
Estimating the Probability of Meeting a
Deadline in Hierarchical Plans

Liat Cohen and Solomon Eyal Shimony and Gera Weiss
Computer Science Department

Ben Gurion University of The Negev
Beer-Sheva, Israel 84105

{liati,shimony,geraw}@cs.bgu.ac.il

Abstract
Given a hierarchical plan (or schedule) with un-
certain task times, we may need to determine
the probability that a given plan will satisfy a
given deadline. This problem is shown to be NP-
hard for series-parallel hierarchies. We provide
a polynomial-time approximation algorithm for it.
Computing the expected makespan of an hierarchi-
cal plan is also shown to be NP-hard. We examine
the approximation bounds empirically and demon-
strate where our scheme is superior to sampling and
to exact computation.

1 Introduction
Numerous planning tools produce plans that call for exe-
cuting tasks non-linearly. Usually, such plans are repre-
sented as a tree, where the leaves indicate primitive tasks, and
other nodes represent compound tasks consisting of execut-
ing their sub-tasks either in parallel (also called “concurrent”
tasks [Gabaldon, 2002]) or in sequence. [Erol et al., 1994;
Nau et al., 1998; 2003; Kelly et al., 2008].

Given such a hierarchical plan representation, it is fre-
quently of interest to evaluate its desirability in terms of re-
source consumption, such as fuel, cost, or time. The answer
to such questions can be used to decide which of a set of
plans, all valid as far as achieving the goal(s) are concerned, is
better given a user-specified utility function. Another reason
to compute these distributions is to support runtime monitor-
ing of resources, generating alerts to the execution software
or human operator if resource consumption in practice has a
high probability of surpassing a given threshold.

While most tools aim at good average performance of the
plan, in which case one may ignore the full distribution and
consider only the expected resource consumption [Bonfietti
et al., 2014], our paper focuses on providing guarantees for
the probability of meeting deadlines. This type of analysis
is needed, e.g., in Service-Level-Agreements (SLA) where
guarantees of the form: “response time less than 1mSec in
at least 95% of the cases” are common [Buyya et al., 2011]
Section 8 discusses additional related work.

We assume that an hierarchical plan is given in the form of
a tree, with uncertain resource consumption of the primitive
actions in the network, provided as a probability distribution.

The problem is to compute a property of interest of the dis-
tribution for the entire task network. In this paper, we focus
mainly on the issue of computing the probability P (t < T) of
satisfying a deadline T (i.e. that the makespan t of the plan is
less than a given value). Since in the above-mentioned appli-
cations for these computations, one needs results in real-time
(for monitoring) or multiple such computations (in comparing
candidate plans), efficient computation here is crucial, and is
more important than in, e.g., off-line planning.

We show that computing P (t < T) is NP-hard (see Sec-
tion 6) even for the simple sum of independent random vari-
ables (r.v.s) , the first contribution of this paper. A determin-
istic polynomial-time approximation scheme for this prob-
lem is proposed, the second contribution of this paper. Error
bounds are analyzed and are shown to be tight. For discrete
r.v.s with finite support, finding the distribution of the max-
imum can be done in low-order polynomial time. However,
when compounded with errors generated due to approxima-
tion in subtrees, handling this case requires careful analysis
of the resulting error. The approximations developed for both
sequence and parallel nodes are combined into an overall al-
gorithm for task trees, with an analysis of the resulting error
bounds, yielding a polynomial-time (additive error) approx-
imation scheme for computing the probability of satisfying
a deadline for the complete network, another contribution of
this paper.

We also briefly consider computing expected makespan.
Since for discrete r.v.s, in parallel nodes one can compute an
exact distribution efficiently, it is easy to compute an expected
makespan in this case as well as for sequence nodes. Despite
that, we show that for trees with both parallel and sequence
nodes, computing the expected makespan is NP-hard.

Experiments are provided in order to examine the quality
of approximation in practice when compared to the theoreti-
cal error bounds. A simple sampling scheme is also provided
as a yardstick, even though the sampling does not come with
error guarantees, but only bounds in probability. Finally, we
examine our results in light of related work in the fields of
planning and scheduling, as well as probabilistic reasoning.

2 Problem statement
We are given a hierarchical plan represented as a task tree
consisting of three types of nodes: primitive actions as leaves,
sequence nodes, and parallel nodes. Primitive action nodes

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1551

contain distributions over their resource consumption. Al-
though other resources can be handled with our approach (e.g.
memory: tasks running in parallel use the sum of the mem-
ory space of each of the tasks; if they run in sequence, only
the maximum thereof is needed), we will assume henceforth,
in order to be more concrete, that the only resource of inter-
est is time. A sequence node vs denotes a task that has been
decomposed into subtasks, represented by the children of vs,
which must be executed in sequence in order to execute vs.
We assume that a subtask of vs begins as soon as its prede-
cessor in the sequence terminates. Task vs terminates when
its last subtask terminates. A parallel node vp also denotes
a decomposed task, but subtasks begin execution in parallel
immediately when task vp begins execution; vp terminates as
soon as all of the children of vp terminate.

Resource consumption is uncertain, and described as prob-
ability distributions in the leaf nodes. We assume that the
distributions are independent (but not necessarily identically
distributed). We also assume initially that the r.v.s are dis-
crete and have finite support (i.e. number of values for which
the probability is non-zero). As the resource of interest is
assumed to be completion time, let each leaf node v have a
completion-time distribution Pv , in some cases represented
as a cumulative distribution function form (CDF) Fv .

The main computational problem tackled in this paper is:
Given a task tree τ and a deadline T , compute the probability
that τ satisfies the deadline T (i.e. terminate in time t ≤ T).
We show that this problem is NP-hard and provide an ap-
proximation algorithm. The above deadline problem reflects
a step utility function: a constant positive utility U for all t
less than or equal to a deadline time T , and 0 for all t > T .
We also briefly consider a linear utility function, requiring
computation of the expected completion time of τ , and show
that this expectation problem is also NP-hard.

3 Sequence nodes
Since the makespan of a sequence node is the sum of dura-
tions of its components, the deadline problem on sequence
nodes entails computation of (part of) the CDF of a sum
of r.v.s which is an NP-hard problem (shown in Section 6).
Thus, there is a need for an approximation algorithm for se-
quence nodes. The main ingredient in our approximation
scheme is the Trim operator specified as follows:
Definition 1 (The Trim operator). For a discrete r.v. X and
a parameter ε > 0, consider the sequence of elements in the
support of X defined recursively by: x1 = min support(X)
and, if the set C = {x > xi : Pr(xi < X ≤ x) > ε} is not
empty, xi+1 = min{x > xi : Pr(xi < X ≤ x) > ε}. Let l
be the length of this sequence, i.e., let l be the first index for
which C is empty. For notational convenience, define xl+1 =
∞. Now, define X ′ = Trim(X, ε) to be the random variable
specified by:

Pr(X ′=x) :=

{
Pr(xi≤X<xi+1) if x=xi∈{x1, . . . , xl};
0 otherwise.

For example, if X is a r.v. such that
Pr(X=1)=0.1, P r(X=2)=0.1 and Pr(X=4)=0.8,
the r.v. X ′=Trim(X, 0.5) is given by Pr(X ′=1)=0.2 and

Pr(X ′=4)=0.8. Intuitively, the Trim operator removes
consecutive domain values whose accumulated probability is
less than ε and adds their probability mass to the element in
the support that precedes them.

Using the Trim operator, we are now ready to introduce
the main operator of this section:
Definition 2. Let Sequence(X1, . . . , Xn, ε) be
Trim(Sequence(X1, . . . , Xn−1, ε)+Xn, ε) and
Sequence(X1, ε)=Trim(X1, ε).
Sequence takes a set of r.v.s and computes a r.v. that rep-

resents an approximation of their sum by applying the Trim
operator after adding each of the variables. The parameter ε,
(see below) specifies the accuracy of approximation.

The Sequence operator can be implemented by the proce-
dure outlined in Algorithm 1. The algorithm computes the
distribution

∑n
i=0Xi using convolution (the Convolve() op-

erator in line 3) in a straightforward manner. Computing the
convolution is itself straightforward and not further discussed
here. However, since the support of the resulting distribu-
tion may be exponential in the number of convolution opera-
tions, the algorithm must trim the distribution representation
to avoid this exponential blow-up. This decreases the support
size, while introducing error. The trick is to keep the support
size under control, while making sure that the error does not
increase beyond a desired tolerance. Note that the size of the
support can also be decreased by simple “binning” schemes,
but these do not provide the desired guarantees. In the algo-
rithm, the PDF of a r.v. Xi is represented by the list DXi ,
which consists of (x, p′) pairs, where x ∈ support(Xi) and
p′ is the probability Pr(Xi=x), the latter denoted byDXi

[x].
We assume that DXi

is kept sorted in increasing order of x.

Algorithm 1: Sequence (X1, . . . , Xn , ε)
1 D = ((0, 1)) // Dummy random var.: 0 with prob. 1
2 for i = 1 to n do
3 D=Convolve(D,DXi

)
4 D=Trim(D, ε)
5 return D
6 Procedure Trim(D,ε)
7 D′ = (), p = 0
8 d0 = dprev = min support(D)
9 foreach d ∈ support(D) \ {d0} in ascending order

do
10 if p+D[d] ≤ ε then
11 p = p+D[d]
12 else
13 Append (dprev, D[dprev] + p) to D′
14 dprev = d, p = 0

15 Append (dprev, D[dprev] + p) to D′
16 return D′

We proceed to show that Algorithm 1 indeed approximates
the sum of the r.v.s, and analyze its accuracy/efficiency trade-
off. A notion of approximation relevant to deadlines is:
Definition 3. For r.v.sX ′,X , and ε ∈ [0, 1] we sayX ′ ≈ε X
if 0 ≤ Pr(X ′ ≤ T)− Pr(X ≤ T) ≤ ε for all T > 0.

1552

Note that this definition is asymmetric, because, as shown
below, our algorithm never underestimates the exact value.
For the proof of the Lemma 1 below, we establish the follow-
ing technical claim (can be proven by induction on n):
Claim 1. Let (ai)ni=1 and (bi)

n
i=1 be sequences of real num-

bers such that
∑k
i=1 ai ≥ 0 for all 1 ≤ k ≤ n and

b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, then
∑n
i=1 aibi ≥ 0

We now bound the approximation error of sums of r.v.s:
Lemma 1. For discrete random variables X1, X

′
1, X2, X

′
2

and ε1, ε2 ∈ [0, 1], if X ′1 ≈ε1 X1 and X ′2 ≈ε2 X2, then
X ′1 +X ′2 ≈ε1+ε2 X1 +X2.

Proof. Pr(X ′1 +X ′2 ≤ T)− Pr(X1 +X2 ≤ T)

=

T∑
j=1

Pr(X ′1=j)Pr(X ′2≤T−j)︸ ︷︷ ︸
≤Pr(X2≤T−j)+ε2

−
T∑

j=1

Pr(X1=j)Pr(X2≤T−j)

≤
T∑

j=1

(Pr(X ′1=j)−Pr(X1=j))Pr(X2≤T−j)︸ ︷︷ ︸
∈[0,1]

+ε2

T∑
j=1

Pr(X ′1=j)

≤
T∑

j=1

(Pr(X ′1=j)− Pr(X1=j))︸ ︷︷ ︸
≤ε1

+ε2

T∑
j=1

Pr(X ′1=j)︸ ︷︷ ︸
∈[0,1]

≤ ε1 + ε2.

Finally, we show that the difference is also nonnegative:
Pr(X ′1 +X ′2 ≤ T)− Pr(X1 +X2 ≤ T)

=

T∑
j=1

Pr(X ′1=j)Pr(X ′2≤T−j)−
T∑

j=1

Pr(X1=j)Pr(X2≤T−j)

=

T∑
j=1

(Pr(X ′1=j)− Pr(X1=j))Pr(X2≤T−j)

+

T∑
j=1

Pr(X ′1=j)(Pr(X ′2≤T−j)− Pr(X2≤T−j))

The first term here is non-negative by Claim 1, the second is
nonnegative because it is a sum of nonnegative numbers.

We now show that Trim(X, ε) is an ε-approximation of X:
Lemma 2. Trim(X, ε) ≈ε X

Proof. Let X ′ = Trim(X, ε). Let x1< · · ·<xm be the sup-
port of X ′ and let l = max{i : xi ≤ T}. We have,

Pr(X ′ = xi) = Pr(xi ≤ X < xi+1) (1)
because, after Trim, the probabilities of elements that were
removed from the support are assigned to the element that
precedes them. From Equation (1) we get:

Pr(X ′ ≤ T)− Pr(X ≤ T)

=

l−1∑
i=0

(Pr(X ′=xi)− Pr(xi ≤ X < xi+1))

+ (Pr(X ′=xl)− Pr(xl ≤ X ≤ T))

=Pr(X ′=xl)−(Pr(xl≤X<xl+1)−Pr(T<X<xl+1))

=Pr(T < X < xl+1) ∈ (0, ε]

The inequality Pr(T < X < xl+1) ≤ ε follows from the
observation that, for all i, Pr(xi < X < xi+1) < ε, because
p is never greater than ε in Algorithm 1.

To bound the amount of memory needed for our approxi-
mation algorithm, the next lemma bounds the size of the sup-
port of the trimmed r.v.:

Lemma 3. | support(Trim(X, ε))| ≤ 1/ε

Proof. Let X ′ = Trim(X, ε) and let x1 < · · · < xm
be the support of X ′. And, for notational convenience, let
xm+1 = ∞. Let pi =

∑
xi<x<xi+1

Pr(X=x). Then,

1 =
∑m
i=1 Pr(X

′=xi) = Pr(X=x1) +
∑m−1
i=1 (pi +

Pr(X=xi+1)) + pm. According to algorithm 1, lines 11-12,
pi ≤ ε and pi+Pr(X=xi+1) > ε for all 0 ≤ i < m. There-
fore, 1 =

∑m
i=1 Pr(X

′=xi) > Pr(X ′=x1) + (m− 1) · ε+
pm. Using the fact Pr(X ′=x1) > 0, we get: (m−1) ·ε < 1,
therefore m ≤ 1/ε.

These lemmas highlight the main idea behind our approx-
imation algorithm: the Trim operator trades off approxima-
tion error for a reduced size of the support. The fact that this
trade-off is linear allows us to get a linear approximation error
in polynomial time, as shown below:

Theorem 1. If X ′i ≈εi Xi for all i ∈ {1, . . . , n} and X̂ =

Sequence(X ′1, . . . , X
′
n, ε) then X̂ ≈e

∑n
i=1Xi, where e =∑n

i=1 εi + nε.

Proof. (outline) For n iterations, from Lemma 1, we get an
accumulated error of ε1 + · · · + εn. From Lemma 2, we get
an additional error of at most nε due to trimming.

Theorem 2. Assuming that m ≤ 1/ε, the proce-
dure Sequence(X ′1, . . . , X

′
n, ε) can be computed in time

O((nm/ε) log(m/ε)) usingO(m/ε) memory, wherem is the
size of the largest support of any of the X ′is.

Proof. From Lemma 3, the size of list D in Algorithm 1 is at
mostm/ε just after the convolution, after which it is trimmed,
so the space complexity is O(m/ε). Convolve thus takes
time O((m/ε) log(m/ε)), where the logarithmic factor is re-
quired internally for sorting. Since the runtime of the Trim
operator is linear, and the outer loop iterates n times, the over-
all run-time of the algorithm is O((nm/ε) log(m/ε)).

Example 1. The error bound provided in Theorem 1 is tight,
i.e. Sequence(X1, . . . , Xn, ε/n) may results in error ε: Let
0≤ε<1 and n∈N such that 1−ε>ε/n. Consider, for very
small δ > 0, the r.v. X1 defined by:

Pr(X1=x)=


δ x = 0,

ε/(n(1− δ)x) x ∈ {1, . . . , n},
1−δ−

∑n
x=1

ε
n(1−δ)x x = n+ 1,

0 otherwise

and, for i = 2, . . . , n, let the r.v.s Xi be such that
Pr(Xi=0)=1−δ, Pr(Xi=n

2)=δ, and zero otherwise.

1553

4 Parallel nodes
Unlike sequence composition, the deadline problem for par-
allel composition is easy to compute, since the execution time
of a parallel composition is the maximum of the durations:

Pr(max
i∈[1:n]

Xi ≤ T)=Pr(

n∧
i=1

Xi ≤ T)=

n∏
i=1

Pr(Xi ≤ T) (2)

where the last equality follows from independence of the r.v.s.
We denote the construction of the CDF using Equation (2) by
Parallel(X1, . . . , Xn). If the r.v.s are all discrete with
finite support, Parallel(X1, . . . , Xn) incurs linear space,
and computation time O(nmlog(n)).

If the task tree consists only of parallel nodes, one can com-
pute the exact CDF, with the same overall runtime. How-
ever, when the task tree contain both sequence and parallel
nodes we may get only approximate CDFs as input, and now
the above straightforward computation can compound the er-
rors. When the input CDFs are themselves approximations,
we bound the resulting error:
Lemma 4. For discrete r.v.s X ′1, . . . X

′
n, X1, . . . , Xn, if for

all i = 1, . . . , n, X ′i ≈εi Xi and 0 ≤ εi ≤ 1
n(Kn+1) for some

K > 0, then, for any ε ≥ εi, we have: maxi∈[1:n]X
′
i ≈e

maxi∈[1:n]Xi where e =
∑n
i=1 εi + ε/K.

Proof. Pr(maxi∈[1:n]X
′
i ≤ T)−Pr(maxi∈[1:n]Xi ≤ T)

≤
n∏

i=1

(Pr(Xi ≤ T) + εi)−
n∏

i=1

Pr(Xi ≤ T)

≤
n∏

i=1

(1 + εi)− 1 ≤ 1 +

n∑
i=1

εi +

n∑
k=2

(
n

k

)
εk − 1

≤
n∑

i=1

εi +

n∑
k=2

nkεk︸ ︷︷ ︸
sum of a geo. series

≤
n∑

i=1

εi +
n2ε2

1− nε
≤

n∑
i=1

εi + ε/K

Since Pr(X ′i ≤ T) > Pr(Xi ≤ T) for each i, this expres-
sion is nonnegative.

5 Task trees: mixed sequence/parallel
Given a task tree τ and a accuracy requirement 0 < ε < 1,
we generate a distribution for a r.v. X ′τ approximating the
true duration distribution Xτ for the task tree. We introduce
the algorithm and prove that the algorithm indeed returns an
ε-approximation of the completion time of the plan. For a
node v, let τv be the sub tree with v as root and let childv be
the set of children of v. We use the notation |τ | to denote the
total number of nodes in τ .

Algorithm 2, that implements the operator Network, is
a straightforward postorder traversal of the task tree. The
only remaining issue is handling the error, in an amortized
approach, as seen in the proof of the following theorem.
Theorem 3. Given a task tree τ , let Xτ be a r.v. representing
the true distribution of the completion time for the network.
Then Network(τ, ε) ≈ε Xτ .

Algorithm 2: Network(τ , ε)
1 Let v be the root of τ // Hence, τv = τ
2 nv = |childv|
3 if v is a Primitive node then
4 return the distribution of v
5 if v is a Sequence node then
6 for c ∈ childv do
7 Xc = Network (τc,

|τc|ε
|τv|)

8 return Sequence ({Xc}c∈childv , ε
nv|τv|)

9 if v is a Parallel node then
10 for c ∈ childv do
11 Xc = Network (τc, min(|τc|ε|τv| ,

1
nv(|τv|nv+1)))

12 return Parallel ({Xc}c∈childv)

Proof. By induction on |τ |. Base: |τ | = 1, the node must
be primitive, and Network will just return the distribution
unchanged which is obviously an ε-approximation of itself.
Suppose the claim is true for 1 ≤ |τ | < n. Let τ be a task
tree of size n and let v be the root of τ . If v is a Sequence
node, by the induction hypothesis that Xc ≈|τc|ε/|τv| Xτc ,
and by Theorem 1, the maximum accumulated error is∑
c∈childv |τc|ε/|τv| + ε/|τv| = (n − 1)ε/|τv| + ε/|τv| = ε

for v, therefore, Sequence({Xc}c∈childv , ε/n) ≈ε Xτ as
required. If v is a Parallel node, by the induction hypothe-
sis that Xc ≈ec Xτc , where ec = min(|τc|ε|τv| ,

1
nv(|τv|nv+1))

so
∑
c∈childv ec ≤

∑
c∈childv

|τc|ε
|τv| ≤ ε − ε/|τv|. Then,

by Lemma 4, using K = |τv| and n = nv , we get that
Parallel({Xc}c∈childv) ≈ε Xτ as required.

Theorem 4. Let N be the size of the task tree τ , and M the
size of the maximal support of each of the primitive tasks. If
0 ≤ ε ≤ 1

N(N2+1) andM < N/ε, the Network approxima-
tion algorithm runs in time O((N5/ε2) log(N3/ε2)), using
O(N3/ε2) memory.

Proof. The run-time and space bounds can be derived from
the bounds on Sequence and on Parallel, as follows.
In the Network algorithm, the trim accuracy parameter
is less than or equal to ε/N . The support size (called
m in Theorem 2) of the variables input to Sequence are
O(N2/ε). Therefore, the complexity of the Sequence al-
gorithm is O((N4/ε2) log(N3/ε2)) and the complexity of
the Parallel operator isO((N3/ε) log(N)). The time and
space for sequence dominate, so the total time complexity is
N times the complexity of Sequence and the space com-
plexity is that of Sequence.

If the constraining assumptions on M and ε in Theo-
rem 4 are lifted, the complexity is still polynomial: re-
place one instance of 1/ε by max(m, 1/ε), and the other by
max(1/ε,N(N2+1)) in the runtime complexity expression.

1554

6 Complexity results
We show that the deadline problem is NP-hard, even for a
task tree consisting only of primitive tasks and one sequence
node, i.e. linear plans.

Lemma 5. Let Y = {Y1, . . . , Yn} be a set of discrete real-
valued r.v.s specified by probability mass functions with finite
supports, T ∈ Z, and p ∈ [0, 1]. Then, deciding whether
Pr(

∑n
i=0 Yi < T) > p is NP-Hard.

Proof. By reduction from SubsetSum [Garey and Johnson,
1990, problem number SP13]. Recall that SubsetSum is:
given a set S = {s1, . . . , sn} of integers, and integer tar-
get value T , is there a subset of S whose sum is exactly T ?
Given an instance of SubsetSum, create the two-valued r.v.s
Y1, . . . , Yn with Pr(Yi = si) = 1/2 and Pr(Yi = 0) = 1/2.
By construction, there exists a subset of S summing to T if
and only if Pr(

∑n
i=0 Yi = T) > 0.

Suppose that algorithm A(Y, T, p) can decide
Pr(

∑n
i=0 Yi < T) > p in polynomial time. Then,

since the r.v.s Yi are two-valued uniform r.v.s, the only
possible values of p are integer multiples of 1/2n, and
we can compute p = Pr(

∑n
i=0 Yi < T) using a binary

search on p using n calls to A. To determine whether
Pr(

∑n
i=0 Yi = T) > 0, simply use this scheme twice,

since Pr(
∑n
i=0 Yi = T) > 0 is true if and only if

Pr(
∑n
i=0 Yi < T) < Pr(

∑n
i=0 Yi < T + 1).

Theorem 5. Finding the probability that a task tree satisfies
a deadline T is NP-hard.

Proof. Given a task tree consisting of leaf nodes, all being
children of a single sequence node, its makespan is the sum
of the completion times of the leaves. The theorem follows
immediately from Lemma 5.

Finally, we consider the linear utility function, i.e. the
problem of computing an expected makespan of a task net-
work. Note that although for linear plans the deadline prob-
lem is NP-hard, the expectation problem is trivial because the
expectation of the sum of r.v.s Xi is equal to the sum of the
expectations of the Xis. For parallel nodes, it is easy to com-
pute the CDF and therefore also easy to compute the expected
value. Despite that, for task networks consisting of both se-
quence nodes and parallel nodes, these methods cannot be
effectively combined, and in fact, we have:

Theorem 6. Computing the expected completion time of a
task network is NP-hard.

Proof. By reduction from subset sum. Construct r.v.s (“prim-
itive tasks”) Yi as in the proof of Lemma 5, and denote by X
the r.v.

∑n
i=1 Yi. Construct one parallel node with two chil-

dren, one being the a sequence node having the completion
time distribution defined by X , the other being a primitive
task that has a completion time Tj with probability 1. (We
will use more than one such case, which differ only in the
value of Tj , hence the subscript j). Denote by Mj the r.v.
that represents the completion time distribution of the paral-
lel node, using this construction, with the respective Tj . Now

consider computing the expectation of the Mj for the follow-
ing cases: T1 = T+1/2 and T2 = T+1/4. Thus we have, for
j ∈ {1, 2}, by construction and the definition of expectation:

E[Mi] = TjPr(X ≤ Tj) +
∑
x>Tj

x Pr(X = x)

= TjPr(X ≤ T) +
∑

x≥T+1

x Pr(X = x)

where the second equality follows from the Yi all being
integer-valued r.v.s (and therefore X is also integer valued).
Subtracting these expectations, we have E[M1] − E[M2] =
1
4P (X ≤ T). Therefore, using the computed expected val-
ues, we can compute P (X ≤ T), and thus also P (X = T),
in polynomial time.

7 Empirical Evaluation
We examine our approximation bounds in practice, and
compare the results to exact computation of the CDF
and to a simple stochastic sampling scheme. Three
types of task trees are used in this evaluation: task
trees used as execution plans for the ROBIL team en-
try in the DARPA robotics challenge (DRC simulation
phase, http://in.bgu.ac.il/en/Pages/news/dar pa.aspx), linear
plans (seq), and plans for the Logistics domain (from IPC2
http://ipc.icaps-conference.org/). The primitive task distribu-
tions were uniform distributions discretized to M values. For
every entry of M in Table 1 the first line is the runtime in
seconds, the second line presents the estimation error.

In the Logistics domain, packages are to be transported by
trucks or airplanes. Hierarchical plans were generated by the
JSHOP2 planner [Nau et al., 2003] for this domain and con-
sisted of one parallel node (packages delivered in parallel),
with children all being sequential plans. The duration distri-
bution of all primitive tasks is uniform but the support param-
eters were determined by the type of the task, in some tasks
the distribution is fixed (such as for load and unload) and in
others the distribution depends on the velocity of the vehicle
and on the distance to be travelled.

After running our approximation algorithm we also ran a
variant that uses an inverted version of the Trim operator,
providing a lower bound of the CDF, as well as the upper
bound generated by Algorithm 2. Running both variants al-
lows us to bound the actual error, costing only a doubling of
the run-time. Despite the fact that our error bound is theoret-
ically tight, in practice and with actual distributions, accord-
ing to Table 1, the resulting error in the algorithm was usually
much better than the theoretical ε bound.

We ran the exact algorithm, our approximation algorithm
with ε ∈ {0.1, 0.01, 0.001}, and a simple simulation with
103 to 107 samples (number of samples is denoted by s in the
table), on networks from the DRC implementation, sequence
nodes with 10, 20, and 50 children (number of nodes denoted
byN in the table), and 20 Logistics domain plans, and several
values ofM (M,N are as in Theorem 4). Results for a typical
indicative subset (regretfully reduced due to page limits) are
shown in table 1.

The exact algorithm times out in some cases. Both our
approximation algorithm and the sampling algorithm handle

1555

Task Tree M Exact
Approximation Sampling
ε=0.1 ε=0.01 s=104 s=106

DRC-
2

1.49 0.141 1.14 1.92 190.4
0 [-0.005, 0.009] [-0.0004, 0.0004] 0.0072 0.0009

Drive
4

18.9 0.34 7.91 2.1 211.5
0 [-0.0096, 0.019] [-0.0009, 0.0013] 0.0075 0.0011

(N=47)
10

>2h 1.036 32.94 2.81 279.1
0 [-0.014, 0.028] [-0.0014, 0.0025] 0.0083 0.0015

Seq 4
0.23 0.003 0.02 0.545 54.22
0 [-0.03, 0.04] [-0.003, 0.004] 0.008 0.0016

(N=10)
10

10.22 0.008 0.073 0.724 72.4
0 [-0.03, 0.06] [0.003, 0.007] 0.0117 0.001

Logistics 4
373.3 0.2 7 2.5 256
0 [-0.004,0.004] [-0.0004,0.0004] 0.008 0.0006

(N=45)
10

>4h 2.19 120 3.12 314
0 [-0.005,0.006] [-0.0004,0.0006] 0.013 0.001

Table 1: Runtime and estimation errors comparison

all these cases, as our algorithm’s runtime is polynomial in
N , M , and 1/ε as is the sampling algorithm’s (time linear in
number of samples).

The advantage of the approximation algorithm is mainly in
providing bounds with certainty as opposed to the bounds in-
probability provided by sampling. Additionally, as predicted
by theory, accuracy of the approximation algorithm improves
linearly with 1/ε (and almost linear in runtime), whereas ac-
curacy of sampling improves only as a square root of the num-
ber of samples. Thus, even in cases where sampling initially
outperformed the approximation algorithm, increasing the re-
quired accuracy for both algorithms, eventually the approxi-
mation algorithm overtook the sampling algorithm.

8 Discussion and Related Work
Numerous issues remain unresolved, briefly discussed be-
low. Trivial improvements to the Trim operator are pos-
sible, such as the inverse version of the operator used to
generate a lower bound for the empirical results. Other
candidate improvements are not performing trimming (or
even stopping a trimming operation) if the current support
size is below 1/ε, which may increase accuracy but also
the runtime. Another point is that in the combined algo-
rithm, space and time complexity can be reduced by adding
some Trim operations, especially after processing a paral-
lel node, which is not done in our version. This may re-
duce accuracy, a trade-off yet to be examined. Another op-
tion is, when given a specific threshold, trying for higher
accuracy in just the region of the threshold, but how to
do that is non-trivial. For sampling schemes such meth-
ods are known, including adaptive sampling [Bucher, 1988;
Lipton et al., 1990], stratified sampling, and other schemes.
It may be possible to apply such schemes to deterministic al-
gorithms as well - an interesting issue for future work.

Extension to continuous distributions: our algorithm can
handle them by pre-running a version of the Trim operator
on the primitive task distribution. Since one cannot iterate
over support values in a continuous distribution, start with
the smallest support value (even if it is −∞), and find the
value at which the CDF increases by ε. This requires access
to the inverse of the CDF, which is available, either exactly or
approximately, for many types of distributions.

We showed that the expectation problem is also NP-hard.
A natural question is on approximation algorithms for the
expectation problem, but the answer here is not so obvious.
Sampling algorithms may run into trouble if the target distri-
bution contains major outliers, i.e. values very far from other
values but with extremely low probability. Our approxima-
tion algorithm can also be used as-is to estimate the CDF and
then to approximate the expectation, but we do not expect it
to perform well because our current Trim operator only lim-
its the amount of probability mass moved at each location to
ε, but does not limit the “distance” over which it is moved.
The latter may be arbitrarily bad for estimating the expecta-
tion. Possibly adding simple binning schemes to the Trim
operator in addition to limiting the moved probability mass
to ε may work, another issue for future research.

Related work on computing makespan distributions in-
cludes [Hong, 2013], which examines sum of Bernoulli
distributed r.v.s. Other work examines both determinis-
tic [Mercier, 2007] and Monte-Carlo techniques [Bucher,
1988; Lipton et al., 1990]. Distribution of maximum of r.v.s
was studied in [Devroye, 1980], with a focus mostly on con-
tinuous distributions.

Complexity of finding the probability that the makespan
is under a given threshold in task networks was shown to
be NP-hard in [Hagstrom, 1988], even when the completion
time of each task has a Bernoulli distribution. Nevertheless,
our results are orthogonal as the source of the complexity in
[Hagstrom, 1988] is in the graph structure, whereas in our
setting the complexity is due to the size of the support. In fact
for linear plans (an NP-hard case in our setting), the proba-
bility of meeting the deadline can be computed in low-order
polynomial time for Bernoulli distributions, using straightfor-
ward dynamic programming. Makespan distributions in se-
ries parallel networks in the i.i.d. case was examined in [Gut-
jahr and Pflug, 1992], without considering algorithmic issues.
There is also a significant body of work on estimating the
makespan of plans and schedules [Herroelen and Leus, 2005;
Fu et al., 2010; Beck and Wilson, 2007], within a context of a
planner or scheduler. The analysis in these papers is based on
averaging or on limit theorems, and does not provide a guar-
anteed approximation scheme. Temporal planing and in par-
ticular TPNs (temporal plan network) are presented in [Kim
et al., 2001], the model is similar to ours, but the focus is on
lower/upper bounds, rather than probability distributions. Hi-
erarchical constraint-based plans in MAPGEN [Ai-Chang et
al., 2004] allow for more general dependencies than series-
parallel, providing additional expressive power but making
the deadline problem even harder.

Computing the distribution of the makespan in trees is a
seemingly trivial problem in probabilistic reasoning [Pearl,
1988]. Given the task network, it is straightforward to rep-
resent the distribution using a Bayes network (BN) that has
one node per task, and where the children of a node v in
the task network are represented by BN nodes that are par-
ents of the BN node representing v. This results in a tree-
shaped BN, where it is well known that probabilistic rea-
soning can be done in time linear in the number of nodes,
e.g. by belief propagation (message passing) [Pearl, 1988;
Kim and Pearl, 1983]. The difficulty is in the potentially ex-

1556

ponential size of variable domains, which our algorithm, es-
sentially a limited form of approximate belief propagation,
avoids by trimming.

Looking at makespan distribution computation as proba-
bilistic reasoning leads to interesting issues for future re-
search, such as how to handle task completion times that
have dependencies, represented as a BN. Since reasoning in
BNs is NP-hard even for binary-valued variables [Dagum
and Luby, 1993; Cooper, 1990], this is hard in general.
But for cases where the BN toplogy is tractable, such as
for BNs with bounded treewidth [Bodlaender, 2006], or
directed-path singly connected BNs [Shimony and Domsh-
lak, 2003], a deterministic polynomial-time approximation
scheme for the makespan distribution may be achievable.
The research literature contains numerous randomized ap-
proximation schemes that handle depenencies [Pearl, 1988;
Yuan and Druzdzel, 2006], especially for the case with no ev-
idence. In fact, our implementation of the sampling scheme
in ROBIL handled dependent durations. It is unclear whether
such sampling schemes can be adapted to handle dependen-
cies and arbitrary evidence, such as: “the completion time of
compound task X in the network is known to be exactly 1
hour from now”. Finally, one might consider additional com-
monly used utility functions, such as a “soft” deadline: the
utility is a constant U before the deadline T , decreasing lin-
early to 0 until T + G for some “grace” duration G, and 0
thereafter.

Acknowledgments. This research was supported by the
ROBIL project, by the EU, by the ISF, and by the Lynne and
William Frankel Center for Computer Science.

References
[Ai-Chang et al., 2004] Mitchell Ai-Chang, John Bresina, Len

Charest, Adam Chase, JC-J Hsu, Ari Jonsson, Bob Kanefsky,
Paul Morris, Kanna Rajan, Jeffrey Yglesias, et al. Mapgen:
mixed-initiative planning and scheduling for the mars exploration
rover mission. Intelligent Systems, IEEE, 19(1):8–12, 2004.

[Beck and Wilson, 2007] J. Christopher Beck and Nic Wilson.
Proactive algorithms for job shop scheduling with probabilistic
durations. J. Artif. Intell. Res.(JAIR), 28:183–232, 2007.

[Bodlaender, 2006] Hans L. Bodlaender. Treewidth: Characteriza-
tions, applications, and computations. In WG, pages 1–14, 2006.

[Bonfietti et al., 2014] Alessio Bonfietti, Michele Lombardi, and
Michela Milano. Disregarding duration uncertainty in partial or-
der schedules? Yes, we can! In CPAIOR, pages 210–225. 2014.

[Bucher, 1988] Christian G. Bucher. Adaptive sampling: an itera-
tive fast Monte Carlo procedure. Structural Safety, 5(2):119–126,
1988.

[Buyya et al., 2011] Rajkumar Buyya, Saurabh Kumar Garg, and
Rodrigo N. Calheiros. SLA-oriented resource provisioning for
cloud computing: Challenges, architecture, and solutions. In
Cloud and Service Computing (CSC), 2011.

[Cooper, 1990] Gregory F. Cooper. The computational complexity
of probabilistic inference using Bayesian belief networks. Artifi-
cial Intelligence, 42 (2-3):393–405, 1990.

[Dagum and Luby, 1993] Paul Dagum and Michael Luby. Approxi-
mating probabilistic inference in Bayesian belief networks is NP-
hard. Artificial Intelligence, 60 (1):141–153, 1993.

[Devroye, 1980] Luc Devroye. Generating the maximum of inde-
pendent identically distributed random variables. Computers &
Mathematics with Applications, 6(3):305–315, 1980.

[Erol et al., 1994] Kutluhan Erol, James Hendler, and Dana S. Nau.
HTN planning: Complexity and expressivity. In AAAI, 1994.

[Fu et al., 2010] Na Fu, Pradeep Varakantham, and Hoong Chuin
Lau. Towards finding robust execution strategies for RCPSP/max
with durational uncertainty. In ICAPS, pages 73–80, 2010.

[Gabaldon, 2002] Alfredo Gabaldon. Programming hierarchical
task networks in the situation calculus. In AIPS02 Workshop on
On-line Planning and Scheduling, 2002.

[Garey and Johnson, 1990] Michael R. Garey and David S. John-
son. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., NY, USA, 1990.

[Gutjahr and Pflug, 1992] W. J. Gutjahr and G. Ch Pflug. Av-
erage execution times of series–parallel networks. Séminaire
Lotharingien de Combinatoire, 29:9, 1992.

[Hagstrom, 1988] Jane N. Hagstrom. Computational complexity of
PERT problems. Networks, 18(2):139–147, 1988.

[Herroelen and Leus, 2005] Willy Herroelen and Roel Leus.
Project scheduling under uncertainty: Survey and research poten-
tials. European journal of operational research, 165(2):289–306,
2005.

[Hong, 2013] Yili Hong. On computing the distribution function
for the poisson binomial distribution. Computational Statistics &
Data Analysis, 59:41–51, 2013.

[Kelly et al., 2008] John Paul Kelly, Adi Botea, and Sven Koenig.
Offline planning with Hierarchical Task Networks in video
games. In AIIDE, pages 60–65, 2008.

[Kim and Pearl, 1983] Jin H. Kim and Judea Pearl. A computation
model for causal and diagnostic reasoning in inference systems.
In IJCAI, 1983.

[Kim et al., 2001] Phil Kim, Brian C. Williams, and Mark Abram-
son. Executing reactive, model-based programs through graph-
based temporal planning. In IJCAI, pages 487–493, 2001.

[Lipton et al., 1990] Richard J. Lipton, Jeffrey F. Naughton, and
Donovan A. Schneider. Practical selectivity estimation through
adaptive sampling, volume 19. ACM, 1990.

[Mercier, 2007] Sophie Mercier. Discrete random bounds for gen-
eral random variables and applications to reliability. European j.
of operational research, 177(1):378–405, 2007.

[Nau et al., 1998] Dana S. Nau, Stephen J. Smith, Kutluhan Erol,
et al. Control strategies in HTN planning: Theory versus practice.
In AAAI/IAAI, pages 1127–1133, 1998.

[Nau et al., 2003] Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami,
Ugur Kuter, J. William Murdock, Dan Wu, and Fusun Yaman.
SHOP2: An HTN planning system. J. Artif. Intell. Res. (JAIR),
20:379–404, 2003.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan Kaufmann,
San Mateo, CA, 1988.

[Shimony and Domshlak, 2003] Solomon E. Shimony and Carmel
Domshlak. Complexity of probabilistic reasoning in directed-
path singly connected Bayes networks. Artificial Intelligence,
151:213–225, 2003.

[Yuan and Druzdzel, 2006] Changhe Yuan and Marek J. Druzdzel.
Importance sampling algorithms for Bayesian networks: Princi-
ples and performance. Mathematical and Computer Modelling,
43(910):1189 – 1207, 2006.

1557

