc. of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 1278—1289.
ACL, 2012.

[Zavitsanos er al., 2011] Elias Zavitsanos, Georgios Paliouras, and
George A Vouros. Gold standard evaluation of ontology learning
methods through ontology transformation and alignment. /EEE
Trans. on Knowledge and Data Engineering, 23(11):1635-1648,
2011.





