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Abstract
In dynamic settings where data is exposed by
streams, knowledge discovery aims at learning as-
sociations of data across streams. In the semantic
Web, streams expose their meaning through evolu-
tive versions of ontologies. Such settings pose chal-
lenges of scalability for discovering (a posteriori)
knowledge. In our work, the semantics, identify-
ing knowledge similarity and rarity in streams, to-
gether with incremental, approximate maintenance,
control scalability while preserving accuracy of
streams associations (as semantic rules) discovery.

1 Introduction and Related Work
In the semantic Web, the meaning of data streams is rep-
resented as ontology streams [Huang and Stuckenschmidt,
2005]. Such streams are dynamic and evolutive versions of
ontologies where OWL (Web Ontology Language), which
is underpinned by Description Logics (DL) [Baader et al.,
2003], is used as a rich description language. From knowl-
edge materialization [Barbieri et al., 2010], to diagnosis or
predictive reasoning [Lécué and Pan, 2013], all are inferences
where dynamics, semantics of data are exploited for deriving
a priori knowledge from pre-established (certain) statements.

From a data-driven perspective, knowledge can be gained
a posteriori from uncertainty by learning probabilistic rules
or associations across streams [Agrawal et al., 1993]. When
a priori and a posteriori knowledge are reunified, the problem
of knowledge discovery can be revisited as the problem of
discovering stochastic rules with semantic representation of
their premises, conclusions [Lécué and Pan, 2015]. In a dy-
namic context, with highly changing data, it is crucial to en-
sure scalable knowledge discovery by adjusting and updating
all learnt semantic rules rather than re-elaborating potential
associations from scratch (exponential in the size of data).

Most of techniques in Database e.g., [Cheung et al., 1996],
adapting Apriori [Agrawal et al., 1996] for streams, focus
on syntactic representation of data to iteratively identify fre-
quent associations. [Lee et al., 2003] improved its scalability
by partitioning all streams using a sliding-window filtering.
Approaches in Machine Learning e.g., [Gama and Kosina,
2011] focus on learning decision rules, as a subset of asso-
ciation rules, for classifying data from streams in real-time.

Rules are incrementally learnt through approximate special-
ization. Although such models fits (raw) data streams ex-
posing (syntactic) numeric/symbolic values, they could not
cope with semantics captured by ontology streams. Indeed
they all fail in interpreting the underlying semantics of data,
making knowledge discovery highly subject to changes, and
not necessarily accurate, scalable. Facing these limitations,
techniques from Knowledge Representation and Reasoning
explored ontology-based learning for generating DL axioms
[Völker and Niepert, 2011], Horn rules [Galárraga et al.,
2013], DL rules [Lécué and Pan, 2015] from semantic data.
All rules are mined from scratch for each update, which is in-
effective since it (i) restricts the dynamics of (stream) learn-
ing, (ii) neglects previously discovered rules, (iii) intolerably
limits its scalability, adaptability and reactivity.

We address “scalable maintenance of knowledge discov-
ery in dynamic semantic data”. Given ontology streams, how
to ensure scalable identification of dynamic, knowledge as-
sociations? This poses problems of dynamically maintain-
ing associations and their interestingness up-to-date in a win-
dow sliding over streams. Key contributions include: (1) By
exploiting the semantics of ontology streams, we introduce
the notions of knowledge similarity, rarity over time, which
are logically based and do not only rely on the syntax of ax-
ioms. They enable approximation of knowledge discovery
while maintaining accuracy. (2) We design the first incremen-
tal algorithm which controls the scalability of learning by effi-
ciently maintaining DL rules, as associations across streams.

Next section reviews the adopted logic, ontology stream
together with rules representation. In Section 3 we study
knowledge similarity and rarity in streams. Section 4 presents
how knowledge discovery is incrementally maintained. Fi-
nally, we report experimental results on scalability and accu-
racy with data from Dublin City and draw some conclusions.

2 Background
The semantics of data is represented using an ontology. We
focus on DL to define ontologies since this logic offers good
reasoning support for most of its expressive families and com-
patibility to W3C standards e.g., OWL 2. Since our work re-
quires DLs supporting polynomial time reasoning when com-
bined with rules, EL++ [Baader et al., 2005] will be consid-
ered for illustration. We review (i) DL basics of EL++, (ii)
ontology stream, (iii) EL++ atomsets and association rules.
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Figure 1: O .
= 〈T ,A〉. Sample of TBox T and ABox A.

2.1 Description Logics EL++

A signature Σ, noted (NC ,NR,NI) consists of 3 disjoint sets
of (i) atomic conceptsNC , (ii) atomic rolesNR, and (iii) indi-
vidualsNI . Given a signature, the top concept >, the bottom
concept ⊥, an atomic concept A, an individual a, an atomic
role expression r, EL++ concept expressions C and D in C
can be composed with the following constructs:

> | ⊥ | A | C uD | ∃r.C | {a}
The DL ontology O .

= 〈T ,A〉 is composed of TBox T ,
ABoxA. A TBox is a set of concept, role axioms. EL++ sup-
ports General Concept Inclusion axioms (GCIs e.g. C v D),
Role Inclusion axioms (RIs e.g., r v s ). An ABox is a set
of concept assertion axioms e.g., C(a), role assertion axioms
e.g.,R(a, b), individual in/equality axioms e.g., a 6= b, a = b.
Example 1. (TBox and ABox Concept Assertion Axioms)
Figure 1 presents (i) a TBox T where DisruptedRoad (??)
denotes the concept of “roads which are adjacent to an event
causing high disruption”, (ii) concept assertions (??-??) de-
noting the individual r0 having ri,1≤i≤2 as adjunct roads.

All completion rules, which are used to classify EL++

TBox T and entail subsumption, are described in [Baader et
al., 2005]. Reasoning with such rules is PTime-Complete.

2.2 Ontology Stream and its Evolution
We represent knowledge evolution by a dynamic, evolutive
version of ontologies [Huang and Stuckenschmidt, 2005].
Data (ABox), its inferred statements (entailments) are evolv-
ing over time while its schema (TBox) remains unchanged.
Definition 1. (DL L Ontology Stream)
A DL L ontology stream Pnm from point of time m to
point of time n is a sequence of (sets of) Abox axioms
(Pnm(m),Pnm(m + 1), · · · ,Pnm(n)) with respect to a static
TBox T in a DL L where m,n ∈ N and m < n.
Pnm(i) is a snapshot of an ontology stream (stream for

short) Pnm at time i, referring to ABox axioms with respect
to a TBox in L. We denote by Pnm[i, j] i.e.,

⋃j
k=i Pnm(k) a

windowed stream of Pnm between time i and j with i < j. All
windows [i, j] have fixed length. We consider streams Pn0
with [α]

.
= [i, j], [β]

.
= [k, l] as windows in [0, n] and i < k.

Example 2. (DL EL++ Ontology Stream)
Figure 2 illustrates EL++ streams P9

0 , Q9
0, R9

0, related to
events, travel time, buses, through snapshots at time i ∈
{5, 6, 7} (i.e., a view on window [5, 7]). Their dynamic knowl-
edge is captured by evolutive ABox axioms e.g., (??) captures
e1 as “a social music event occurring in r1” at time 5 of P9

0 .

Figure 2: Ontology Streams P9
0 (i),Q9

0(i),R9
0(i)i∈{5,6,7}.

Windowed Stream (Q∪R)9
0[6, 7]∇ (Q∪R)9

0[5, 6]
Changes new invariant obsolete

∃travel.Abnormal(r1) X
∃with.CongestedBus(r2) X

∃travel.Stop(r2) X

Table 1: ABox Entailment-based Stream Changes.

By applying completion rules on static knowledge T and on-
tology streams Pn0 , snapshot-specific axioms are inferred.

The evolution of a stream is captured along its changes i.e.,
new, obsolete and invariant ABox entailments from one win-
dowed stream to another one in Definition 2.
Definition 2. (ABox Entailment-based Stream Changes)
Let Sn0 be a stream; [α], [β] be windows in [0, n]; T be ax-
ioms, G its ABox entailments. The changes occurring from
Sn0 [α] to Sn0 [β], denoted by Sn0 [β]∇Sn0 [α], are ABox entail-
ments in G being new (1), obsolete (2), invariant (3).

G[α],[β]
new

.
= {g ∈ G | T ∪ Sn0 [β] |= g ∧ T ∪ Sn0 [α] 6|= g} (1)

G[α],[β]
obs

.
= {g ∈ G | T ∪ Sn0 [β] 6|= g ∧ T ∪ Sn0 [α] |= g} (2)

G[α],[β]
inv

.
= {g ∈ G | T ∪ Sn0 [β] |= g ∧ T ∪ Sn0 [α] |= g} (3)

(1) reflects knowledge we gain by sliding window from [α]
to [β] while (2) and (3) denote respectively lost and stability
of knowledge. All duplicates are supposed removed. Defini-
tion 2 provides basics, through ABox entailments, for under-
standing how knowledge is changing among windows.
Example 3. (ABox Entailment-based Stream Changes)
Table 1 illustrates changes occurring from (Q ∪R)90[5, 6] to
(Q ∪R)90[6, 7] through ABox entailements. For instance “r2
as a road with (at least) one congested bus” in window [6, 7]
of (Q∪R)90 is invariant with respect to knowledge in [5, 6].
It is entailed using DL completion rules on (??), (??) and
(??).

2.3 EL++ Atomsets and Association Rule
We consider EL++ with (i) concept expressions C, role
names NR, individual names NI , and (ii) a countable set of
first-order variables V .
Atomset: Given terms x1, x2 ∈ V ∪ NI , a concept (role)
atom is a formula C(x1) (R(x1, x2)) with C ∈ C (R ∈ NR).
We use finite sets (atomsets) B of (concepts, roles) atoms for
representing conjunction ∀~x.

∧
B where ~x .

= x1, · · · , xn ∈
V are variables of atoms B ∈ B which could be shared. ξ(A)
denotes the set of all atomsets generated from atoms inAw.r.t
T . By abuse of notation, we continue to write A for ξ(A).
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Atomset Binding: Atomsets can be seen as conjunctive
queries [Glimm et al., 2007] without non-distinguished vari-
ables. We write T ,A |= B[~a] to denote that ~a ∈ NI is a
binding (answer) to atomset (query) B.
Example 4. (Atomset and Binding)
r0 is a binding to atomset {adj(x, r1)} w.r.t. O in Figure 1.

EL++ Rules [Krötzsch et al., 2008] extends EL++ expres-
sivity with rules while maintaining polynomial time reason-
ing. Given atomsets B, H, and all variables ~x ∈ V of atomset
B ∪ H, an EL++ rule is a formula B � H, such that B is
cycle free and does not contain atom of the form R(x, x).
Example 5. (EL++ Rule)
Below rule denotes “if x3 is adjacent to a x2 where a highly
disruptive event x1 occurs then buses are congested in x3”.

(Event u ∃disruption.High)(x1) ∧ (4)
occur(x2, x1) ∧ adj(x3, x2) (5)

� (∃with.CongestedBus)(x3) (6)

Association EL++ Rules [Lécué and Pan, 2015] are EL++

rules defined across some associations of axioms in streams.
They extend Database association rules [Agrawal et al., 1993]
as knowledge from different streams is associated and com-
bined by learning rules. Such rules are modeled in EL++.
Example 6. (Association EL++ Rule)
{(4), (5)}� {(6)} is an association rule fromP9

0 toQ9
0∪R9

0.
(4-5) are defined in P9

0 , (6) is inferred from Q9
0 ∪R9

0.

3 Significance of Knowledge Evolution
We introduce knowledge similarity and rarity, as basis for (i)
measuring the significance of knowledge evolution in streams
and (ii) controlling when to operate knowledge discovery.

3.1 Knowledge Similarity in An Ontology Stream
Definition 3 revisits stream correlation [Lécué and Pan, 2013]
to capture knowledge similarity over windowed streams. It
captures what knowledge, through ABox entailments, is com-
mon or modified (new or obsolete) over two windows.
Definition 3. (Knowledge Similarity in Ontology Stream)
Let Sn0 be a stream; [α], [β] be windows in [0, n]. The (sym-
metric) knowledge similarity between Sn0 [α] and Sn0 [β] is:

Φ(Sn0 [α],Sn0 [β])
.
=

|G[α],[β]inv |
|G[α],[β]new |+ |G[α],[β]inv |+ |G[α],[β]obs |

(7)

where the expressions in between | refer to its cardinality i.e.,
the number of new, obsolete and invariant ABox entailments
obtained from Sn0 [α] to Sn0 [β] using DL completion rules.
(7) captures the knowledge similarity of windowed streams
Sn0 [α], Sn0 [β] in [0, 1]. The number of invariant ABox entail-
ments emphasizes “common” knowledge while the number
of new and obsolete ABox entailments is capturing differen-
tiators in knowledge evolution from window [α] to [β]. There-
fore the higher Φ(Sn0 [α],Sn0 [β]) the more similarity between
knowledge captured in windows [α] and [β] of Sn0 .

Evaluating (7) is in worst case polynomial time with re-
spect to acyclic T and Sn0 in EL++ since DL concepts expan-
sion, unfolding and subsumption required from Definition 2
are all solvable in polynomial time [Baader et al., 2005].

Figure 3: Knowledge Similarity and Rarity in (Q∪R)90.

Example 7. (Knowledge Similarity in Ontology Stream)
For (Q∪R)90[6, 7]∇ (Q∪R)90[5, 6], all entailments in (Q∪
R)90[5, 6] and (Q ∪ R)90[6, 7], derived using DL completion
rules, static knowledge (Figure 1), dynamic knowledge (Fig-
ure 2), are required. By applying their resulting numbers of
8 invariant, 4 new, 5 obsolete entailments in (7), knowledge
similarity of (Q∪R)90 in [6, 7] with [5, 6] is 0.47 cf. Figure 3.

3.2 Knowledge Rarity in An Ontology Stream
Knowledge rarity or the state of knowledge of being infre-
quent, is a strong indicator of (i) knowledge representativity
and thus of (ii) significance for knowledge discovery. Defi-
nition 5 revisits the concept of rarity for ontology streams as
the proportion of its rare knowledge (Definition 4) i.e., knowl-
edge occurring over a pre-determined number of snapshots.
Definition 4. (ε-Rare Knowledge in Ontology Stream)
Let Sn0 be a stream; T , A be static axioms; [α] be a window
in [0, n]. An ABox assertion a is ε-rare in [α] for integer ε if:

|{i ∈ [α] | T ∪ A ∪ Sn0 (i) |= a}| = ε (8)

where i is an instant in [α] and Sn0 (i) is a snapshot of Sn0 [α].

Assertion a is ε-rare if a can be entailed over ε snapshots of
[α]. We denote by ε-rare(Sn0 [α]) the set of ABox assertions
which are ε-rare in [α] of Sn0 , by |ε-rare(Sn0 [α])| its cardi-
nality. Let |distinct(Sn0 [α])| be the number of distinct ABox
assertions entailed in [α] of Sn0 . Thus, knowledge rarity is
characterized by the ratio of rare to distinct ABox assertions.
Definition 5. (ε-Rarity of Knowledge in Ontology Stream)
Let Sn0 be a stream; [α] be a window in [0, n] of Sn0 . The
ε-rarity of knowledge in [α] of Sn0 is defined as the ratio:

%ε(Sn0 [α])
.
=
|ε-rare(Sn0 [α])|
|distinct(Sn0 [α])|

(9)

1-rarity %1 is the fraction of knowledge appearing uniquely
in [α]. ε-rarity measures knowledge repeating ε times within
[α]. Evaluating (9) is in worst case polynomial time cf. (7).
Example 8. (ε-Rarity of Knowledge in Ontology Stream)
Suppose (Q ∪R)90 over [6, 7] in Figure 2. ∃travel.Stop(r2)
is 1-rare while ∃with.CongestedBus(r2) is 2-rare as they
are respectively entailed in snapshots {7} and {6, 7}. Given
the number of distinct, 1-rare and 2-rare knowledge being re-
spectively 12, 4, 8 in [6, 7], 1-rarity and 2-rarity of knowledge
in [6.7] of (Q∪R)90 are respectively 1/3, 2/3 cf. Figure 3.

We will apply (8-9) with atomsets in Sn0 rather than its
ABox assertions, as they are representative of DL rules.
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Figure 4: k-Sliding of Windowed Stream ∆-∪S to S∪∆+.

4 Incremental Maintenance of Knowledge
Scalable maintenance of knowledge in streams aims at keep-
ing (discovered) association EL++ rules over a sliding win-
dow up-to-date rather than re-elaborating associations from
scratch. Let Sn0 in Figure 4 be a set of streams that could
be associated e.g., streams in Figure 2. ∆-, ∆+ are respec-
tively knowledge removed and added by sliding from ∆-∪S to
S∪∆+ while S captures what remains unchanged. The com-
plexity of this problem is exponential in the number of atoms
(to be composed by rules) in streams [Lécué and Pan, 2013].
We present some heuristics, illustrated in Algorithms 1, 2 and
3, that drastically reduce computation time in practice. Our
approach is: (i) updating the interestingness of rules R- dis-
covered in ∆-∪S, (ii) expanding rules R- to cover incoming
knowledge ∆+, (iii) actioning maintenance only when accu-
mulated knowledge update is significant. The approach bene-
fits from EL++ as consistency checking of atomsets, together
with atomset binding are polynomial [Bienvenu et al., 2012].

4.1 Updating Interestingness of EL++ Rules
The interestingness of association EL++ rules is measured
by the support of its atomsets and its confidence.
Definition 6. (Atomset Support)
Given axioms O .

= 〈T ,A〉, stream Sn0 , atomset B. The sup-
port of B, noted σ(B), is defined by |{i ∈ [0, n] | ∃~a ∈
NI :O,Sn0 (i) |= B[~a]}| as the number of snapshots where B
has at least a binding ~a in A ∪ Sn0 with respect to T .

We say that B is supported (or true) over σ(B) snapshots
in [0, n] of Sn0 . The support of any atomset in a stream can be
computed as the sum of its supports on windowed streams.
Definition 7. (Confidence of an Association EL++ Rule)
Let ρ : B� H be an association EL++ rule in Sn0 . The con-
fidence γ of ρ, noted γ(ρ), in (0, 1] is defined by σ(B ∪H)/σ(B)
i.e., the proportion of snapshots in Sn0 where B ∪ H has at
least one binding with regard to those whereB has a binding.

The confidence is defined as the conditional probability
of inferring H(~a) given that we know B(~a). We denote by
σ(B)|Sn

0 [α] and γ(ρ)|Sn
0 [α] the support of atomset B and con-

fidence of rule ρ in windowed stream Sn0 [α].

Example 9. (Confidence of an Association EL++ Rule)
Let S90 be (P ∪ Q ∪ R)90 in Figure 2. The confidence of rule
γ(B� H) with B :{(4), (5)},H :{(6)} in [5, 6] of S90 is:

σ(B ∪H)|S9
0 [5,6]

σ(B)|S9
0 [5,6]

=
σ({(4), (5), (6)})
σ({(4), (5)}) i.e.,

1

2

B� H is bound in 1/2 of snapshots of S9
0 [5, 6].

Algorithm 1 (A1) updates interestingness of rules (learnt)
in ∆-∪S to be suitable in S. All (line 5) are evaluated against
∆- (line 7), the part removed by sliding from ∆-∪S to S∪∆+.
If rules are applicable (lines 9-10), their support, confidence
are updated. Otherwise ∆- does not impact the interesting-
ness of rules, which remain the same (line 11).

Remark 1. (Rule Interestingness when Adding Snapshots)
If snapshots ∆+ are added to S, the interestingness is updated
by applying A1 with parameters 〈O,Sn0 ,∆+, S ∪∆+〉, and
upgrading (i) − to + in lines 9-10, (ii) ∆-∪S to S.

Algorithm 1: [A1]InterestUpdate〈O,Sn0 ,∆-, S〉
1 Input: Axioms O .

= 〈T ,A〉, Streams ∆-∪S and S in Sn0 .
2 Result: R: Rules in ∆-∪S with support and confidence for S.
3 begin
4 R← ∅; % Initialization of rulesR in S.
5 foreach ρ : B� H in ∆-∪S do % Rules learnt in ∆-∪S.
6 % Identification of rules in ∆- ∪S valid in ∆-.
7 if ∃~a ∈ NI | O,∆- |= (B ∪H)[~a] then
8 % Updated support σ, confidence γ of ρ in S
9 σ(B ∪H)← σ(B ∪H)|∆-∪S − σ(B ∪H)|∆- ;

10 γ(ρ)← σ(B ∪ H)/(σ(B)|∆-∪S − σ(B)|∆- );

11 R← R∪ {(ρ, σ(B ∪H), γ(ρ))};
12 returnR;

Example 10. (Updating Interestingness of EL++ Rules)
By sliding from [5, 6] to [6, 7], the confidence of B � H in
Example 9 requires an update. B∪H andB are supported at
time {6, 7}, {5, 6, 7}. Thus, removing ∆- : S90 (5) from ∆- ∪
S : S90 [5, 6] (lines 9-10) and adding ∆+ : S90 (7) to S : S90 (6)
(lines 9-10 by applying Remark 1) update its confidence to 1.

4.2 Approximating Expansion of EL++ Rules
Algorithm 2 (A2) expands rules in S (output of A1) to S∪∆+

(lines 5-10). Atomsets in S (line 5) are expanded with atom-
sets in ∆+ if bindable (line 7). Such rules cover knowledge
uniquely present in ∆+, not in S. Only ε-rare atomsets, with
ε parameterizable in E ⊆ {1, ..., |S|}, are considered (line
5) to limit the search space. This benefits scalability while
not sacrificing significant rules (rules with minimum support,
confidence) cf. Section 5. Finally, all potential rules in S∪∆+

are evaluated against the minimum confidence (lines 8-10).

Algorithm 2: [A2]RuleExpansion〈O,Sn0 , S,∆+, E, γmin〉

1 Input: (i) Axioms O .
= 〈T ,A〉, (ii) Streams S, S ∪∆+ in Sn0 ,

(iii) Integer ε ∈ E ⊆ {1, ..., |S|} with |S|: number of
snapshots in S, (iv) Min. threshold of confidence γmin.

2 Result: R: Rules expanding S with ∆+ with min. thres. γmin.
3 begin
4 R ← ∅; % Initialization of expanded rulesR in S ∪∆+.
5 foreach B ∈ ε-rare(S) do % ε-rare Atomsets in S.
6 % Identification of an expansion ofB in S withH in ∆+.
7 if ∃H ∈ ∆+,H /∈ S | ∃~a ∈ NI : O,∆+ |= (B ∪H)[~a]

then % Rule B� H with min. confidence in S∪∆+.
8 if σ(B ∪ H)/σ(B) > γmin then R← R∪{B� H};
9 % RuleH� B with min. confidence in S∪∆+.

10 if σ(B ∪ H)/σ(H) > γmin then R ← R∪{H� B};
11 returnR; % Rules expanding S with ∆+ with conf. γmin.
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Lemma 1. (Non-Expandable Association EL++ Rules)
No rule in S can be expanded with ∆+ (with respect to A2) if
S and ∆+ have no similarity i.e., Φ(S,∆+) = 0.

Proof. Since Φ(S,∆+) = 0, there is no invariant entailments
between S and ∆+ i.e., no instance of S (resp. ∆+) is in an
ABox assertion of ∆+ (resp. S). Thus, none of atom(sets) in
S (resp. ∆+) is bind-able in ∆+ (resp. S). Condition line 7 is
never satisfied: no rule can be expanded from S with ∆+.

Example 11. (Approximate Rule Expansion)
Let C : {∃travel.Stop(x2)}. By applying A2 (E = {1}) to
extend S :S90 (6) with ∆+ :S90 (7), {(4), (5)} is expanded (lines
5-10) with C to capture {(4), (5)} � C with confidence 1/2.
Rules such as occur(x2, x1) � Event(x1), including 2-rare
atomsets in S cannot be discovered due to E.

4.3 Incremental Knowledge Discovery (InKD)
Algorithm 3 (A3) ensures incremental maintenance of asso-
ciation EL++ rules from ∆- ∪ S to S ∪∆+. A3 is actioned
only if knowledge removed ∆- and added ∆+ from S have
significative dissimilarities (line 6). Any update ∆+, which is
primarily 1-rare, is not considered for maintenance since the
more rare knowledge the less significant associations, gener-
alization and rules. Alternatively all rules in ∆- ∪S are used
as approximation for S ∪∆+ (line 14). For significative up-
date, the interestingness of rules, valid in ∆-∪S and S∪∆+,
are revised (line 8). Rules from S are expanded with ∆+ (line
11) when S, ∆+ have similarities (line 9 - Lemma 1). A3
completes the process (line 13) by mining rules in ∆+ ×∆+

using ap-genrules [Lécué and Pan, 2015], noted a-gr.

Algorithm 3: [A3]InKD〈O,Sn
0 ,∆

-, S,∆+, E, %min, γmin,Φmin〉

1 Input: (i) AxiomsO : 〈T ,A〉, (ii) Streams S, ∆- ∪ S, S ∪∆+

in Sn0 , (iii) a set of integers E ⊆ {1, ..., |S|}, (iv) Min.
rarity %min, confidence γmin, similarity Φmin.

2 Result: R: Rules with min. threshold γmin covering S∪∆+.
3 begin
4 R ← ∅; % Initialization of rulesR in S ∪∆+.
5 % Min. dissimilarity of ∆- and ∆+. Min. non-rarity of ∆+.
6 if Φ(∆-,∆+) < Φmin ∧ %1(∆+) > %min then
7 % Update of rules when adding ∆+ and removing ∆-.
8 R← A1〈O,Sn0 ,∆-, S〉 ∪ A1〈O,Sn0 ,∆+, S∪∆+〉;
9 if Φ(S,∆+) 6= 0 then % Some similarities of S and ∆+

10 % Expansion of rules from S to S∪∆+.
11 R ← R ∪ A2〈O,Sn0 , S,∆+, E, γmin〉;
12 % Mining of rules through associations uniquely in ∆+.
13 R← R∪ {a-gr(∆+ ×∆+, γmin)}
14 elseR ← {ρ : B� H in S ∪∆-}; % All rules in S ∪∆-.
15 returnR; % Rules with confidence γmin covering S∪∆+.

Example 12. (Incremental Knowledge Discovery in Action)
Knowledge discovery is incrementally maintained by sliding
from [5, 6] to [6, 7] in S90 using A3 with S :S90 (6), ∆- :S90 (5),
∆+:S90 (7). A3 is actioned as ∆-, ∆+ are different (line 6, Ex-
ample 7). Rules are updated (line 8, Example 10), expanded
from S (line 11, Example 11) as S, ∆+ have similarities (line
9). Remaining rules e.g., {∃impact.Serious(x1), (5)} �
{∃travel.Stop(x2)} are discovered from ∆+ (line 13).

Figure 5: Scalability. 1st x axis: Approaches on 5 Cases. 1st

y axis: Computation Time in Seconds. 2nd x axis: 5 Types
of Stream Windows and Sliding Configurations. 2nd y axis:
Search Space of EL++ Rules.

Figure 6: Scalability. 1st x axis: Our Approach on 5 Cases.
1st y axis: Computation Time in Seconds. 2nd x axis: 5
Types of Knowledge Rarity and Similarity Configurations.
2nd y axis: Search Space of EL++ Rules.

Figure 7: Accuracy. 1st x axis: Approaches on 8 Cases. 1st

y axis: Accuracy of Discovered Rules. 2nd x axis: 8 Types
of Support / Confidence Configurations (Table 3).

5 Experimental Results
We report scalability, accuracy results by studying the impact
of knowledge similarity, ε-rarity on A3. The system is tested
on: 4 Intel(R) Xeon(R) X5650, 2.67GHz cores, 6GB RAM.

5.1 Context
• Data: Data streams (Table 2) related to road weather, travel
time, incident, event, bus location in Dublin are transformed
in EL++ ontology streams using mapping techniques [Lécué
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Figure 8: Accuracy. 1st x axis: Our Approach on 5 Cases.
1st y axis: Accuracy of Discovered Rules. 2nd x axis: 5
Types of Knowledge Rarity Configurations.

DataSet Size (Mb) Frequency of #Axioms #RDF Triples
per day Update (seconds) per Update per Update

Weather 3 300 53 318
Travel Time 43 60 270 810
Incident 0.1 600 81 324
Event 9.5 6, 000 480 1, 150
Bus 120 40 3, 000 12, 000

Table 2: Data Streams Details (average figures).

c1 c2 c3 c4 c5 c6 c7 c8

σmin .4 .4 .4 .4 .8 .8 .8 .8
γmin .2 .4 .6 .8 .2 .4 .6 .8

Table 3: Support σmin, Confidence γmin Configuration.

et al., 2014]. An ontology with 55 concepts, 19 roles and
25, 456 ABox axioms is considered for semantic enrichment.
• Settings: The evaluation is achieved using a variable (i) size
of stream window (i.e., snapshots) |w| ∈ {100, 500, 1000},
(ii) sliding k in {1/3, 2/3, 1} of |w|; a variation of min. thresh-
olds of (iii) knowledge similarity in {1/3, 2/3, 1}, ε-rarity with
ε ∈ E ⊆ {1, ..., |w|}, (iv) support, confidence as in Table 3.
• Baseline Methods: L15 [Lécué and Pan, 2015] for mining
EL++ rules from scratch, G11 [Gama and Kosina, 2011] for
learning decision rules i.e., subset of association rules, L03
[Lee et al., 2003] for incremental syntactic update, are com-
pared. We restricted EL++ rules from A3, L15 to have a
single concept atom in head similarly to G11. All rules from
L03, G11 are uplifted using EL++ descriptions in ontolo-
gies. Its computation time is not reported for fair comparison.
• Objective: The objective is to maintain association (EL++

rules) of knowledge across streams up-to-date while minimiz-
ing computation time and maximizing accuracy. Such rules
empower reasoning with learning e.g., for prediction.

5.2 Scalability
•Dynamics: Figure 5 reports scalability with (i) variable size
|w|, sliding k, (ii) fixed E i.e., E1 : {1, ..., d|w|/2e}, γmin : .8,
Φmin : .6. The scalability decreases with the size of win-
dows and axioms. A3 is the most scalable in both contexts
of increasing windows (i.e., more axioms) and sliding (i.e.,
less common knowledge) size. This remains valid even when
windows do not share snapshots (k : 1), which shows the ben-

efits of knowledge similarity and rarity. L15 is the least scal-
able for large windows since all rules are re-elaborated from
scratch in each update. Its performance remains unchanged
for any variation of k since the interleaving of windows is not
exploited. On contrary L03 and G11 benefit from k i.e., the
more interleaving snapshots the more scalable. G11 reaches
comparable performances with A3 for large windows but fail
to scale otherwise since all rules are systematically retrieved.
• Knowledge: Figure 6 reports scalability of A3 with differ-
ent knowledge similarity Φ and ε-rarity: E1, E2 :{d|w|/2e +
1, |w|}, E3 :{1, ..., |w|}, with fixed |w|:1000 and k :1/3. The
scalability decreases with the dissimilarity of updates, limit-
ing the benefits of rules expansion and favoring a time con-
suming fresh discovery (line 13 of A3). E2 has a slightly
better impact on A3 than E1 while E3 does not impact it dra-
matically. These are caused by the number of ε-rare atomsets
derived from E which dropped from E1 to E2. Indeed the
number of ε-rare atomsets statistically decreases when ε is
approaching |w|. A3 scales the most when stream updates
have similarities whatever the rarity of its knowledge.

5.3 Accuracy
Figures 7 and 8 reports accuracy by (syntactically) comparing
the rules discovered in A3, G11, L03 with L15 (as baseline).
• Interestingness: Figure 7 considers (i) variable support,
confidence (Table 3), and (ii) fixed |w| : 1000, k : 1/3. E :
{1, ..., d|w|/2e} and Φ : .6 are fixed for A3. In all cases the
accuracy is more (positively) impacted by support than con-
fidence. This is especially valid for A3 since the support di-
rectly limits insignificant knowledge association, which re-
duces the number of rules and their approximation. G11 is the
least accurate since the rules expansion is probabilistic. Inter-
estingly the (negative) effect of approximation, through simi-
larity, rarity, is absorbed by the quality of support, confidence.
Thus, accuracy can reach 91% since over-generalization /
specialization, which drive insignificant updates, are pruned.
• Knowledge (Figure 8): Same configuration as Figure 6 ex-
cept Φ fixed to .6, ε-rarity extended with E4:{1, ..., d|w|/3e},
E5:{d|w|/3e+ 1, ..., d2× |w|/3e}, E6:{d2× |w|/3e+ 1, ..., |w|}.
The accuracy with E1 (.89) and E3 (.93) are very close,
which demonstrates that most of ε-rare knowledge, with ε >
d|w|/2e, could not be significantly associated with knowledge
from the stream update. The results withE4, E5, E6 also em-
phasize the more rarity the more accurate is A3. This is even
more significative in a context of “concept drift” i.e., when
knowledge drastically changes over windows (Φ ≈ 0).

5.4 Lessons Learnt
Knowledge similarity, ε-rarity benefit scalability since they
prune the time-consuming steps of (i) over-generalization,
(ii) over-specialization, (iii) reaction to insignificant changes.
Our approach scales the most when rare knowledge is dis-
carded in line 7 of A2 (cf. E2 in Figure 6). However it is
preferred to perform A3 with rare knowledge (cf. E1 in Fig-
ure 8) since the accuracy is not sacrificed with rarity. Indeed
the gain of scalability is only of 11.4% for a loss of 61.7%
in accuracy by discarding rare knowledge (from E1 to E2).
In addition the gain of accuracy is only of 2.1% for a loss
of 34.4% in scalability by considering all knowledge (from
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E1 to E3). Considering more expressive DLs would have de-
creased scalability due to binding, consistency checking. All
approaches have been over-performed by A3 in large-scale
contexts even when knowledge drastically changed over time.

6 Conclusion and Future Work
Our approach, exploiting the semantics of data streams, dis-
covers knowledge by incremental learning of association
EL++ rules across DL-augmented stream data. The incre-
mental maintenance of knowledge discovery, using system-
atic rules update and expansion, ensures scalability while ef-
ficiently maintaining accuracy. Semantics was essential for
(i) capturing knowledge association as reusable EL++ rules
across streams, (ii) identifying the properties of similarity
and rarity in ontology streams which favor approximation and
scalability of knowledge discovery. Experiments have shown
highly scalable and accurate knowledge discovery in Dublin.

In future work we will investigate compact representations
of ontology streams to support highly changing dynamic data.
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