
A Privacy Preserving Algorithm
for Multi-Agent Planning and Search

Ronen I. Brafman
Department of Computer Science

Ben-Gurion University of the Negev
Be’er Sheva, Israel

brafman@cs.bgu.ac.il

Abstract
To engage diverse agents in cooperative behavior,
it is important, even necessary, to provide algo-
rithms that do not reveal information that is private
or proprietary. A number of recent planning algo-
rithms enable agents to plan together for shared
goals without disclosing information about their
private state and actions. But these algorithms lack
clear and formal privacy guarantees: the fact that
they do not require agents to explicitly reveal pri-
vate information, does not imply that such informa-
tion cannot be deduced. The main contribution of
this paper is an enhanced version of the distributed
forward-search planning framework of Nissim and
Brafman that reveals less information than the orig-
inal algorithm, and the first, to our knowledge, dis-
cussion and formal proof of privacy guarantees for
distributed planning and search algorithms.

Introduction
As our world becomes better connected and more open ended,
and autonomous agents are no longer science fiction, a need
arises for enabling groups of agents to cooperate in generating
a plan for diverse tasks that none of them can perform alone in
a cost-effective manner. Indeed, much like ad-hoc networks,
one would expect various contexts to naturally lead to the
emergence of ad-hoc teams of agents that can benefit from
cooperation. Such teams could range from groups of manu-
facturers teaming up to build a product that none of them can
build on their own, to groups of robots sent by different agen-
cies or countries to help in disaster settings. To perform com-
plex tasks, these agents need to combine their diverse skills
effectively. Planning algorithms can help achieve this goal.

Most planning algorithms require full information about
the set of actions and state variables in the domain. How-
ever, often, various aspects of this information are private to
an agent, and it is not eager to share them. For example, the
manufacturer is eager to let everyone know that it can sup-
ply motherboards, but it will not want to disclose the local
process used to construct them, or its inventory levels. Simi-
larly, rescue forces of country A may be eager to help citizens
of country B suffering from a tsunami, but without having
to provide detailed information about the technology behind

their autonomous bobcat to country B, or to country C’s hu-
manoid evacuation robots. In both cases, agents have public
capabilities they are happy to share, and private processes and
information that support these capabilities, which they prefer
(or possibly require) to be kept private.

With this motivation in mind, a number of algorithms have
recently been devised for distributed privacy-preserving plan-
ning [Bonisoli et al., 2014; Torreño et al., 2014; Luis and Bor-
rajo, 2014; Nissim and Brafman, 2014]. In these algorithms,
agents supply a public interface only, and through a dis-
tributed planning process, come up with a plan that achieves
the desired goal without being required to share a complete
model of their actions and local state with other agents. But
there is a major caveat: it is well known from the literature on
secure multi-party computation [Yao, 1982] that the fact that
a distributed algorithm does not require an agent to explicitly
reveal private information does not imply that other agents
cannot deduce such private information from other informa-
tion communicated during the run of the algorithm. Conse-
quently, given that privacy is the raison-d’etre for these algo-
rithms, it is important to strive to improve the level of privacy
provided, and to provide formal guarantees of such privacy
properties. To date, no such guarantees have been provided.

In this paper we focus on the multi-agent forward search
(MAFS) algorithm [Nissim and Brafman, 2014]. Forward
search algorithms are the state-of-the-art in centralized clas-
sical planning, and their distributed version scales up best
among distributed algorithms for classical multi-agent plan-
ning. We describe a modified version of MAFS, called
SECURE-MAFS in which less information is exposed to other
agents, and we provide the first formal treatment of privacy
in the context of distributed planning algorithms. SECURE-
MAFS is not guaranteed to provide complete privacy always;
indeed, we doubt that search based algorithm can provide
such guarantees without fundamental new techniques because
of the fact that information about intermediate states is being
constantly exchanged. Yet, we are able to provide a sufficient
condition for privacy, and use it to prove a number of results,
placing the discussion of privacy in multi-agent planning on
much firmer ground.

The Model
We use a multi-valued variable variant of the MA-STRIPS
model [Brafman and Domshlak, 2008]. This framework min-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1530



imally extends the classical STRIPS language to MA planning
for cooperative agents. The main benefits of this model are its
simplicity, and the fact that it is easily extended to handle the
case of non-cooperative agents [Nissim and Brafman, 2013].
There is abundant work on multi-agent planning that uses set-
ting much richer than the classical one (e.g., [Durfee, 2001;
Bernstein et al., 2005; Jonsson and Rovatsos, 2011; ter Mors
et al., 2010] to name a few). We focus on MA-STRIPS because
it is so basic – a sort of ”classical planning” for multi-agent
system. Most planning models that use a factored state space
extend it in various ways, and it would be easier to import the
ideas and techniques for distribution and privacy preservation
from it to such models. Moreover, the techniques we use are
not specific to planning, but can be used for other applications
that require distributed, privacy preserving search.

Definition 1. A MA-STRIPS planning task for a set of agents
Φ = {ϕi}ki=1 is given by a 4-tuple Π = (V, {A}ki=1, I, G)
with the following components:

• V is a finite set of finite-domain variables,

• For 1 ≤ i ≤ k, Ai is the set of actions that ϕi can per-
form. Each action a = 〈pre,eff,c〉 ∈ A = ∪Ai is given
by its preconditions, effects, and cost, where precondi-
tions and effects are partial assignments to V .

A state s is a complete assignment to all variables in V . An
action a is applicable in state s if a’s precondition is consis-
tent with s. The result of applying a in s, denoted a(s) is de-
fined for states s in which a is applicable. a(s) is identical to
the effect of a, where defined, and is identical to s, elsewhere.
A solution to a planning task is a plan π = (a1, . . . , ak) such
that G ⊆ ak(. . . (a1(s) . . .). That is, it is a sequence of ac-
tions that transforms the initial state into a state satisfying the
goal conditions. A solution is cost-optimal if it has minimal
total cost over all possible solutions.

As an example, consider the well known Logistics classical
planning domain, in which packages should be moved from
their initial to their target locations. The agents are vehicles:
trucks and airplanes that can transport these packages. The
packages can be loaded onto and unloaded off the vehicles,
and each vehicle can move between a certain subset of lo-
cations. Variables denoting possible locations are associated
with each package and vehicle. Possible actions are drive,
fly, load, and unload, each with its suitable parameters (e.g.,
drive(truck, origin, destination) and load(package, truck, lo-
cation)). The actions associated with each particular agent are
ones of loading and unloading from the corresponding vehi-
cle, and moving it around its possible locations. MA-STRIPS
specifies this association of actions to agents explicitly as part
of its problem description.

Privacy
Privacy guarantees in MA planning come in the form of pri-
vate variables, values, and private actions. If a value is pri-
vate to an agent, then (ideally) only it knows about its ex-
istence. If an action is private to an agent, (ideally) only
it knows about its existence, its form, and its cost. In this
paper we shall use the deduced notion of private variables
and private actions described below, following [Brafman and

Domshlak, 2008]. Alternatively, one can specify privacy re-
quirements as part of the input. In that case, if privacy is de-
fined over variable values, our results, with the exception of
completeness (which can be affected by the choice of private
variables) carry through.

A private variable-value of agent ϕ is a value required and
affected only by the actions of ϕ. A private variable is one,
all of whose values are private. We refer to all other variables
and variable-values as public. The private state of agent ϕi in
state s, denoted by spr-i, consists of the private variable-value
pairs that hold in s. An action is private if all its preconditions
and effects are private. All other actions are classified as pub-
lic. That is, ϕ’s private actions affect and are affected only by
the actions of ϕ, while its public actions may require or affect
the actions of other agents. Note, however, that the public ac-
tions of an agent may have private preconditions and effects.
Thus, the public projection of an action a is an action that
contains only the public preconditions and effects of a. For
ease of presentation, we assume that all actions that achieve
a goal condition are public. Our methods are easily modified
to remove this assumption.

In Logistics, all vehicle locations are private (affect and are
affected only by their respective agent’s move actions). Thus,
the location of a vehicle is a private variable. move actions
are also private, as they depend on and affect only the private
location values. Package location values can be either private
or public, depending on whether they are required/affected by
more than one agent. Thus, at(package)=location is private if
location is accessible only to one agent and public otherwise.
Since, typically, some package locations are public (e.g., the
airport), package location is not a private variable, although
some of its values are private. Therefore, load (respectively
unload) actions that require (respectively affect) public pack-
age location propositions are public.

We can now talk about the privacy guarantees of an algo-
rithm. We say that an algorithm is weakly private if no agent
communicates a private value of a variable (in the initial state,
the goal, or any other intermediate state) to an agent to whom
this value is not private during a run of the algorithm, and if
the only description of its own actions it needs to communi-
cate to another agent ϕ is their public projection.

Private values of one agent do not appear in precondi-
tions or effects of other agents’ actions. Thus, they do not
influence their applicability. Hence, weak privacy is easily
achieved by encrypting the private values of a variable. How-
ever, agents may deduce the existence and properties of pri-
vate variables, values, and action preconditions, from infor-
mation communicated during the run of the algorithm. For
example, at(package)=truck is a value private to the truck be-
cause it appears only in the preconditions and effects of its
load and unload actions. However, suppose a package is in
location A at one state, but is no longer there at the following
state. Other agents can deduce that the variable at(package)
has some private value. Or, consider the location of the truck.
This is a private variable, and thus, other agents should not be
able to distinguish between states that differ only in its value.
However, when the truck is in location a, it has children in
which packages appear or disappear from a, whereas when it
is in location b, packages will appear or disappear from loca-

1531



tion b. From this, other agents can deduce the existence of a
private variable that distinguishes between these two states.
Moreover, they can also infer the number of its possible val-
ues. While it is not necessarily the case that agents will be
able to make these deductions, the lack of formal guarantees
to the contrary is worrisome.

In the area of secure multi-party computation [Yao, 1982],
a subfield of Cryptography, stronger privacy guarantees are
sought from multi-party algorithms. The goal of methods for
secure multi-party computation is to enable multiple agents
to compute a function over their inputs, while keeping these
inputs private. More specifically, agents ϕ1, . . . , ϕn, having
private data x1, . . . , xn, would like to jointly compute some
function f(x1, . . . , xn), without revealing any information
about their private information, other than what can be rea-
sonably deduced from the value of f(x1, . . . , xn). Thus, we
will say that a multi-agent planning algorithm is strongly pri-
vate if no agent can deduce information beyond the informa-
tion that can be deduced from its own actions’ description,
the public projection of other agents’ actions, and the pub-
lic projection of the solution plan, about the existence of a
value or a variable that is private to another agent, or about
the model of an action. More specifically, we will say that a
variable or, a specific value of a variable is strongly private
if the other agents cannot deduce its existence from the infor-
mation available to them.

Strong privacy is not simply a property of an algorithm.
It requires that we consider issues such as: the nature of the
other agents, their computational power, and the nature of the
communication channel. For example, the other agents may
be curious but honest, that is, they follow the algorithm faith-
fully, but will try to learn as much as they can from the other
agents. Or, they may be malicious, i.e., they will deviate from
the algorithm if this allows them to gain private information.
How much information agents can learn will depend on the
information they are exposed to within the algorithm, whether
they share information with other agents, what their compu-
tational power is, and even the nature of the communication
channel – e.g., whether it is synchronous or asynchronous,
and whether it is lossy.

Existing algorithms for classical multi-agent planning
guarantee only weak privacy, which, as observed above, is
a somewhat superficial notion. The first discussion of poten-
tially stronger privacy guarantees appeared in [Nissim and
Brafman, 2014] in the context of the MAFS algorithm. But
that discussion came short of providing formal results and
tools. Indeed, in MAFS agents can infer information about an
agent’s private state from the public part of its descendent
states, as illustrated above for the truck’s location variable.
The goal of this paper is to provide an enhanced version of
MAFS, called SECURE-MAFS, that reveals less information
and comes with clearer privacy guarantees and tools.

The MAFS Algorithm
The multi-agent forward search algorithm (MAFS) [Nis-
sim and Brafman, 2014] performs a distributed version of
forward-search planning. In fact, it is a schema for distribut-
ing search algorithms while preserving some privacy. The dis-

tribution is along the ”natural” lines. An agent ϕi will expand
a state using its own actions only. If the public projection of
an action of ϕj is applicable in this new state, ϕi will send
the state to ϕj who will expand it. This idea can be applied to
any search algorithm, although a bit of care needs to be taken
to identify solutions, especially if an optimal one is sought
(see [Nissim and Brafman, 2014] for the details).

Algorithms 1-3 depict the MAFS algorithm for agent ϕi.
In MAFS, each agent maintains a separate search space with
its own open and closed lists. It expands the state with the
minimal f value in its open list, which is initialized with the
agent’s projected view of the initial state. When an agent ex-
pands state s, it uses its own operators only. This means that
two agents (that have different operators) expanding the same
state, will generate different successor states.

Since no agent expands all relevant search nodes, messages
must be sent between agents, informing one agent of open
search nodes relevant to it expanded by another agent. Agent
ϕi characterizes state s as relevant to agent ϕj if ϕj has a pub-
lic operator whose public preconditions (the preconditions ϕi

is aware of) hold in s, and the creating action of s is public.
In that case, Agent ϕi will send s to Agent ϕj .

Algorithm 1 MAFS for agent ϕi

1: Insert I into open list
2: while TRUE do
3: for all messages m in message queue do
4: process-message(m)
5: s← extract-min(open list)
6: expand(s)

Algorithm 2 process-message(m = 〈s, gϕj
(s), hϕj

(s)〉)
1: if s is not in open or closed list or gϕi

(s) > gϕj
(s) then

2: add s to open list and calculate hϕi
(s)

3: gϕi
(s)← gϕj

(s)
4: hϕi

(s)← max(hϕi
(s), hϕj

(s))

Algorithm 3 expand(s)
1: move s to closed list
2: if s is a goal state then
3: broadcast s to all agents
4: if s has been broadcasted by all agents then
5: return s as the solution
6: if the last action leading to s was public then
7: for all agents ϕj ∈ Φ with a public action whose pub-

lic preconditions are satisfied in s do
8: send s to ϕj

9: apply ϕi’s successor operators to s
10: for all successors s′ do
11: update gϕi

(s′) and calculate hϕi
(s′)

12: if s′ is not in closed list or fϕi
(s′) is now smaller than

it was when s′ was moved to closed list then
13: move s′ to open list

Messages sent between agents contain the full state s, the
cost of the best plan from the initial state to s found so far,
and the sending agent’s heuristic estimate of s. The values of
private variables in s are encrypted so that only the relevant
agent can decipher them. By definition, if q is private to an

1532



agent, other agents do not have operators that affect its value,
and so they do not need to know its value. They can simply
copy the encrypted value to the next state.

When ϕ receives a state via a message, it checks whether
this state exists in its open or closed lists. If it does not appear
in these lists, it is inserted into the open list. If a copy with
higher g value exists, its g value is updated, and if it is in
the closed list, it is reopened. Otherwise, it is discarded. Once
an agent expands a solution state s, it sends s to all agents
and awaits their confirmation, which is sent whenever they
expand, and then broadcast state s (Line 3 of Algorithm 3).
For more details, see [Nissim and Brafman, 2014].

Secure MAFS
MAFS does not require agents to know private information of
other agents, nor is such information provided to them. Al-
though agents see the private state of other agents, it is en-
crypted, and they cannot and need not manipulate it. Thus, it
is weakly private. However, agents are exposed to more in-
formation than the projected public actions of other agents
and the solution plan because they receive many interme-
diate states during the search process. From this informa-
tion, it may be possible, in principle, to deduce private in-
formation. For example, from the complete search tree, even
with encrypted private states, an agent may be able to deduce
that the state of an agent is identical in two different search
states based on the public parts of the sub-tree rooted at them.
Thus, it could deduce the number of private variables of other
agents. And maybe, potentially, construct a model of the tran-
sitions possible between them.

In reality, agents are not exposed to the entire search space,
as only a small portion of it is explored typically, some states
are not sent to them, and it may not be easy to deduce that one
state is a parent of another state. However, this observation is
neither a proof nor a guarantee that MAFS maintains privacy.
We now develop SECURE-MAFS, a variant of MAFS for which
we can offer better guarantees.

The basic idea is as follows: the effect of ϕi’s action on the
components of the state that are not private to ϕj is the same,
regardless ofϕj’s private state. Thus, ifϕj knows the effect of
ϕi’s action on a state s1, it knows its effect on a similar state
s2 that differs only in its private state. In fact, the same holds
true for a sequence of actions executed by agents other than
ϕj . Hence, based on the work done on s1 by other agents, ϕj

can simulate the effect of the work that will be done on s2

without actually sending it. The resulting algorithm provides
better privacy, and can also lead to fewer messages.

Given a state s, recall that spr-i is the private state of ϕi in
s. We write s−i to denote the part of state s that is not pri-
vate to agent ϕi. Thus, s can be partitioned to spr-i and s−i.
We write si to denote the part of the state that consists of vari-
ables private to i and public variables. That is, the information
about s that is readily accessible to ϕi. We say that s′ is an
i-child of state s (and s is an i-parent of s′) if s′ is obtained
from s by the application of a sequence a1, . . . , al of actions
of agents other than ϕi, and the last action in this sequence,
al, is public. Intuitively, this means that s′ is a state that would
be sent by some agent to ϕi, and ϕi was not involved in the

generation of any state between s and s′.
Instead of a regular closed list, each agent ϕi maintains a

set of three-tuples. The first part is the key which contains a
non-private part of a state that was sent (i.e., something of the
form s−i). The second part is a list of private parts of states
consistent with the key, that were sent or were supposed to be
sent. The third part is the non-private part of their i-children.
That is, if state s was sent, there must be a three-tuple with
key s−i and second part containing spr-i. The second part
may contain additional private states, s′pr-i, for every state s′

sent by the agent that satisfies: s′−i = s−i. The third part may
be initially empty, but will grow to contain s′′−i for every state
s′′ such that s′′ is an i-child of s or of any s′ whose private
part appears in the second list. That is, the third part is a list
of i-children of states whose non-private part is identical to s
that were sent or would have been sent in MAFS to ϕi.

The modified expand, called secure-expand, differs in two
elements. Instead of sending the state only to agents that
have an applicable action (line 7 in expand), we send it to
all agents. And we replace ”send” (line 8 in expand), with
”virtual-send.” The virtual-send (algorithm 6) ensures that no
two states with the same non-private component will be sent
by an agent. Suppose that ϕi wants to send state s to other
relevant agents. First, it checks whether in the past it sent a
state s′ such that s−i = s′−i. If not, it sends s, as before, but
adds a new three-tuple to the list of sent items of the form
〈s−i, {spr-i}, {}〉. If, however, a state s′ such that s−i = s′−i
was sent earlier, then it simply adds spr-i to the second part
of the three-tuple whose key is s′−i, and it does not send s.
Instead, it ”virtually” sends it, emulating the answer that it
would get. That is, for every i-child s′′ of s′ in this three-
tuple, it sends itself a message ŝ such that ŝ−i = s′′−i and
ŝpr-i = s′−i. That is, it knows that if in the past it sent a mes-
sage s′ and received an i-child s′′ then if it sends s now, it
will receive something that is identical to s′′, except that its
private part will be the same as in s.

Algorithm 4 secure-process-message(m =
〈s, gϕj (s), hϕj (s)〉)

1: Let S = {s}
2: if s−i has an i-parent then
3: Let s′−i be the i-parent of s−i
4: for all element s′′pr-i in the 2nd component of the tuple

with key s′−i do
5: Replace spr-i with s′′pr-i in s
6: S = S ∪ {s}
7: else
8: Replace spr-i with Ipr-i
9: S = S ∪ {s}

10: for all s ∈ S do
11: if s is not in open or closed list or gϕi

(s) > gϕj
(s)

then
12: add s to open list and calculate hϕi

(s)
13: gϕi(s)← gϕj (s)
14: hϕi(s)← max(hϕi(s), hϕj (s))

Secure-process-message modifies process-message to be
consistent with the above ideas. First, when a state s′′ is re-

1533



Algorithm 5 secure-expand(s)
1: move s to closed list
2: if s is a goal state then
3: broadcast s to all agents
4: if s has been broadcasted by all agents then
5: return s as the solution
6: if the last action leading to s was public then
7: virtual-send s to all agents
8: apply ϕi’s successor operators to s
9: for all successors s′ do

10: update gϕi(s
′) and calculate hϕi(s

′)
11: if s′ is not in closed list or fϕi(s

′) is now smaller than
it was when s′ was moved to closed list then

12: move s′ to open list

ceived by ϕi, we identify the state s such that s′′ is an i-child
of s. (Technically, this is done by maintaining a state id in
the private part of states sent). We then record this fact in the
three-tuple that corresponds to s−i. The fact that s′′ is an i-
child of s implies that for every s′ such that s′−i = s−i there
exists an i-child ŝ such that ŝ−i = s′′−i and ŝpr-i = s′pr-i.
Thus, we treat ŝ as if it, too, was just received by ϕi and add
it to ϕi’s open list. The modified code for the two procedures
appears in Algorithms 4 & 5.

Algorithm 6 virtual-send(s,ϕj)
1: if a three-tuple with key s−i exists then
2: for all i-children s′−i in this three-tuple do
3: Let s̄ = s′−i · spr-i. That is, augment s′−i with the

local state of ϕi in s.
4: Add s̄ to your open list
5: else
6: Replace spr-i with a unique id for tracking i-children
7: Send s to ϕj

8: Create new three-tuple: {s−i, {spr-i}, {}}.

The net effect of these changes is that no two states with
the same non-private part are sent, yet the entire reachable
search-space can be explored. While this may have a compu-
tational advantage of fewer messages sent, we focus on the
impact on privacy when agents always see a single private
state associated with every non-private part of the global state.

Soundness and Completeness
Lemma 1. If s is inserted into the open list of an agent ϕi

then s is reachable.

Proof. First, we note that MAFS and SECURE-MAFS generate
only action sequences in which a private action of an agent is
followed by another action of that agent. It was shown in [Nis-
sim and Brafman, 2014] that for any goal involving public
variables only, it is sufficient to consider such sequences only.

The proof is by induction on the step in which the state s
was inserted into the open list. We assume an interleaving se-
mantics, as true concurrency is not required by the algorithm.
The base case is I , which is the first state inserted into any

open list, which is reachable. For the inductive step, suppose
s was inserted into ϕi’s open list. There are three cases:

1. swas inserted by an expansion of some state s′ via action
a (line 12 of secure-expand). Since s′ was inserted into the
open list of ϕi earlier, it is reachable, and so is s.

2. s was inserted in line 12 of secure-process-message.
This means that prior to the insertion of s, a message contain-
ing some state s′ was received by ϕi from ϕj . If s′ was sent,
it was taken out of the open list of ϕj earlier, and hence it is
reachable. We know that s is obtained from s′ as follows: we
find the i-parent of s′, s′′. s′′ was sent earlier by i, and hence
it is reachable. There is some state s′′′ that appeared in the
open list of ϕi prior to the insertion of s, such that s′′′−i = s′′−i
and s is defined so that s−i = s′−i and spr-i = s′′′pr-i. We
claim that s is reachable.

To see this, notice that all states between s′′ and s′ must
have been obtained by expansion. Otherwise, some compo-
nent of s′′ and s′, other than s′′pr-i must be different, in which
case s′′′−i 6= s′′−i. Because s′′′−i = s′′−i, the same sequence of
actions is applicable at s′′′, and must lead to a state whose
non-private component must be the same as s′−i. Its private
component must be the same as s′′′pr-i because that private
state is not affected by these actions and none of these actions
are in Ai (by definition of i-parent).

3. s was inserted in line 4 of virtual send. This is similar
to the above case. s′ is taken out of ϕi’s open list (and thus,
reachable). We see that some other state s′′, such that s′′−i =
s′−i has already been sent by ϕi, and is thus reachable. It has
an i-child s′′′. Following the same line of reasoning, s, which
is obtained by applying to s′ the same actions that led from
s′′ to s′′′ is also reachable.

To simplify the remaining proofs we assume, without loss
of generality, that there are public actions only. This can be
achieved by replacing every setAi with all legal sequences of
private actions followed by a single public action, all fromAi.
There is no loss of generality because no information is ex-
changed following private actions, and a pubic goal is reach-
able iff it is reachable via a sequence of actions in which a
private action by an agent is always followed by another ac-
tion (private or public) by the same agent.

Lemma 2. If s is reachable via some sequence of actions
then s will be generated by some agent.

Proof. The proof is by induction on the length of the action
sequence a1, . . . , ak leading to s.

For k = 0, s = I which is inserted initially to all open lists.
Next, consider a sequence of length k+1 reaching s. Assume
ak+1 ∈ Ai. Denote the state reached following the first k
actions by s′. By the inductive hypothesis, s′ was generated
by some agentϕj . If i = j then that agent will also generate s.
Otherwise, we know that ϕj must virtual-send s′ to all agents
eventually (as it inserts it into its open list and, unless a goal
is found earlier, will eventually expand it and send it) and in
particular, to ϕi. If it actually sends s′, then we know ϕi will
insert it into its open list and eventually expand it, generating
s. If it does not send it to ϕi, we know that ϕj sent some
other state s′′ to ϕi, where s′−j = s′′−j . ak+1 is applicable at

1534



s′′ because of this. Thus, at some point ϕi will apply it and
send ak+1(s′′) to ϕj . The latter would recognize that it is an
i-child of s′′, and would generate a state s′′′ such that s′′′−j =
(ak+1(s′′))−j and s′′′pr−j = (ak+1(s′′))pr−j . However, since
ak+1 6∈ Aj , s′′′ = ak+1(s′) = s, as required.

We note that the soundness and completeness of SECURE-
MAFS also implies that the secure variant of MAD-A* remains
optimal. SECURE-MAFS can also lead to the transmission of
fewer messages compared to MAFS. In MAFS’ expand, a state
is sent to all agents that have an applicable public action at
that state. From the completeness proof above, it can be seen
that SECURE-MAFS is still complete if the state is sent only
to agents that have an applicable action in that state and the
agent that sent the parent state. Thus, SECURE-MAFS will
send at most one more message per state than MAFS, whereas
if there are multiple paths that differ only on the private ef-
fects (e.g., driving in different routes, or using different vehi-
cles, or tools) its caching mechanism will refrain from send-
ing all but one state to all agents with applicable actions.

Privacy Guarantees
A search-based approach in which intermediate search nodes
are shared among agents is unlikely to be strongly private al-
ways, yet we now show that SECURE-MAFS maintains strong
privacy of some key aspects of the problem.

The forward search treeGΠ associated with a planning task
Π is a well known concept. It contains the initial state, and for
every state in it, it contains, as its children, all states obtained
by applying all applicable actions to it. Leaf nodes are goal
states that satisfy the optimization criteria (e.g., in satisficing
planning, all goal states; in optimal planning, goal states with
optimal f value) and dead-ends. In principle, the states in the
tree can be generated in any topological order, but the use of
a particular search algorithm restricts the order further. We
define the −i-projected tree,GΠ

−i, to be the same tree, except
that each state s is replaced by s−i.

At present we do not have techniques that can take into ac-
count differences in cost and heuristic value and their impact
on the order of generation of different sequences of actions by
a particular search algorithm (but see the discussion). Thus,
as before, we focus on the simpler case where all actions are
public, have unit cost, and the heuristic value for all states
does not depend on the private variables. While there is no
loss of generality in assuming all actions are public, assum-
ing that actions have identical cost and the heuristic value is
not affected by the private part of the state is a restriction, es-
pecially if we assume that private actions are compiled away
(in which case their cost is ignored).
Theorem 1. Let Π and Π′ be two planning problems. If
GΠ
−i = GΠ′

−i and Ai contains unit cost public actions only,
and the heuristic value of a node depends only on its non-
private component, then agents other than ϕi cannot distin-
guish between an execution of SECURE-MAFS on Π and Π′

Proof. GΠ
−i = GΠ′

−i implies that the search-tree is identical,
except for, possibly, the various private parts (and multiplic-
ity) of states with identical non-private part. Given our as-
sumption on g and h, the expansion order of this tree de-

pends only on the non-private component of the states, which
is identical in both cases. Messages are sent based on the non-
private part only, so in both cases, ϕi will send identical mes-
sages. Different messages may be virtually sent, but this will
not impact what other agents see. Since other agents see the
same messages, they will send the same messages to ϕi.

Theorem 1 provides a tool for proving strong privacy. As an
example, consider the case of independent private variables.
Formally, v is an independent private variable of ϕi if v is a
private variable of ϕi and if v appears in a precondition of a
then all the variables that appear in a’s description are private,
and all its effects are on independent private variables. For ex-
ample, suppose that the truck doesn’t only deliver goods, but
the driver sells drugs on the side, having actions of buying and
selling them at various places. The action of selling/buying a
drug at a location has no effect on public variables, nor on
private variables that can impact public variables.

Given a set of variables, the actions in the domain induced
by the removal of these variables contain the original actions,
except for those in which the removed variables appear as
preconditions and/or effects. In our example, if we remove the
variable has-drugs(agent), the actions of selling and buying
drugs are also removed.
Lemma 3. Let Π be a planning problem and let R be a set of
independent private variables of ϕ. Agents other than ϕi can-
not distinguish between an execution of SECURE-MAFS on Π
and Π−R, the problem obtained by removing R, assuming R
does not influence h.

Proof. The addition or removal of private independent vari-
ables does not influence GΠ. It simply leads to additional
public actions (when we compile away private actions) that
differ only in their effect on the variables inR. Since the value
of variables in R does not influence our ability to apply any
of the other actions, GΠ

−i = G
Π−R

−i .

We illustrate the utility of the above techniques by showing
that SECURE-MAFS is strongly private for logistics. We say
that a location is public if more than one agent can reach it.
Lemma 4. Under the above assumptions, SECURE-MAFS is
strongly private for logistics.

Proof. The public information in logistics is whether or not a
package is in a public location. Thus, consider two planning
problems Π and Π′ that have the same set of packages, the
same set of public locations, and, initially, identical locations
for packages that are in locations that are not private to ϕi.
We claim that GΠ

−i = GΠ′

−i. To see this, note that two states
that differ only in the location of packages that are in places
private to ϕi have the same sub-tree, projected to −i under
the assumption that every private location is reachable from
every other private location. Thus, from Theorem 1 it follows
that agents cannot distinguish between these domains.

Suppose, further, that logistics is augmented with public
actions that are executable in a private location. For example,
suppose the amount of fuel of an agent is public, and agents
can fuel in private locations. The above result remains true.
On the other hand, consider a, somewhat contrived, logistics

1535



variant in which certain private locations are reachable from
some other private locations only by passing through some
public locations, and that trucks must unload their cargo when
passing in a public location. In that case, GΠ

−i 6= GΠ′

−i, and
we would not be able to apply Theorem 1. Thus, we see that
our strong privacy proofs are sensitive to the specifics of the
domains. Finally, note that in all proofs above, we assume that
the agents are honest but curious, and these proofs are correct
even if all agents collude, combining their information.

We now briefly, and informally, consider two other do-
mains. The satellites domain is strongly private, both for
MAFS and SECURE-MAFS because no satellite supplies or de-
stroys preconditions of actions of another satellite, and the
only public actions are actions that achieve a sub-goal. The
only information one agent can learn about another agent
when this property holds is whether or not it is able to achieve
a sub-goal. Private sub-goals can be modelled by adding a
proposition such as private-sub-goals-achieved and an action
that achieves it with the set of private sub-goals as its (pri-
vate) preconditions, and the above remains true. The rovers
domain is more similar to logistics. Agents can block or free
a shared resource, the channel, required for communication,
and some of the sub-goals are achievable by multiple agents.
Because of the shared channel, all communication actions are
public. Private information includes the location of the agent,
the state of its internal instruments, the existence of such in-
struments, and what information the agent has acquired. We
claim that this information is strongly private in SECURE-
MAFS in the following sense. If an agent can move between
locations freely, without requiring intermediate public actions
(which implies that it can collect information in whatever
order it wishes), the projected search trees of two planning
problems in which the agents have identical capabilities, that
is, they can acquire the same information (pictures, soil sam-
ples, etc.), are identical. Thus, external agents cannot differ-
entiate between them.

Discussion and Summary
We presented SECURE-MAFS, a new variant of the state-of-
the-art MAFS algorithm with better privacy guarantees and
potentially fewer messages. Beyond SECURE-MAFS, our cen-
tral contribution is the first formal discussion of strong pri-
vacy in planning, a sufficient condition for strong privacy in
SECURE-MAFS, and an illustration of its use. Consequently,
we believe this work can play an important role in placing the
discussion and analysis of privacy preserving planning algo-
rithms on much firmer ground.

There is much left for future work. We feel that the notion
of strong privacy requires additional development to capture
some of our intuitions, and new proof techniques. Specifi-
cally, our current central technique focuses on showing the
equivalence of two problem domains, but can we give a
constructive technique for showing that a certain variable is
strongly private? Another issue is the restriction to unit cost
actions and heuristics that are not sensitive to private vari-
ables. A simple variant of SECURE-MAFS with a form of ε-
exploration might overcome this problem: with probability ε
the choice of next node to expand from the open list is ran-

dom, and with probability 1 − ε we expand the first node. In
that case, the expansion order is less sensitive to the heuristic
value, and it is more difficult to differentiate between search
trees for different problems. We note that in this respect,
MAFS has a certain advantage: it appears that an agent can-
not tell the relation between a sequence of nodes generated
by another agents, i.e., whether the nodes are siblings or are
ancestors of one another. This property could be useful for
proving privacy guarantees for MAFS.

Acknowledgements: We thank the anonymous IJCAI’15 and
DMAP’15 WS reviewers for their useful comments, and the
support of ISF through Grant 933/13, the Lynn and William
Frankel Center for Computer Science, and the Helmsley
Charitable Trust through the Agricultural, Biological and
Cognitive Robotics Center of Ben-Gurion University.

References
[Bernstein et al., 2005] Daniel S. Bernstein, Eric A. Hansen,

and Shlomo Zilberstein. Bounded policy iteration for de-
centralized pomdps. In IJCAI, pages 1287–1292, 2005.

[Bonisoli et al., 2014] Andrea Bonisoli, Alfonso Gerevini,
Alessandro Saetti, and Ivan Serina. A privacy-preserving
model for the multi-agent propositional planning problem.
In ICAPS’14 Workshop on Distributed and Multi-Agent
Planning, 2014.

[Brafman and Domshlak, 2008] Ronen I. Brafman and
Carmel Domshlak. From one to many: Planning for
loosely coupled multi-agent systems. In ICAPS, pages
28–35, 2008.

[Durfee, 2001] Edmund H. Durfee. Distributed problem
solving and planning. In EASSS, pages 118–149, 2001.

[Jonsson and Rovatsos, 2011] Anders Jonsson and Michael
Rovatsos. Scaling up multiagent planning: A best-
response approach. In ICAPS, 2011.

[Luis and Borrajo, 2014] Nerea Luis and Daniel Borrajo.
Plan merging by reuse for multi-agent planning. In
ICAPS’14 Workshop on Distributed and Multi-Agent
Planning, 2014.

[Nissim and Brafman, 2013] Raz Nissim and Ronen I. Braf-
man. Cost-optimal planning by self-interested agents. In
AAAI, 2013.

[Nissim and Brafman, 2014] Raz Nissim and Ronen I. Braf-
man. Distributed heuristic forward search for multi-agent
planning. Journal of AI Research, 51:292–332, 2014.

[ter Mors et al., 2010] Adriaan ter Mors, Chetan Yadati,
Cees Witteveen, and Yingqian Zhang. Coordination by de-
sign and the price of autonomy. Autonomous Agents and
Multi-Agent Systems, 20(3):308–341, 2010.

[Torreño et al., 2014] Alejandro Torreño, Eva Onaindia, and
Oscar Sapena. Fmap: Distributed cooperative multi-agent
planning. Applied Intelligence, 41(2):606–626, 2014.

[Yao, 1982] Andrew Chi-Chih Yao. Protocols for secure
computations (extended abstract). In FOCS, pages 160–
164, 1982.

1536




