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Michaël Aupetit
Qatar Computing Research Institute

Abstract
We describe Exploratory Digraph Navigation as a
fundamental problem of graph theory concerned
with using a graph with incomplete edge and vertex
information for navigation in a partially unknown
environment. We then introduce EDNA*, a sim-
ple A* extension which provably solves the prob-
lem and give worst-case bounds on the number of
edges explored by said algorithm. We compare the
performance of this algorithm to a non-exploratory
strategy using A* and discuss its relation to exist-
ing algorithms such as D* Lite, PHA* with early
stopping, EWP or exploration algorithms.

1 Exploratory Digraph Navigation (EDN)
1.1 Exploratory Digraph Navigation problems
Imagine a mobile robot navigating in a physical world W
whose representation is a directed graph (digraph) GR as
sketched on Figure 1. Dotted lines on the figure represents
data not available in the robot’s internal map G, also called
currently known graph [Felner et al., 2004], of the world
at planning time. GR\G represents space not explored yet.
From its current position, the robot wants to reach a goal po-
sition with minimal effort. While planning its path to the goal
on G, it realizes that it essentially has two choices: using a
known (safe) path, which may be quite long, or trying to find
a shortcut thanks to places whose knowledge is incomplete
(think of rooms containing doors not yet opened). However,
taking a shortcut is risky since the expected shortcut may ac-
tually be a dead end, forcing the robot to turn back and replan
its path. The said shortcut may also actually be longer than
the safe path. Depending on its internal state (battery level,
mission, . . . ), the robot may want to privilege the safe path or
hope for luck and try an exploratory path which may lead to
a decrease of traveled distance relative to the safe path while
increasing the robot’s knowledge of its environment.

The typical use of Exploratory Navigation is together with
robotic Simultaneous Localization And Mapping (SLAM)
where a robot models its environment as a graph [Choset
and Nagatani, 2001; Bosse et al., 2004] or as an occupancy
grid [Elfes, 1989] (where each pixel can be considered as
∗This research was supported by a DGA-MRIS scholarship
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Figure 1: Typical example of Exploratory Digraph Naviga-
tion (EDN). At planning time, the navigating agent knows
that the boundary vertex has yet unexplored edges, because
for instance there is a door it has never opened. Traversing
unexplored space may or may not reduce the navigational
cost compared to using an already known and safe path to
the goal. EDN decides whether or not to use exploration.

a vertex connected to its neighbors if space is traversable).
Other problems related to graph theory such as the Travel-
ing Salesman’s Problem or routing problems in changing net-
works (where a set of packets must travel in a network with-
out knowledge of all the routers) may also benefit from EDN.
In these problems, the computational cost (algorithm execu-
tion time) associated to planning is small but not necessarily
negligible compared to the navigational cost (energy used or
distance physically traveled summed on each move until des-
tination is reached) associated to navigation and exploration.

The navigating agent should take advantage of both charted
and uncharted territory during path planning and navigation,
whence the name “exploratory navigation”. At the heart of
EDN is a trade-off between safety guaranteed by exploitation
of existing knowledge and short and long term efficiency ob-
tained through exploration of uncharted territory, described
for example by Argamon-Engelson et al. [1998].

1.2 Definitions
Let GR be a graph made of a set of vertices VR and a set
of edges ER ⊂ VR × VR . Let G be a subgraph of GR . Its
set of vertices is V and its set of edges E ⊂ V × V . In
addition to these vertices and edges, called internal vertices
and explored edges respectively, G also has boundary vertices
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and unexplored edges. Unexplored edges are edges whose
origin is in V but whose destination is unknown. Formally,
the set of unexplored edges is U ⊂ V × VR and the set of
boundary vertices is B ⊂ V . Boundary vertices are vertices
which possess at least one unexplored outgoing edge: B =
{v ∈ V, ∃e ∈ U, ∃v′ ∈ VR, e = (v, v′)}. The boundary
state of these vertices is known at planning time. From the
definition follows that G = GR ⇔U = ∅ or B = ∅. V∪B ,
VR and E∪U , ER in general since some vertices and edges
of GR may be missing (not yet discovered) in G.

We define Exploratory Digraph Navigation (EDN) as the
problem of physically reaching a known destination F ∈ G
from a known origin O ∈ G with minimal navigational
cost and decent computational cost. Knowledge about GR

can only be acquired by physically traversing yet unexplored
space, modeling it as vertices and edges and adding these to
G. GR is thus the theoretical limit of G when all available
space has been explored.

1.3 What Exploratory Digraph Navigation is not
To our knowledge, EDN has never been formulated as such.
However, a number of close problems have already been for-
mulated. Most of them are still open as of 2014.

The Canadian Traveler Problem (CTP) [Bar-Noy and
Schieber, 1991; Karger and Nikolova, 2007] and the Stochas-
tic Shortest Path Problem with Recourse (SSPPR) [Poly-
chronopoulos and Tsitsiklis, 1996] are concerned with graphs
where some edge traversal costs may be unknown (edges
may not even exist) at planning time. However, the edge
traversal cost is unknown but the extremities of explored
and unexplored edges are still known, which is not true for
unexplored edges in EDN. D* and D*Lite [Stentz, 1995;
Koenig et al., 2004; Koenig and Likhachev, 2005] are known
approximate CTP/SSPPR solvers used for mobile robot plan-
ning. EDN can solve navigation problems on graphs G with
unknown edge costs.

EDN is a generalization of graph exploration [Betke, 1991;
Smirnov et al., 1996; Awerbuch et al., 1999; Panaite and Pelc,
1999; Dessmark and Pelc, 2004] since increasing the knowl-
edge of G relative to GR is not mandatory in EDN but any
EDN solver should be able to perform exploration at least
when O and F initially belong to different components of G.

The shortest path between O and F in a partially unknown
environment is provably computed by PHA* [Felner et al.,
2004] for future use at the expense of immediate navigational
cost. EDN is a navigation problem aiming at reaching F with
minimum navigational cost. As a side effect, a reusable path
from O to F is found which hopefully exhibits a low (but not
necessarily minimal) navigational cost. As opposed to the
approach of Argamon-Engelson et al. [1998], EDN does not
require the whole graph to be considered for each planning
step and only considers exploration reducing the navigational
cost to the goal (immediate reward).

1.4 Exploratory Digraph Navigation as a
stochastic problem

EDN can be treated stochastically (stochastic edge or ver-
tex traversal cost). The study of pathfinding on graphs with
stochastic properties, pioneered notably by Loui [1983] is an

active field of research, notably with the Markov Decision
Process formulation [Puterman, 1994]. EDN can conform
to the formalism of stochastic graphs if every boundary ver-
tex is connected to every other boundary vertex or directly
to F with virtual edges whose traversal costs are described
by probability distributions. The resulting problem can then
be solved using a utility criterion [Loui, 1983] or other tech-
niques out of scope of this paper. However, the choice of
the probability distribution for each virtual edge is not trivial
notably due to destinations of unexplored edges possibly al-
ready belonging to G (unexplored loops). We therefore pre-
fer a non-stochastic approach with a single number instead
of a probability distribution to represent the length of virtual
edges. Our approach of EDN nonetheless shares with a recent
approach of the stochastic shortest path problem by Trevizan
and Veloso [2014] its tunable search horizon and penalization
of intermediary goal states.

1.5 Our contribution : the EDNA* algorithm
We propose the EDNA* (for Exploratory Digraph Navigation
with A*) algorithm for exploratory navigation using (possi-
bly) incomplete digraphs. EDNA* is a generalization of A*
[Hart et al., 1968] which considers shortcut hypotheses and
the risk associated to them during A* expansion through a
new degree of freedom. EDNA* can also be used for (goal-
directed) exploration.

2 Describing the EDNA* algorithm
2.1 Notations
Let O0 be the starting position of the navigating agent. On

with n > 0 is the position of the navigating agent after the
nth run of EDNA*. O is always the starting position of the
current run. We need the hypothesis that GR is static (it does
not change during the experiments) for the theoretical proofs.
SLAM experiments not reported here show that EDNA* may
also work on dynamically changing graphs though.

A path is said to be admissible in a graph if it has the lowest
navigational cost amongst all possible paths. Multiple paths
can be admissible. ∀(X,Y ) ∈ V2, let D(X,Y ) be the (non-
commutative) navigational cost from X to Y following an ad-
missible path on G. G can carry arbitrary per-vertex and per-
edge traversal costs. If no path exists from X to Y , we take
the convention that D(X,Y ) = ∞.

EDNA*, like A*, requires an admissible but not necessar-
ily consistent heuristicH [Dechter and Pearl, 1985] estimat-
ing the distance between two vertices. For a given vertex
X ∈ V , the value of the heuristic is written H (X, F,G),
abridged to H (X ) if unambiguous. The admissibility con-
straint (H never overestimates navigational costs) writes
∀(X,Y ) ∈ V2,H (X,Y,G) ≤ D(X,Y ). When not mentioned
otherwise, the R2 metric space with H (X, F,G) = | |F − X | |
(L2 norm) is used since it is the most common space in path-
planning applications.

It is not possible to add a shortcut discovery strategy to
A* by modifying H for two reasons. First, taking a short-
cut is risky so that H should be increased, which in turn is
in conflict with the admissibility constraint on H . Second,
a boundary vertex can be found on an admissible path, in
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which case there is no reason for penalizing it. For these
reasons, EDNA* defines a second heuristic, R, the short-
cut risk heuristic, on boundary vertices. R estimates the
navigational cost of a shortcut while taking into account the
risk that this cost was underestimated. Given the origin O
of an EDNA* planning step and Z ∈ B, the value of the
heuristic writes R (O, F, Z,G). We insist on the fact that R
does not replace H , even on boundary vertices where it is
used to add information to H . R (O, F, Z,G) is abridged to
R (O, Z ) or R (Z ) if there is no contextual ambiguity. There
is no constraint on R (it can be negative or even infinite)
even though we will see that there is no interest in having
R (O, F, Z,G) < D(O, Z ) +H (Z, F,G). The value of R rel-
ative to D(O, Z ) +H (Z, F,G) determines how reluctant the
navigating agent is to try and discover shortcuts.

Finally, we define an EDNA* run as the combination of a
planning phase, purely computational, where a path to some
vertex X ∈ V (not necessarily F) is computed on G, and of
a plan execution (or navigation) phase, purely navigational,
where the agent physically navigates onW from its current
position to the position x ∈ W corresponding to X ∈ GR

while updating its current position on G. When at X , if
X , F then X ∈ B and the agent takes the “most promis-
ing” unexplored edge simultaneously on x and X and follows
it until it reaches another vertex. We embed the concept of
“most promising” or “best” edge into R by saying that for
each boundary vertex, its R value is computed with the best
edge in mind. For instance, the best edge may be the one
whose angular difference with the goal vertex F in a metric
space is the best amongst all unexplored edges on X . The
most promising edge can also be chosen randomly, possibly
resulting in higher navigational costs on average.

2.2 Planning with EDNA* (algorithm 1)
Like A* [Hart et al., 1968], EDNA* planning has two phases.
The first one is a vertex expansion phase where vertices X
are considered in order of increasing expected navigational
cost δ(X ) = D(O, X ) + H (X, F) and starting with O. The
priority queue used to store vertices and their navigational
cost (X, δ(X )), also known as open set, is called Q. If H is
not consistent, a list S (called closed set) of already encoun-
tered vertices is maintained since vertices can be encountered
again with a lower δ. In the second phase, an actual path is
computed starting at F or Z ∈ B and going back to O. The
interested reader will report to open-source implementations
of A* for details and implementation of the second phase.
EDNA* has the same algorithmic complexity as A*. Plan-
ning is done on G and does not imply any movement inW .

2.3 Properties of the EDNA* planning algorithm
At the end of the algorithm, EDNA* returns a path to F or
to a boundary vertex Z from which exploration must take
place. If no path from O to F exists on G and there is
no boundary vertex accessible, the algorithm can’t find a
path. If no path exists from O to F and there is at least one
boundary vertex, the algorithm will always give the short-
est path leading to the boundary vertex Z with the lowest
R (O, F, Z ) encountered during expansion. It will thus per-
form similarly to Agent-Centered A* [Smirnov et al., 1996] if

Algorithm 1 Planning with EDNA*
Input: O, F, G,H : X → H (X, F,G)
Input: R : Z → R (O, F, Z,G)

dest← ∅; best distance← ∞; Q ← (O, δ(O)); S ← ∅
while Q , ∅ do

pop (X, δ(X )) from Q; S ← (X, δ(X ))
if δ(X ) > best distance then

break //EDNA* early stopping criterion
if X = F then

dest← F; best distance← δ(F)
break //traditional A* stopping criterion

if X ∈ B then
if R (O, F, X ) ≤ best distance then

dest← X; best distance← R (O, F, X )
for all neighbors T of X do compute δ(T )

if not ( (T ∈ S and δ(T ) ≥ δ(T )S ) or
(T ∈ Q and δ(T ) ≥ δ(T )Q)

)
then

Q ← (T, δ(T ))
if dest = ∅ then return failure //no path can be found
unroll a path from dest back to O and return the path found

∀ Z ∈ B,R (O, F, Z,G) <= D(O, Z ) +H (Z, F,G). EDNA*
is a greedy algorithm since the path choice is always opti-
mized for the current origin O. Finally, EDNA* always ex-
pands less vertices than A* during one planning phase since
vertices expanded by EDNA* would be expanded by A* but
the early stopping criterion based on R (see algorithm) may
stop the algorithm before the whole A* search space has been
expanded. However, F may not be reached in one run, so that
EDNA*’s search space may end up being bigger than A*’s.

2.4 Navigation with EDNA* (algorithm 2)
In order for the agent to actually move in the world, a nav-
igation algorithm compatible with the EDN paradigm is re-
quired. The simple algorithm 2 performs the navigation
task while being independent of the underlying planner (here
EDNA*). Physically following a path or exploring an edge
means that the navigating agent simultaneously moves inW ,
which incurs a navigational cost, and updates its current po-
sition on G. Vertex recognition and map update must be han-
dled by a separate algorithm, such as those used for topolog-
ical SLAM (see [Bosse et al., 2004] for example). Figure 2
shows an example of EDNA* reducing the navigational cost
compared to A* thanks to a shortcut.

2.5 Convergence proof and exploration variant
Let e and emax be the amount of explored edges in the com-
ponent around O0 of G and GR respectively.
Theorem 1 (Navigation success and upper bound). If GR

is strongly connected, EDNA* will always lead the navigating
agent to F ∈ GR from any O0 ∈ G

R . A maximum of 1 +
(emax − e) EDNA* navigation runs will be necessary.

Corollary 1 (Complete graph exploration). If F is unreach-
able from O0 because both vertices belong to a different com-
ponent in GR , at most (emax − e) EDNA* navigation runs
will lead to exploration of the whole component containing
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Algorithm 2 Navigation with EDNA*
Input: W , O, F, G,H : X → H (X, F,G)
Input: R : Z → R (O, F, Z,G)

n = 0,On ← O // origin
while On , F do

call EDNA* Planning(On, F,G,H ,R)
→ Returns path to On+1

physically follow path from On to On+1 //takes time
n ← n + 1
if On = F then break //successfully reached F
physically explore best edge E to reach a vertex On+1
n ← n + 1, insert E in G //new edge
while (On < G) do

insert On in G //new vertex
if On < B then break //dead end
physically explore best edge E to reach On+1
n ← n + 1, insert E in G //new edge

O0 before returning an error. The 1 + (emax − e) bound is
tight.

Sketch of the proof : an EDNA* run either leads to F, re-
turns an error or registers at least one new edge in G, so that
at most (emax − e) runs would lead to e = emax . As EDNA*
is exactly A* when the graph is completely known (G = GR),
a last EDNA* run on GR will lead to F if reachable or return
an error if not reachable, but after having discovered the com-
ponent containing O0 (otherwise, there would be a boundary
vertex which EDNA* would target). The bound is tight con-
sidering a chain of vertices connected in GR but not in G.

Using F < GR , corollary 1 can be used to achieve complete
exploration of an unknown graph prioritizing a specific posi-
tion or direction. The position of F will be used to bias short-
cut discovery, but as the vertex can’t be reached, the whole
subgraph around O0 will be explored, starting with the part
closest to F.

2.6 Theoretical study of the R heuristic
DGR indicates that the navigational cost is computed on GR

instead of G. From a theoretical point of view, five cases are
particularly interesting regarding the R heuristic:

1. early stopping to privilege exploration:
∀ Z ∈ B,R (O, F, Z,G) <= D(O, Z ) +H (Z, F,G)

2. optimal case:
∀ Z ∈ B,R (O, F, Z,G) <= D(O, Z ) +H (Z, F,G)
and ∀ X ∈ G,H (X, F,G) = DGR (X, F)

3. optimal improvement over uninformed A* on G:
∀ Z ∈ B,R (O, F, Z,G) = D(O, Z ) + DGR (Z, F)

4. improvement over uninformed A* on G:
∀ Z ∈ B,R (O, F, Z,G) > D(O, Z ) + DGR (Z, F)

5. EDNA* reduced to A* on G:
∀ Z ∈ B,R (O, F, Z,G) → ∞

Case 1 sees the expansion phase stopping at the first bound-
ary vertex encountered due to the early stopping criterion.
If ∀X ∈ G,H (X ) = 0 (Dijkstra’s algorithm), with F un-
reachable (or no F at all) and with unitary traversal costs,

Figure 2: EDNA* shortcut discovery as described in algo-
rithms 1 and 2. 8-way connected grid-like graphs used for a
better understanding of the principles at work.

this would result in the greedy algorithm Nearest Neighbor
(NN) [Koenig and Smirnov, 1996]. NN’s penalty in terms of
traversed edges on a non-directed graph during exploration
relative to traversed edges if the graph was known is only
worst-case logarithmic in the number of edges [Megow et al.,
2011]. Bounds for algorithms operating on digraphs are still
an open problem [Megow et al., 2011] but due to its greedy
nature, we expect EDNA* to reach a competitive ratio of n−1
with n the number of vertices in GR [Förster and Wattenhofer,
2012]. EDNA*’s relocation strategy (using known edges to
travel from a newly completed vertex to a boundary vertex) is
however not specifically optimized for exploration tasks com-
pared to that of Albers and Henzinger [1997] or Fleischer and
Trippen [2005].

In case 2, H is fully informed, so that A* on GR would
only expand vertices directly on admissible paths (optimal
search space). It is possible to prove that EDNA* on G with
such heuristic choices will follow a path admissible on GR

using navigation on known parts of the path and exploration
on yet to be discovered parts. Case 3 yields the same result in
terms of path followed but with a bigger search space.

Case 4 results in EDNA* on G always overestimating the
navigational cost of shortcuts (in case 5, all shortcuts are con-
sidered of infinite cost). This means that the stopping cri-
terion can only be triggered if an exploratory path’s naviga-
tional cost is actually lower than all non-exploratory ones.
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However, it may not be triggered if a path is found from O
to F with a cost between DGR (O, F) and the lowest R. This
case is the one that we try to achieve in practice, the hard part
being that setting an upper bound on the navigational cost of
a specific shortcut is not always possible.

For a given problem which EDNA* must solve, if bounds
can be given on D(Z, F) for every possibly interesting bound-
ary vertex Z , then bounds can be given on EDNA*’s sub-
optimality in terms of navigational cost: the worst case de-
tour relative to A* on GR in the fourth case is the estimated
D(O, Z ) + D(Z, F) minus the actual one.

3 Experiments
3.1 Finding a reference algorithm
Both EDNA* and D* (Lite) [Stentz, 1995; Koenig et al.,
2004; Koenig and Likhachev, 2005] can provide suboptimal
(greedy) navigation in a static CTP/SSPPR situation, such
as on grid-like graphs. D* and its variants use a free-space
assumption (“unexplored space is traversable”) resulting in
a systematical underestimation of the navigational cost. As
a consequence, transforming unexplored vertices to vertices
with all edges unblocked makes EDNA* with R = 0 fol-
low the D*Lite path but without D*Lite’s search space opti-
mization. D* (Lite) can’t work on digraphs where nothing is
known about yet unexplored vertices.

It is possible to use PHA* [Felner et al., 2004] for navi-
gation by stopping the algorithm when F is reached for the
first time (Felner et al. do not mention this possibility). In
this situation, the path returned would be either the A* path
on G (infinitely overestimating the length of shortcuts, ob-
tainable with EDNA* and R → ∞) or that of iterated Agent-
Centered A* [Smirnov et al., 1996] (obtainable with EDNA*
and R = 0). Not stopping PHA* early would result in a lot of
physical movements increasing the navigational cost and un-
necessary for a navigation task. PHA* can’t balance physical
exploration of unknown parts and navigation on known parts
even though it ends up using both.

More generally, EDNA* uses the exploration risk as a de-
gree of freedom which none of the above algorithms does.
EWP [Argamon-Engelson et al., 1998] considers balancing
exploration and navigation, but no algorithm to do it during
planning is described. As a consequence, each iteration of
EWP must compute the navigational cost from the current po-
sition to any v1 ∈ B (algorithm not explained in the article)
and estimate the cost from it to any v2 ∈ B which is orders of
magnitude more compute-intensive than our approach. When
using exploration, EWP navigates to the best v1 from where it
must reach the best v2 using exploration even though another
v ∈ V is reached while going from v1 to v2. As a conse-
quence, the navigational cost from O0 to F ends up being
always higher than that of our approach in the same situation.

Our objective is to demonstrate shortcut discovery i.e.
EDNA* reaching F from O0 with a lower navigational cost
than a non-exploratory strategy such as A*, whence the com-
parison of EDNA* to A*. Map knowledge improvement due
to adding newly discovered zones to G is not evaluated but
is expected to strongly reinforce the interest of EDNA* since

future traversals can benefit from currently discovered short-
cuts, dead ends and loops.

3.2 A simple choice of R for experiments
We chose to use a risk heuristic R (O, F, Z,G) = D(O, Z ) +
α (1 − β.cos(θ))H (Z, F,G) in an Euclidean space with the
L2 norm as H . θ is the angle between an edge going out
from Z and the vector from Z to F, β is a parameter to de-
scribe an angular penalty and α is a parameter to describe
the total penalty in the sense that if β = 0, α describes by
how much a shortcut’s navigational cost is overestimated rel-
ative to H (Z, F,G). (α ≤ 1, β = 0) for instance gives the
first case of the previous section. This proposal of heuristic is
inspired by the way humans actually find shortcuts in an un-
known environment (possible shortcuts are edges which go in
the right direction and would potentially save a lot of time or
distance). For a high enough risk factor α, R should fall in
case 4 of the previous section. It should be noted that R does
not take advantage of the planarity of a graph.

3.3 Benchmark protocol
Let NA∗ and NEDN A∗ be the navigational cost from O0 to F
using A* and EDNA* on a graph G. The navigational cost
change from A* to EDNA* on G is NG =

NA∗−NEDNA∗

NA∗
. A

±0.1 change means that if the cost following the A* path is
100 units, the one following the EDNA* path is 100 ∓ 10.
Similarly, a computational cost change CG is computed using
the number of vertices visited during the expansion phase of
the algorithms which reflects execution time.

nGR = 200 random planar digraphs GR with about 9 000
vertices and 12 500 dual-way edges each are generated,
with square-shaped possibly-overlapping (SSPO) obstacles
of varying size. Generating graphs allows control over obsta-
cle shapes and obstacle density. GR intends to mimic road
networks or Generalized Voronoi Graphs [Choset and Na-
gatani, 2001] while being more labyrinthine and misleading
in order to test the worst-case behavior of EDNA*. G is ob-
tained by removing a fraction φ of the edges of GR to create
SSPO unexplored zones. In each experiment attempt, G is
created from GR and O0 and F are randomly chosen. Due
to the edge removal procedure, O0 and F may belong to dif-
ferent components of G, leading to A* being unable to find a
path but EDNA* still finding one. Such cases represent more
than 50% and up to 95% (high φ) of all experiment attempts.
They are eliminated as giving EDNA* an infinite navigational
advantage over A*, thus strongly favoring A* with respect to
EDNA*. In these cases, a new experiment attempt is done un-
til a successful experiment occurs, where A* finds a path from
O0 to F. Successful experiments are accumulated until an in-
formative experiment occurs, where NG , 0 (NG = 0 means
R is not used). There are ns successful experiments including
the last one which is informative. On each GR , 10 000 infor-
mative experiments are done, uniformly sampling 100 values
in [1; 9] for α and 100 values in [10%; 50%] for φ.

The estimators used for each (α, φ) to retrieve the av-
erage navigational and computational cost changes plotted
on figures 3 and 4 are N̄ = 1

n
GR
.
∑
GR

(
1
ns
.
∑
G NG

)
and

C̄ = 1
n
GR
.
∑
GR

(
1
ns
.
∑
G CG

)
. Both estimators average on
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all GR the (poor) average on all successful experiments on a
given GR . Arithmetically averaging changes is intuitive but
highly unfavorable to EDNA* since a 0.9 degradation (navi-
gational cost multiplied by 1.9) balances a 0.9 improvement
(navigational cost divided by 10) of EDNA* over A*.
β ∼ 0.25 was experimentally observed to give EDNA* the

best navigational improvements over A*. Tests were also car-
ried on 8-way connected grid-like graphs like that of Figure
2 for which β ∼ 0.125 gave better results.

3.4 Results and discussion

Figure 3: Average navigational cost (N̄ ) changes for success-
ful experiments, random (left) and grid-like (right) graphs.

EDNA* vs A* navigational cost (N̄ ) comparison
Figure 3, left shows EDNA* with α > 5 always reducing N̄
compared to A* in average, demonstrating successful short-
cut discovery. With α ∼ 8, informative experiments show
navigational costs divided by up to 14 when switching from
A* to EDNA*. With α > 8, EDNA*’s success decreases with
α because most experiments are not informative (early stop-
ping is not triggered). The maximum performance gain of
EDNA* over A* on random graphs is 3.9% with our exper-
imental protocol unfavorable to EDNA* (since experimental
results approximately follow a Gaussian distribution, the 95%
confidence interval is [0.5%; 7.3%]). We observed that selec-
tion of the sole experiments where A* reaches F causes the
A* shorter/EDNA* shorter limit to be biased towards high α
when φ increases, thus further disadvantaging EDNA*. Re-
sults on grid-like graphs (Figure 3, right) show up to 20%
improvement of navigational cost of EDNA* over A*.

EDNA* vs A* computational cost (C̄) comparison
Figure (4, right) shows an increase from A* to EDNA* of C̄
when multiple EDNA* runs are required. This penalty for
EDNA*, which exceeds 100% with low α and high φ is most
of the time located between 0 and 100%, especially in the
high α zone (which is the interesting zone as seen in the para-
graph on N̄ ). Figure (4, left) shows the same result as Fig-
ure (4, right) but on a single EDNA* run where the stopping
criterion allows EDNA* to always expands less space than
A*. With a high φ and a low α, this difference reaches 100%
(EDNA* explores close to no vertices). With a low φ and a
high α, each run of EDNA* performs only marginally better
than A* but there are less runs, so that EDNA*’s and A*’s
performances are equivalent (with φ = 0 or α → ∞, EDNA*

Figure 4: Average computational cost (C̄) changes for suc-
cessful experiments on random graphs, up to the first bound-
ary vertex (left) and up to F (right).

would fall back to A*). EDN’s focus is on navigational cost
but the figures show a computational cost comparable to that
of A*, which has been proved optimal in a non-exploratory
situation [Hart et al., 1968].

4 Conclusion
We present the Exploratory Digraph Navigation problem
and the EDNA* algorithm to solve it. With a R heuristic
sufficiently overestimating shortcut lengths, the agent using
EDNA* will on average move from 3.9% to more than 20%
less than using A* to reach F, with best EDNA* runs divid-
ing the navigational cost by up to 14. Moving less leads for
instance to energy savings, especially if the path is intended
to be taken multiple times like in routing problems. Short-
cuts, dead ends and loops found during exploration phases
are stored in G. The impact of this knowledge reinforcement
has yet to be evaluated. Minimizing computational cost is
not the main focus of EDN problems where traversal is much
slower than planning. Nonetheless, even if EDNA* tends to
expand about twice as many vertices as A* during the whole
navigation, it expands less per planning step which is inter-
esting for real-time systems where single computations must
terminate quickly. Moreover, if O and F are not connected
on G, A* fails and an exploration algorithm has to be used.
EDNA* on the contrary does not fail and automatically re-
sorts to exploration, thus combining the navigation (A*) and
the exploration algorithm. The relative amount of navigation
and exploration can be tuned through R. Additional data such
as metric or semantic properties or planarity could be inte-
grated intoH and R for better results.

When using an exploratory strategy, it happens that the
navigating agent starts to thoroughly explore a dead end.
Ideas to deal with this situation have already been formu-
lated for exploration algorithms [Smirnov et al., 1996]. We
are working on a non-stubbornness criterion which would
detect this situation on the current vertex X by comparing
D(O0, X ) +H (X, F) to H (O0, F). Triggering this criterion
would lead to an increase of R, causing EDNA* to try finding
a safe path instead of hoping for a non-existing shortcut. An-
other possible solution to the issue would be to give the nav-
igating agent an energy budget which would decrease with
each detour while R would increase.
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