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Abstract
Recent work in portfolios of problem solvers has
shown their ability to outperform single-algorithm
approaches in some tasks (e. g. SAT or Automated
Planning). However, not much work has been de-
voted to a better understanding of the relation-
ship between the order of the component solvers
and the performance of the resulting portfolio over
time. We propose to sort the component solvers in
a sequential portfolio, such that the resulting or-
dered portfolio maximizes the probability of pro-
viding the largest performance at any point in time.
We empirically show that our greedy approach
efficiently obtains near-optimal performance over
time. Also, it generalizes much better than an op-
timal approach which has been observed to suffer
from overfitting.

1 Introduction
The notion of portfolio has been revived from the Modern
Portfolio Theory literature [Markowitz, 1952] with the aim
of improving the performance of modern solvers. This notion
has been applied to some problem-solving tasks with remark-
able results. Indeed, the results of the International Planning
Competition 2014 (IPC 2014)1 show that three awarded plan-
ners and twenty nine out of sixty seven participant planners in
the deterministic tracks were portfolios or planners that con-
sisted of a collection of solvers.

A portfolio is termed static if its behavior is not modified
once it has been configured —i. e., neither the component
solvers and their allotted time nor the order of the execution
sequence can be altered. If the portfolio has the ability to de-
fine a new behavior for each input instance, then it is termed
dynamic. Also, if the portfolio invokes solvers in sequence, it
is termed sequential, as opposed to parallel portfolios, which
run multiple solvers concurrently.

The component solvers of the sequential portfolios con-
sidered in this work are not allowed to share any informa-
tion. Thus, they can not take advantage of their position by
using information from previous executions (e.g., a cost up-
per bound in satisficing planning). Additionally, preemptive

1http://ipc.icaps-conference.org

mode (i.e., the ability to stop execution and resume it later on
if necessary) is not allowed.

The order in which the component solvers of a sequential
portfolio are executed is a relevant issue that has not been
analyzed in depth yet. Most successful portfolio approaches
for Automated Planning only focus on maximizing perfor-
mance (measured as overall quality or coverage) for a fixed
time limit. We hypothesize that the order of the component
solvers affects the performance of the portfolio over time.
Thus, a sequential portfolio should be sorted if its perfor-
mance over time is relevant. As a consequence, in optimal
planning, the average time required to solve problems can
be significantly reduced while in satisficing planning, lower-
solution costs can be found more quickly, while preserving
coverage or quality respectively.

An example of the interest in this particular problem can
be found in the real world. The Power Restoration Prob-
lem [Hentenryck et al., 2011] is very similar to the problem
described in this work. The electrical components that must
be repaired are problems to be solved by solvers. The reward
(power restored) for repairing each particular component is
the number of problems solved (or the quality of the solutions
found) by a solver within its allotted time. This allotted time
represents the time required (cost) to fix each component. Fi-
nally, the goal is to maximize the power flow (by repairing
electrical components) in the network as quickly as possible
(coverage or quality over time).

The contributions of this work are summarized as follows:

1. The problem of ordering component solvers in a sequen-
tial (static or dynamic) portfolio is formally defined.

2. Two different algorithms to solve the problem are pro-
posed and compared. We empirically show that our
greedy approach produces near-optimal solutions very
quickly and that it generalizes much better than an opti-
mal solution wrt to a specific training set which has been
observed to suffer from overfitting.

3. An extensive evaluation is performed with the algo-
rithms introduced here, a random ordering algorithm and
others from the literature with data from the last three
IPCs.

The paper is organized as follows: first, Section 2 intro-
duces Related Work. Section 3 formally defines the problem
targeted in this work. Sections 4 and 5 describe the optimal
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and greedy approaches proposed. Section 6 reports the ex-
perimental results, and Section 7 ends with some conclusions
and future work.

2 Background
Fast Downward Stone Soup (FDSS) [Helmert et al., 2011]
was one of the awarded planners in the IPC 2011. The
FDSS technique explores the space of static portfolios that
can be configured with a set of candidate planners using
a hill-climbing search. The FDSS-1 portfolio for the satis-
ficing track sorts planners by decreasing order of coverage.
The component planners of FDSS-1 for optimal planning are
sorted by decreasing memory usage. The remaining portfo-
lios were sorted by other arbitrary orderings, which were not
detailed by the authors.

PBP [Gerevini et al., 2014] was the winner of the learning
tracks of IPC 2008 and IPC 2011. It is a portfolio-based plan-
ner with macro-actions, which automatically configures a se-
quential portfolio of domain-independent planners for a spe-
cific domain. PBP uses the domain-specific knowledge with
the purpose of selecting a cluster of planners for configuring
the portfolio. This cluster of planners is sorted in ascending
order of the allotted CPU time to run each solver.

Howe et al. [Howe et al., 2000] introduced BUS, which
runs 6 planners in a round-robin scheme, until one compo-
nent planner finds a solution. For each input instance, it ex-
tracts some features from the given planning task. The com-
ponent planners are then sorted in descending order of the ra-
tio P (Ai)

T (Ai)
, where P (Ai) is the expected probability of success

of algorithm Ai, and T (Ai) is the expected run time of algo-
rithm Ai. Both estimations are provided by linear regression
models based on instance features.

Cenamor et al. presented two strategies for configuring se-
quential portfolios [Cenamor et al., 2015]: IBACOP distributes
uniformly all the available time among all planners selected
by a Pareto efficiency analysis; IBACOP2, uses learned mod-
els to select the five planners with the highest confidence
for solving the input task and distributes time uniformly
among them. Both portfolios won the satisficing track of the
IPC 2014. On the other hand, CEDALION is a new success-
ful portfolio generation technique from highly parameterized
solvers [Seipp et al., 2015]. Among these, only IBACOP2
sorts its component planners —using the confidence provided
by the learned models.

3 Formal Description
In Automated Planning, the performance of a solver s is mea-
sured over a set of instances I (s can be either a solver or
a portfolio). Every solver s is executed over every instance
i ∈ I to obtain the set Rsi of solutions. This set contains
every solution found by s within a given time bound t. We
consider time as discrete in this work with a discretization of
one second. Each element of Rsi stores the cost of the corre-
sponding solution and a timestamp with the time required to
find it. In case of solving problems optimally, solvers gener-
ate at most one solution per instance. In satisficing planning,
solvers can generate multiple solutions. Therefore, the per-

formance of s over time is measured by evaluating a specific
metric over time. The most usual metrics are:

1. Coverage, C(s, I, t): number of problems in the bench-
mark I solved by the solver s in time less or equal than
t per instance. It is the metric of the optimal track of the
last three IPCs.

2. Overall quality, Q(s, I, t). Quality is mapped to the in-
terval [0, 1] according to the expression cost∗i

costs,i
where

costs,i is the best solution found by solver s for instance
i in time less or equal than t and cost∗i is the best solu-
tion found for the same instance by any solver within the
same time bound. The overall quality is computed as the
sum of the quality over all instances. It is the metric for
the satisficing track of the last three IPCs.

In the following, P (s, I, t) denotes generically either cov-
erage, C(s, I, t) or overall quality, Q(s, I, t). Recall that ev-
ery solver is executed t seconds on each instance to compute
a specific metric. Next, we analyze the performance of port-
folios of solvers over time.

Definition 1 A sequential portfolio ρ is a collection of n
pairs 〈si, ti〉ni=1, where si is a component solver and ti is the
time allotted to its execution.

The preceding definition does not define any ordering
among solvers in a portfolio. Indeed, the performance of the
portfolio in time T ≥

∑
i ti is the same for any ordering.

Definition 2 An ordering τ of a sequential portfolio ρ is a
full permutation over the solvers in ρ that defines the execu-
tion sequence, τ .

= {s1, s2, . . . , sn}.
Let ρτ denote the sorted sequential portfolio of solvers in

ρ whose execution ordering is given by τ .

In order to analyze the performance of a sorted sequential
portfolio, we need to analyze separately the contribution of
each solver to the overall performance.

Definition 3 A partial ordering τk is a partial permutation
over the first k solvers in the full permutation τ : τk

.
=

{s1, s2, ..., sk}.
Let ρτk denote the sorted sequential portfolio of solvers

in ρ that considers only the first k solvers according to the
ordering in τk.

Therefore, the first solver, s1, completes its execution after
t1 seconds, the second solver will finish after (t1+t2) seconds
and, in general, the j-th solver sj will complete its execution
after

∑j
k=1 tk seconds. Now, we can define how to measure

the performance of the resulting portfolio over time as shown
below.

Definition 4 The performance of a sorted sequence of
solvers ρτ for a given problem set I over time t, P (ρτ , I, t)
is defined as the sum of the best performance over all solvers
in ρ executed in the order specified by τ for every instance in
I in time less or equal than t.

In case that t <
∑n
i=1 ti not all component solvers will be

considered to compute P (ρτ , I, t). In this case, only the solu-
tions found by those solvers in ρτ that could be run before t
are considered. The timestamp of each considered solution is
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equal to the time required to find it by solver sk plus
∑k−1
i=1 ti.

Next, we define the performance of a component solver, si,
that occupies the i-th position in a permutation τ . It is com-
puted as the increase in performance of the ordered portfolio
by adding si to the portfolio.

Definition 5 Let Psi(ρτ , I) denote the performance of a
component solver si in a partial permutation τi (that con-
siders only the first i solvers in τ ) wrt the benchmark I:

Psi(ρτ , I) = P (ρτi , I, tsi)− P (ρτi−1
, I, tsi−1

)

where τi denotes the partial permutation of all solvers in τ
until si; tsi is the sum of the allotted times of all solvers in
ρτi ; and, si−1 denotes the previous solver of si in the partial
permutation.

The performance of a solver si is defined as a function of
the ordered portfolio ρτ since different solvers in ρ or dif-
ferent orderings τ would yield different performances —i. e.,
the performance of a solver depends on the previous solvers.
Consider a sequential portfolio ρ for optimal planning which
consists of two solvers s1 and s2 which are allocated 4 and 7
seconds respectively. Let us assume that the performance of
these solvers with respect to a set I of 20 planning tasks is:

• s1 solves instances 11 to 20. Hence, P (s1, I, 4) = 10.

• s2 solves tasks 1 to 18, resulting in P (s2, I, 7) = 18.

Assume further that both solvers solve the aforementioned
instances in one second each. Therefore, P (s1, I, 1) = 10
and P (s2, I, 1) = 18. Figure 1 shows the performance over
time of the two possible orderings for the given portfolio,
τ1 : (s1, s2) (red solid line) and τ2 : (s2, s1) (blue dashed
line). P (s1, I, 4) is equal to 10 since s1 solved 10 instances
within its time span. However, the performance of s1 in each
portfolio is different. Ps1(ρτ1 , I) is equal to 10 because s1
is the first solver to be executed. However, the performance
Ps1(ρτ2 , I) is equal to two since instances 11–18 have al-
ready been solved by the previous solver s2. As shown in
Figure 1, the performance of a sequential portfolio ρτ at time
T =

∑
i ti, P (ρ, I, T ), is the same for every permutation

τ . However, the performance of these orderings over time
differs. Figure 1 also exemplifies a case where the portfolio
achieving its maximum performance sooner is not the one
with the best overall performance and, indeed, the first port-
folio (red solid line) inscribes a smaller area than the second
one.

The key observation is that the performance of ordered
portfolios ρτ over time can be seen as bivariate density func-
tions, fρτ (x, t). They are defined as the probability that the
sorted portfolio ρτ reaches a performance P equal to x in t
seconds: Prob(P = x, T = t). Accordingly, we define the
probability function as follows.

Definition 6 Let Prob(P ≤ x, T = t) denote the probability
that a portfolio ρτ reaches a performance equal to x or less
in time t:

Prob(P ≤ x, T = t) =
∑
x

fρτ (x, t)

Coverage

t

10

1 54 11

18

20

87(0, 0)

Figure 1: Performance of two different orderings of the same
portfolio with respect to coverage.

This observation leads to propose the area inscribed by this
probability function as the optimization criteria to compare
different permutations τ of the same portfolio ρ. Thus, we
define the optimization task as follows.

Definition 7 Given a collection of n component solvers of a
sequential portfolio ρ find the permutation τ∗ of solvers s ∈ ρ
for a given benchmark I such that it maximizes Fρτ (x, t):

Fρτ (x , t)=Prob(P ≤ x, T ≤ t)
=
∑
t Prob(P ≤ x, T = t)

As a result, this task will sort the component solvers of
the input portfolio ρ with the aim of maximizing the area in-
scribed by the probability function shown in Definition 6 of
the resulting ordering τ (see Definition 2).

4 Optimal Approach
We first use heuristic search with an admissible heuristic
function to find the optimal ordering with respect to a given
benchmark. Specifically, we propose Depth First Branch and
Bound (DFBnB). It requires two parameters: a sequential
portfolio ρ and the set Rsi, which will be used to compute
the area inscribed by the probability function of every combi-
nation of the component solvers.

To find the optimal ordering τ∗, DFBnB starts with the
empty permutation τ0. Each node m contains the current par-
tial permutation τm and the set A of solvers that are not yet
in ρτm (initially, A = {si | si ∈ ρ} i. e., all solvers in ρ).
The successors of each node are generated by adding a solver
s ∈ A to the current permutation (and thus removing it from
A). Each node defines a partial permutation of the component
solvers in ρ, while each leaf node defines a full permutation
of all solvers in ρ.

DFBnB uses f(m) = g(m) + h(m). The g-value is the
area inscribed by Fρτm after Tρτm seconds, where Tρτm is
equal to the sum of the time spans of every solver in ρτm :

g(m) = Fρτm (P (ρ, I, Tρτm ), Tρτm )

Suppose that DFBnB is initially given the portfolio ρ =
{〈s1, 540〉, 〈s2, 630〉, 〈s3, 630〉}. Assume also that the DF-
BnB search is in a state m, where only the solver s3 has been
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Figure 2: Example of the computation of f(m)

selected, so that ρτm : {〈s3, 630〉} and Tρτm = 630. Figure 2
shows the area inscribed by the probability function Fρτm in
the interval [0, 630] (blue line pattern area), where points de-
noted with uppercase letters allow us to define the areas in-
scribed by the probability function. Thus, the area inscribed
by Fρτm is computed as the sum of the rectangular areas
area(T0A0A1T1), area(T1A2A3T2) and area(T2A4A5T3).

In relation to h(m), we have defined an admissible heuris-
tic termed SQUARE that optimistically estimates the area in-
scribed by the probability functionFA. It just assumes that the
order of the solvers contained in A is not relevant so that the
portfolio will reach the performance P (ρ, I, T ) of the port-
folio ρ at time T with a 100% probability, one second after
the first solver in A starts its execution. h(m) is computed as
follows:

h(m)=Prob(P ≤ P (ρ, I, T ), T = Tρτm ) +
FA(P (ρ, I, T ), TA)

=Prob(P ≤ P (ρ, I, T ), T = Tρτm ) + TA − 1

where TA is equal to the sum of the time spans of every
solver in A. The area inscribed by FA is composed of two
rectangular areas. The first one is defined in the interval
[Tρτm , Tρτm + 1], the first second of the execution of the first
solver inA. This area is represented by the first term in h(m).
It is computed as the probability value of reaching a perfor-
mance equal to x or less in time Tρτm multiplied by the time
interval (one second). The second area is defined by the prob-
ability function FA in the interval [Tρτm + 1, Tρτm + TA].

Following the example in Figure 2, A = {s1, s2} and
TA = 540 + 630 = 1170. Since these solvers have not yet
been included in ρτm , the area inscribed by FA (yellow solid
area) is computed using the SQUARE heuristic. The estimated
yellow solid area is equal to the sum of the rectangular ar-
eas area(T3A5B0T4) (first term of the heuristic function),
area(T4BCT5) (solver s1) and area(T5CDT6) (solver s2).
The rectangular areas area(T4BCT5) and area(T5CDT6)
are equal to TA − 1 = 1169. Hence:

f (m) = area(T0A0A1T1) + area(T1A2A3T2)
+area(T2A4A5T3) + area(T3A5B0T4) + 1169

This technique yields optimal orderings for a specific set of
planning tasks. However, it can suffer from overfitting when
evaluating its performance over a different benchmark.

5 Greedy Approach
The time required to find the optimal solution increases dra-
matically with the number of component solvers, since there
are n! different orderings. Thus, we propose an alternative ap-
proach based on greedy search to quickly find a suboptimal
solution with good quality.

We assume that the performance Psi(ρτ , I) can be approx-
imated with a straight line in the interval [δ, δ + ti], where
δ is the sum of the allotted time to ρτi−1 and ti is the exe-
cution time of si. The slope of this line is computed as the
performance Psi(ρτ , I) divided by ti. We have selected the
slope as a heuristic (to be denoted as SLOPE) because it is
a conservative approximation of the growth in performance
of a component solver in the portfolio. Also, it considers the
performance of each component solver wrt the performance
achieved by the previous solvers in the term Psi(ρτ , I) —see
Definition 5.

We propose hill-climbing in the space of partial permu-
tations of the input portfolio ρ as the search technique. It
takes the same parameters as DFBnB described previously.
The search is initialized with the empty permutation τ0, and
the set A = {si | si ∈ ρ}. At each step, it selects the solver
si ∈ Awhich has the largest ratio Psi(ρτ , I)/ti. Then, the se-
lected solver is added to the current permutation and removed
from A. Finally, the algorithm returns the ordered portfolio
ρτ .

6 Experimental Setup and Results
The proposed algorithms (SLOPE and DFBnB) are compared
with other ordering strategies and their performance is re-
ported. Inspired by the ordering criteria used by state-of-the-
art portfolios in Automated Planning, we have defined the fol-
lowing algorithms to compare against our solutions.2

• Shorter Time Spans (STS): inspired by PBP, this algo-
rithm sorts the component solvers of a given portfolio in
increasing order of the allotted time to run each solver.
• Memory Failures (MF): inspired by FDSS, it uses the

number of times that each component planner exceeds
the available memory limit (and does not solve the task)
to sort the given portfolio in decreasing order.
• Decreasing Coverage (DC): inspired by FDSS, it uses the

number of problems solved by each component solver to
sort the input portfolio in decreasing order.
• Random: sorts the solvers of the input portfolio ran-

domly. This algorithm generates five random orderings
and reports the average score of all generated orderings.
• Confidence: uses the confidence provided by the learned

models to sort the input portfolio in decreasing order. It
is defined by IBACOP2. Therefore, it only will be applied
in the comparisons with dynamic input portfolios.

2We also tried to use the ordering criteria defined by BUS against
our approach, but the source code is not available.
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Training Score Test Score
IPC 2008 IPC 2011 IPC 2011 IPC 2014

Ordering Algorithm Optimal Satisficing Optimal Satisficing Optimal Satisficing Optimal Satisficing

DFBnB 2008 1.0000 1.0000 - - 0.9421 0.9381 - -
DFBnB 2011 - - 1.0000 1.0000 - - 0.9830 0.9479
SLOPE PORTFOLIO 0.9944 0.9862 0.9993 0.9977 1.0000 0.9735 0.9764 0.9656
STS PORTFOLIO 0.9944 0.9642 0.9980 0.9756 1.0000 0.9576 0.9824 0.9786
RANDOM 0.9869 0.9604 0.8716 0.9545 0.9433 0.9591 0.8601 0.8450
DC PORTFOLIO 0.9985 0.9818 0.8579 0.9439 0.8435 0.9516 0.9031 0.7072
MF PORTFOLIO 0.9733 0.9334 0.6457 0.9472 0.9253 0.9437 0.6227 0.8267

Table 1: Training and test results of the sorted portfolios using MIP-configured portfolios.

Tie-breaking is resolved by using the order in which
solvers were initially specified. We have used an Intel Xeon
2.93 GHZ quad core processor with 8 GB of RAM. The time
limit T used is 1800 seconds.

6.1 Static Input Portfolios
Equation (1) is used to measure the quality of the resulting
orderings. This equation compares the area inscribed by the
probability function of each sorted portfolio with the optimal
sorting computed with DFBnB over the evaluation set. Thus,
higher scores stand for better anytime behaviors.

score(ρτ ) =
Fρτ (P (ρ, I, T ), T )

Fρτ∗ (P (ρ, I, T ), T )
(1)

The performance of all the considered sortings has been
evaluated with different evaluation test sets: either the training
data set or an entirely new one (test set). The second type
of experiments examines the generalization capabilities of all
ordering approaches. Also, to avoid introducing any bias in
the experimentation, different techniques for generating static
sequential portfolios are considered:

• Mixed-integer programming technique (MIP). This ap-
proach focused on deriving the optimal static sequen-
tial portfolio for a particular metric and a given training
set [Núñez et al., 2012].
• Random portfolios. They consist of a random selection

of planners from a pool of candidate planners (at most
half the number of candidate planners) so that at least
one problem is solved in each training domain. The time
allotted to each component planner is also randomly
chosen, such that the total time does not exceed T .
• Random-uniform portfolios. They are random portfolios

where the total available time is uniformly distributed
among all the component planners.

We have performed two sets of experiments. The first one
considers all the planning tasks from the IPC 2008 to con-
figure and sort the input portfolio (training set). The new do-
mains defined in the IPC 2011 are then used to assess the
performance of the resulting portfolio (test set). In this exper-
iment, we have used the set of candidate planners considered
in the design of FDSS (FDSS-1 or FDSS-2, depending on the
experiment) to configure the input portfolios. The second set
of experiments takes the whole collection of planning tasks
from the IPC 2011 as training set and the domains of the IPC
2014 (which were not included in IPC 2011) as test set. The

input portfolios have been configured considering all the par-
ticipants of the IPC 2011 but LPRPGP.3

The size of the candidate and component planners sets
are defined in the ranges [8, 38] and [3, 14] respectively. The
smaller planner sets were used in optimal planning, since
there were few participants in the last IPCs. As a reference,
IBACOP2, the state-of-the-art portfolio, considers 12 candi-
date planners and five component planners.

The ordering generated by DFBnB for the training sets
(IPC 2008 and IPC 2011) will be denoted as DFBnB 2008
and DFBnB 2011 respectively. Also, the ordering computed
with DFBnB over the test sets only will be used to compute
the test score of the orderings generated using the training set.

Table 1 shows the score of the resulting ordered portfo-
lios using MIP portfolios. The training results show that the
anytime behavior of the portfolio sorted with our greedy ap-
proach (SLOPE) is usually extremely close to the optimal per-
formance. As it can be seen, the test results show that the
orderings obtained by SLOPE and STS (using data from the
IPC 2008) are the optimal orderings for the test set. Also, the
permutation computed with the technique that generates the
best ordering for the training data (DFBnB 2008) shows over-
fitting as expected; it is worse than the random ordering, and it
does not generalize well to unknown domains. Moreover, the
orderings generated with MF and DC usually perform worse
than the RANDOM ordering. Finally, our greedy approach out-
performs the other approaches with a remarkable score (IPC
2011) and generalizes well on the IPC 2014.

Table 2 presents the training and test results for the random
and random-uniform portfolios. Since we are using random
portfolios, we have executed 50 times the training and test
phases, each one with a different random portfolio. As it can
be seen, the SLOPE random portfolio achieves again a train-
ing score extremely close to the score of the best permutation
(DFBnB solution) of the input portfolio. The test results for
random portfolios show that the SLOPE portfolio outperforms
others under the same conditions. Also, all the generated or-
derings usually perform better than RANDOM in the test set.
The differences in test scores between SLOPE and STS are
larger in satisficing planning than in optimal planning, mostly
because in satisficing planning the ordering task is harder and
there is much more variability in the areas of the portfolios.

Strikingly, the results for the random-uniform portfolio
show that the SLOPE portfolio achieves a training score ex-

3We experienced problems with the CPlex license.
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Random Portfolios

Training Score and Std. Deviation (average) Test Score and Std. Deviation (average)
IPC 2008 IPC 2011 IPC 2011 IPC 2014

Ordering Algorithm Optimal Satisficing Optimal Satisficing Optimal Satisficing Optimal Satisficing

DFBnB 2008 1.0000 - 0.0000 1.0000 - 0.0000 - - 0.9559 - 0.0448 0.9445 - 0.0530 - -
DFBnB 2011 - - 1.0000 - 0.0000 1.0000 - 0.0000 - - 0.9806 - 0.0170 0.9613 - 0.0450
SLOPE PORTFOLIO 0.9923 - 0.0095 0.9965 - 0.0038 0.9932 - 0.0109 0.9984 - 0.0030 0.9800 - 0.0245 0.9617 - 0.0478 0.9829 - 0.0115 0.9607 - 0.0409
STS PORTFOLIO 0.9850 - 0.0181 0.9900 - 0.0095 0.9794 - 0.0203 0.9752 - 0.0264 0.9797 - 0.0293 0.9595 - 0.0381 0.9774 - 0.0193 0.9394 - 0.0541
RANDOM 0.9661 - 0.0209 0.9571 - 0.0160 0.9143 - 0.0654 0.8394 - 0.0900 0.9255 - 0.0467 0.8792 - 0.0599 0.9485 - 0.0490 0.7895 - 0.1107
DC PORTFOLIO 0.9897 - 0.0113 0.9623 - 0.0284 0.9866 - 0.0154 0.9720 - 0.0246 0.9437 - 0.0606 0.8713 - 0.1082 0.9707 - 0.0180 0.8996 - 0.0858
MF PORTFOLIO 0.9426 - 0.0375 0.9332 - 0.0434 0.9393 - 0.0443 0.7977 - 0.1587 0.9438 - 0.0486 0.8671 - 0.1095 0.9773 - 0.0253 0.6877 - 0.2051

Random Uniform Portfolios

DFBnB 2008 1.0000 - 0.0000 1.0000 - 0.0000 - - 0.9370 - 0.0302 0.9086 - 0.0550 - -
DFBnB 2011 - - 1.0000 - 0.0000 1.0000 - 0.0000 - - 0.9776 - 0.0139 0.8878 - 0.0486
SLOPE PORTFOLIO 0.9996 - 0.0010 0.9996 - 0.0008 0.9992 - 0.0013 0.9995 - 0.0015 0.9353 - 0.0306 0.9123 - 0.0567 0.9791 - 0.0143 0.8919 - 0.0453
STS PORTFOLIO 0.9560 - 0.0228 0.9494 - 0.0180 0.8941 - 0.0535 0.8429 - 0.0644 0.8588 - 0.0497 0.8254 - 0.0704 0.9261 - 0.0331 0.7897 - 0.0823
RANDOM 0.9648 - 0.0216 0.9664 - 0.0098 0.9411 - 0.0255 0.8745 - 0.0431 0.9311 - 0.0271 0.8525 - 0.0433 0.9487 - 0.0149 0.7982 - 0.0529
DC PORTFOLIO 0.9913 - 0.0104 0.9623 - 0.0142 0.9636 - 0.0131 0.9871 - 0.0112 0.9413 - 0.0329 0.8183 - 0.0782 0.9530 - 0.0144 0.8694 - 0.0437
MF PORTFOLIO 0.9442 - 0.0304 0.9442 - 0.0208 0.9412 - 0.0314 0.9086 - 0.0558 0.9566 - 0.0292 0.8371 - 0.0800 0.9605 - 0.0339 0.7711 - 0.0981

Table 2: Training and test results of the sorted portfolios using random and random-uniform portfolios.

tremely close to the score obtained by the optimal sort-
ing despite the fact that the uniform method penalizes the
SLOPE heuristic. This method also penalizes the STS algo-
rithm. However, the STS portfolio performs worse than the
RANDOM portfolio. As it can be seen, the difference in test
score between SLOPE and STS (the two algorithms that are pe-
nalized by using the uniform time assignment) is quite large.
The scores of SLOPE, DFBnB 2008 and 2011 are very close.
However, the time required by our greedy approach is expo-
nentially shorter than the time required by DFBnB. Overall,
all ordering algorithms (but DFBnB) sort a given portfolio in
less than one second, while DFBnB can take several days to
sort a given portfolio (depending on the number of compo-
nent planners).

6.2 Dynamic Input Portfolios
We now apply all the ordering algorithms defined above to
IBACOP2, the winner of the IPC-2014 (satisficing planning).
Instead of configuring the same portfolio for all test instances
(as the approaches used in the previous experiments), IBA-
COP2 generates a different sequential portfolio for each input
instance. Therefore, the score of each sorted ordering is com-
puted as

∑
i∈I score(ρiτ ), where ρiτ is the ordered portfolio

computed for each input instance i. The generation of each
portfolio is based on learned data using a training set.

We have considered all the instances defined in the IPC
2011 to sort the input portfolios and the domains of the IPC
2014 (which were not included in IPC 2011) to evaluate the
resulting orderings.

Ordering algorithm Training score Test score

DFBnB 2011 160.00 105.93
SLOPE 159.94 108.95
STS 144.64 107.32
RANDOM 149.30 107.89
DC 158.31 105.92
MF 152.87 107.10
CONFIDENCE - 108.37

Table 3: Score of the resulting orderings using IBACOP2.

As it can be seen in Table 3, the SLOPE portfolio achieves
again near-optimal solutions in the training set. The training
score obtained by the DC portfolio is remarkable while the
training score of the STS portfolio is worse than the score
achieved by the random ordering (similarly to the random-
uniform portfolios). It is mainly due to the uniform method,
which is applied by IBACOP2 to distribute the available time
among the component solvers. The CONFIDENCE portfolio
does not show training score because it was ordered by its
learned models. On the other hand, the test score of the re-
sulting orderings show that SLOPE again outperforms oth-
ers. However, the test score of all the permutations are close
among them.

7 Conclusions and Future Work
In this work, we have presented a formal definition of the
problem of sorting the component solvers in sequential port-
folios. This open problem is addressed with the aim of im-
proving the performance of the portfolios over time. In addi-
tion, we have introduced two algorithms to solve the afore-
mentioned problem. The first one solves the problem opti-
mally for a given data set using DFBnB and an admissible
heuristic. Optimality is only guaranteed for the given training
set. The second one is a greedy approach that uses the ratio
between performance of each solver and execution time. Our
results show that:

• The performance of the portfolio over time can signifi-
cantly vary by using different ordering algorithms. Also,
it can be improved by using a good ordering strategy, as
shown by comparing against random orderings.

• DFBnB obtains an optimal ordering for the training set,
but it does not generalize well to unknown domains. This
optimal ordering shows overfitting when evaluating its
performance over a different test set.

• Our greedy technique, SLOPE, computes orderings very
fast, and obtains near-optimal solutions when compared
against the optimal technique. Also, it generalizes much
better than the state-of-the-art ordering techniques. The

1643



good behavior of SLOPE does not depend on the algo-
rithm used for generating the input portfolio, as shown
by using randomly generated portfolios (with uniform
and non-uniform times). We conjecture, in view of these
results, that it is going to be difficult to find a better algo-
rithm in terms of the balance between computation time,
generalization power and quality of results.

In the future, we want to apply the ordering algorithms to
portfolios generation techniques that generate several portfo-
lios while solving the given input instance.
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