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Abstract

Real-time strategy (RTS) games are hard from an
Al point of view because they have enormous state
spaces, combinatorial branching factors, allow si-
multaneous and durative actions, and players have
very little time to choose actions. For these reasons,
standard game tree search methods such as alpha-
beta search or Monte Carlo Tree Search (MCTS)
are not sufficient by themselves to handle these
games. This paper presents an alternative ap-
proach called Adversarial Hierarchical Task Net-
work (AHTN) planning that combines ideas from
game tree search with HTN planning. We present
the basic algorithm, relate it to existing adversar-
ial hierarchical planning methods, and present new
extensions for simultaneous and durative actions to
handle RTS games. We also present empirical re-
sults for the uRTS game, comparing it to other state
of the art search algorithms for RTS games.

Introduction

Real-Time Strategy (RTS) games are popular video games
that are particularly challenging for Al research [Buro, 2003;
Ontanén et al., 2013]. Previous work in this area [Ontafién,
2013] has shown that standard game tree search methods such
as alpha-beta search [Knuth and Moore, 1975], or Monte
Carlo Tree Search (MCTS) [Browne et al., 2012] are not
enough by themselves to play proficiently and to challenge
human supremacy in these games. In this paper we present
a new approach to search in RTS games called adversarial
hierarchical-task network (AHTN) planning that integrates
concepts of HTN planning [Erol ef al., 1994] into game tree
search to address one of the key open challenges in RTS
games: their enormous branching factor. We evaluate our
approach in the yRTS game, a minimalistic RTS game, that
has been used in the past to evaluate new approaches to RTS
games [Ontafién, 2013; Shleyfman er al., 2014].

RTS games are complex because they have large state
spaces and are real-time. In this context “real-time” means
that: 1) RTS games typically execute 10 to 50 simulation cy-
cles per second, leaving just a fraction of a second to decide
the next move, 2) players do not take turns (like in Chess),
but instead can issue simultaneous actions at the same time,
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3) concurrent actions are allowed (i.e., players can issue ac-
tions in parallel to as many game objects as they want), and
4) actions are durative. In addition, some RTS games are
partially observable and non-deterministic. In this paper we
concentrate on perfect information RTS games.

Durative actions and simultaneous moves have been ad-
dressed in the past in the context of RTS games [Churchill ez
al., 2012; Kovarsky and Buro, 2005; Saffidine ef al., 2012],
but the large branching factor caused by independently act-
ing objects remains a big challenge to be addressed. Recently
studied methods, such as Combinatorial Multi-Armed Ban-
dits [Ontafién, 2013; Shleyfman et al., 2014] have started to
tackle this problem but are still not sufficient to handle large-
scale RTS games such as StarCraft. To have a sense of scale,
the worst case branching factor of StarCraft has been esti-
mated to be on the order of 10°° or higher [Ontanén et al.,
2013], which is staggering if we compare it with the rela-
tively small branching factors of games like Chess (about 36)
and Go (about 180 on average).

The approach presented in this paper directly addresses
this problem by integrating HTN planning into game tree
search. HTN planning allows us to create “domain config-
urable” planners that do not have to explore the whole com-
binatorics of the task at hand, but instead choose from a re-
duced set of methods to achieve each task. Our new AHTN
approach represents a general hierarchical game tree search
algorithm for adversarial games that can be configured for
specific RTS games by providing a domain definition similar
to standard HTN planners. We present the basic AHTN al-
gorithm and then extend it to support durative, simultaneous,
and concurrent actions to apply it to RTS games.

In the remainder of this paper, after discussing related
work, we first introduce HTN planning. Then we present our
AHTN algorithm, followed by extensions to apply it to RTS
games, and an experimental evaluation in the uRTS game.

Related Work

The work presented in this paper is related to HTN-based
planning systems for adversarial domains such as TIGNUM 2
[Smith er al., 1998] for the game of Contract Bridge.
TIGNUM 2 allowed for adversarial games by defining the
tasks in HTN planning in such a way that they refer to moves
of each player and then using a standard HTN planning algo-
rithm. TIGNUM 2 also handled partial observability, which



we do not address in this paper. In the game of Go, adversar-
ial HTN planners also have been proposed [Meijer and Kop-
pelaar, 2001; Willmott et al., 1999]. Meijer and Koppelaar
used a standard HTN planner in which one player plans in-
dividually, and then passes the plan to the other player, who
plans and may force the first player to backtrack (similarly to
[Jonsson and Rovatsos, 2011]). This process is iterated until
plans are found to achieve the goals of both players or until
the search space is exhausted. An approach to hierarchical
adversarial search in RTS games was presented in [Stanescu
et al., 2014] based on performing game tree search at two
separate levels of abstraction instead of using HTN planning.
Compared to these methods, our main contributions are: 1)
a general adversarial HTN planning algorithm that is a direct
application of HTN planning to game tree search (and thus
can take advantage of standard optimizations such as alpha-
beta pruning), and 2) extensions for durative and simultane-
ous actions to handle RTS games.

HTN Planning

HTN planning [Erol ef al., 1994] is a planning approach that
creates plans by decomposing tasks into smaller and smaller
tasks. In this context a task t is a symbolic representation of
an activity in the world [Hogg er al., 2010]. There are two
types of tasks: primitive tasks correspond to actions that an
agent can directly execute in the world. Non-primitive tasks
represent goals that an agent might want to achieve and re-
quire finding a plan to achieve them before the agent can ex-
ecute them.

For the purposes of this section, we will assume plans are
totally-ordered [Ghallab et al., 2004]. This assumption is
lifted later in the paper. Under this assumption, a method m =
(t,C,w) is a tuple that contains a non-primitive task ¢, a set
of preconditions C, and a sequence of tasks w = [t1, ..., t,].
Intuitively, a method m represents a way in which we can de-
compose ¢ into a set of subtasks w if the set of preconditions
C is satisfied.

A hierarchical task network (HTN) N is a tree, in which
nodes are tasks (fask-nodes) or methods (method-nodes).
Each non-primitive task can only have one child, which must
be a method. A method m = (¢, C,w) has one child for each
of the tasks in w. Primitive tasks cannot have children. We
write leaves(N) to denote the set of leaves of HTN N. We
say that a task-node ¢ is fully decomposed when all the leaves
in the sub-HTN rooted in ¢ are primitive tasks.

Given a domain in which the world can be in one state
s € S, and the agent can select actions from a set .4, we as-
sume the existence of state transition function v : S x A —
S U {L} that defines the effect of actions in the world. If an
action a is not applicable in s, we define v(s,a) = L. Given
state s € S and a fully decomposed HTN N, we can use -~y
to determine the effect of executing NV on s. To do this, we
just need to execute each of the leaves in N in their respec-
tive sequential order. Given HTN N and a non-primitive task
t € leaves(N), we say that a method m = (¢,C, w) is ap-
plicable to t given N (we write m € applicable(N,t)) if all
the leaves in NV that precede ¢ are fully decomposed, and if all
preconditions in C' are satisfied in the state that results from
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Algorithm 1 HTNPlanning(sg, No)

1: loop

2:  if fullyDecomposed(No) A (so, No) # L then
3: return Ny

4:  endif

5:  pick a non-primitive task ¢ € leaves(No)
6:  if applicable(No,t) = () then

7: Backtrack

8:  endif

9:  pick m € applicable(No,t)
10: No = decomposition(No, t,m)
11: end loop

executing all tasks in N that precede t. HTN N is valid if all
methods in N are applicable to their parent tasks. The HTN
that results from adding an applicable method m as the child
of a non-primitive task ¢ in HTN N is called a decomposition
of N, and is denoted as decomposition(N,t,m).

An HTN planning problem P = (S, A,~,T, M, so, Np)
is a tuple, where S is the set of possible states of the world, .4
is the finite set of actions that can be executed by the agent,
v is the transition function that defines the effects of each
action in the world, 7T is a finite set of tasks, M is a finite set
of methods, sg € S is the initial state of the world, Ny is an
initial HTN that is used to encode the goals of the agent. The
purpose of HTN planning is to find a valid full decomposition
of the initial HTN N given the initial state sg.

Algorithm 1 shows a standard HTN planning algorithm,
which works as follows: lines 2-4 just check whether the cur-
rent HTN is fully decomposed, and if so return the solution.
Line 5 selects a non-primitive task from the HTN that doesn’t
have a method yet, lines 6 to 9 select a method for the task,
and line 10 adds the method to the HTN. The algorithm loops
until the HTN is fully decomposed. If at any iteration M; is
empty, the algorithm backtracks (lines 7-9).

Adversarial HTN Planning

This section presents an adversarial HTN planning algorithm
that we call AHTN. AHTN combines the minimax game tree
search algorithm with the HTN planning Algorithm 1. The
algorithm presented in this section assumes a turn-based, per-
fect information, deterministic zero-sum game and purely se-
quential methods (i.e., tasks are subdivided into a list of sub-
tasks to be executed sequentially) for clarity of presentation.
We relax these assumptions in the next section.

AHTN assumes that there are two players, maz and min,
and it searches a game tree (with maximum depth d) consist-
ing of min and max nodes in a similar fashion as minimax
game tree search, but with several key differences, which we
describe below. Each node n in the game tree is annotated
with a tuple (s, Ny, N_,t,,t_), where s is the current state
of the world, N, and N_ are the HTNs representing plans
for player maz and min, respectively, ¢, and ¢t_ (where ¢
is a task in V4 and {_ is a task in N_) represent execution
pointers that keep track of which parts of the HTN have al-
ready been executed. In the root of the game tree, {1 = L
and t_ = | indicate that no actions have been executed yet.



Algorithm 2 AHTNMax(s, Ny, N_,t;,t_,d)

1: if terminal(s) V d < 0 then
2 return (Ni, N_, e(s))
3: end if
4: if nextAction(N4,t4+) # L then
5.t = nextAction(Ny,t4)
6:  return AHTNMin(~(s,t), Ny, N_,t,t—,d — 1)
7: end if

8 Ni=L1L,N'=1v"=-

N = decompositions (s, Ny, N_,ty,t_)

10: forall N € N do

11: (N ,N_,v") = AHTNMax(s, N, N_, t4,t_,d)
12:  ifv’ > v* then

0 o

13: Ni =N, ,N=N_v*=4
14: end if
15: end for

16: return (N}, N* v")

nextAction(N,t) is a function that given HTN N and exe-
cution pointer ¢ returns the next primitive task to be executed
in N after t. If t = L, it returns the first primitive task to be
executed in N. If NV is still not fully decomposed, and no such
primitive task yet exists in IV, then nextAction(N,t) = L.

We say that a maxnode n = (s, Ny, N_, t, t_) is consis-
tent if the primitive actions that are already in NV} and N_ can
be executed given state s and transition function . Formally:

e nextAction(Ny,ty) = 1, or

o s’ = (s, nextAction(Ny,ty)) # L and min node
n' = (s, Ny, N_, nextAction(Ny, ty),t_) is consis-
tent.

The definition of min node consistency is analogous.

For max node n = (s,Ny,N_,t;,t_), we let
decompositions | (s, Ny, N_,ty,t_) denote the set of its
valid decompositions that add only one new method to
N.: {decomposition(Ny,t,m) | m € applicable(N4,t)},
where ¢ to the first non-primitive task of N (according to
execution order). decompositions_ is defined analogously.

Finally, we assume an evaluation function e that when ap-
plied to s € S returns player maz’s payoff in s if s is terminal
or an approximation thereof if s is non-terminal.

Using these definitions, Algorithm 2 shows the AHTN al-
gorithm for max nodes, function ATHFNMin is analogous.
Algorithm AHTN returns a triple (N4, N_,v) with the best
plans found for both players, and the result of the evaluation
function e in the terminal node reached by executing these
plans. Intuitively: Lines 1-3 determine whether a termi-
nal node or the maximum search depth d has been reached,
in which case the current plans and evaluation are returned.
Lines 4-7 determine whether the next action to execute for
player max is already in the current plan N, and in such
case, execute it and yield to player men. Line 8 initializes
some variables to compute the best plan for player maxz. Line
9 computes all possible decompositions that player max has
for its current plan. Lines 10-15 determine the decomposi-
tion resulting in the highest evaluation.

A key difference between the AHTN algorithm and stan-
dard minimax search is that recursive calls do not always al-
ternate between max and min. Notice that the recursive call in
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Figure 1: Illustration of a tree generated by the AHTN algo-
rithm for depth 2.

line 14 is still to AHTNMax and not to AHTNMin, because
the plan of player maz might still not be sufficiently decom-
posed to produce an action. The algorithm only switches from
max nodes to min nodes when the current plan can produce
the next action (line 6). Lastly, alpha-beta pruning [Knuth
and Moore, 1975] can be easily added to the algorithm to
decrease the number of explored nodes. The experimental
results reported in this paper use alpha-beta pruning.

Figure 1 illustrates the tree generated by Algorithm 2 for
depth d = 2. HTNs for each player in each of the game tree
nodes are shown. For example, we can see that in the root
node ng, the HTNs for both max and min contain a single
non-primitive task Win that needs to be decomposed. There
are two decompositions that max can apply to its HTN, re-
sulting in nodes n1 and ns. The decomposition leading to ny
does not yet result in any primitive action, and, thus, n; is still
amax node. Once player max has decomposed the HTN to the
point where the first action can be generated (nodes no and
ns, it is min’s turn to decompose his HTN. Finally, once min
can generate its action, the maximum depth is reached (nodes
ns and n4) and evaluation function e is applied to the cor-
responding game states to determine the value of the leaves.
Moreover, the game state in nodes ng and n; is the same (sq)
because no action was generated by max as the result of the
expansion that led from ng to n;. This example motivates the
fact that the number of leaves of the tree explored by AHTN
is bounded above by the product of the number of possible
HTN decompositions available to each player, which is ex-
pected to be much smaller than the number of raw sequences
of actions.



Algorithm 3 AHTNCD(s, Ny, N_,t,,t_,d)

s = simulate TillNextChoicePoint(s).
if terminal(s’) V d < 0 then
return (Np, N_,e(s"))
end if
if canlssueActions(+, s’) then
return AHTNMaxCD(s', Ny, N_, ty,t_,d)
end if
return AHTNMinCD(s', Ny, N_,t4,t_,d)

PRINRERD 2

Algorithm 4 AHTNMaxCD(s, N, N_,t4.t_,d)

if nextAction(N4,t4) # L then
t = nextAction(N+,t4)
return AHTNCD(v(s,t), Ny, N_,t,t_,d — 1)
end if
Ni=1N=1v"=-00
N = decompositions (s, Ny, N_,ty,t_)
for all N € N do
(N, N’ v') = AHTNCD(s, N, N_, t;,t_, d)
if v’ > v* then
Ny =N, N*=N'",v" =2
end if
: end for
: return (N7, N* v")

Problem Definitions for AHTN

Assuming the HTN planning problem definition used for the
execution of AHTN is incomplete, and at a given point in
the search, one player, say min, does not have any available
decomposition (i.e., N = () in line 9 of the algorithm), the
tree will be pruned, and even if max’s plan would have led
to a very good state, this will not be taken into account dur-
ing the search because of the incompleteness of the problem
definition being used. For this reason, in order for AHTN
to function as expected, the problem definition must satisfy
the condition that for any game state s € .S and for any task
t € T, there must always be at least one method m € M that
is applicable to ¢ in state s. In practice, this is easily achieved
in RTS games, by having an extra method for each task de-
fined in the following way: the precondition that is exactly the
negation of all the preconditions of all the other methods for
defined for ¢; the decomposition performs a wait action (for a
fixed number of game cycles), which is always executable in
RTS games, followed by a recursive call to ¢.

Extensions

Algorithm 2 assumes a turn-based game. To apply the frame-
work to RTS games, we need the following extensions.

Durative and Simultaneous Actions

To allow simultaneous actions, we employ the same approach
proposed in the ABCD algorithm (alpha-beta considering du-
rations) [Churchill ef al., 2012]. Specifically, by checking at
the beginning of the algorithm whether any of the two players
is ready to issue an action (canlssueActions(p, s), where p
is a player) in the current game state. If only one player is
ready, then everything proceeds normally. If both players are
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ready to execute an action, then one is picked (e.g., max) and
the algorithm proceeds normally. Notice that this approach
is a simplification to avoid having to generate the complete
matrix game that results from all possible action pairs players
can execute.

To allow durative actions, the first lines of the algorithm
need to be modified in the following way: when both players
are currently executing actions the game simply needs to be
simulated until a point when one of the two player actions fin-
ish and at least one player needs to issue another action (simu-
lateTillNextChoicePoint function). The AHTN algorithm re-
sulting from adding durative and simultaneous action support
is shown in Algorithms 3 and 4. As a result of this change,
if a player is executing a long-lasting action, the other player
might execute multiple short actions in parallel. Notice that
because of durative and simultaneous actions, the depth of the
tree (measured in number of actions issued) might now be dif-
ferent than the number of game cycles, since there might be
cycles when all units are already executing actions.

Concurrent Actions

In RTS games, players control multiple units to which they
can issue actions in parallel, i.e., while one unit is exe-
cuting an action, the player can issue actions to the other
units. In order to allow for concurrent actions, the algo-
rithm needs to be modified as follows: First, we need to
extend the HTN formalism to allow for concurrent method
decompositions by adding the possibility of parallel decom-
positions w = {t1,...,t,} for methods m (t,C,w).
Second, the transition function v needs to be redefined as
7 : 8 x 24 = SuU{L}, so that sets of actions can be is-
sued simultaneously. Third, the execution pointers ¢, and
t_ must now represent sets of actions rather than individual
actions, and the nextAction method needs to be modified to
accept and return sets of actions, because now more than one
action might be next to execute concurrently. This has to be
reflected in lines 5 and 6 of Algorithm 2, and lines 2 and 3 of
Algorithm 4. The rest of the algorithm remains unchanged.

Finally, we note that other (non-adversarial) approaches
to HTN planning with durative and concurrent actions exist
[Goldman, 2006; Ghallab et al., 2004].

Variables

The HTN formalization used in Algorithm 2 is rather sim-
plistic. In practice, a richer representation allowing the use
of variables in the definition of tasks and methods is useful.
In such representations, when decomposing a task ¢ with a
method m, all different variable instantiations of m would
be returned as different decompositions in line 9 of the algo-
rithm. The rest of the algorithm remains unchanged.

Experimental Results

We evaluated the performance of AHTN using the
free-software puRTS (https://github.com/santiontanon/microrts),
which has been used by several researchers to validate new
algorithms for RTS games [Ontafién, 2013; Shleyfman et al.,
2014]. Figure 2 shows a screenshot of a uRTS game, in
which two players (blue and red) compete to destroy each
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Figure 2: A screenshot of a uRTS game state. Green squares
are resources that can be harvested, small grey circles are
workers, larger yellow circles are melee units, and grey
squares are bases or barracks.

other’s units. pRTS is a minimalistic yet complex real-time
game environment that captures several defining features of
full-fledged RTS video games: durative and simultaneous ac-
tions, large branching factors, resource allocation, and real-
time combat. pRTS games are fully observable and deter-
ministic. To test AHTN’s performance, we crafted five dif-
ferent AHTN definitions for the 4RTS domain which work
as follows:

Low Level (AHTN-LL) contains just the low-level prim-
itive actions available in the game without any further non-
primitive tasks. The actions units can execute in uRTS are:
move (in any of the 4 cardinal directions), attack (any en-
emy unit within range), some units (bases, workers, and bar-
racks) can produce new units (in any of the 4 cardinal di-
rections), harvest minerals, return minerals to a base, or stay
idle. Thus, game trees traversed by AHTN-LL are identi-
cal to those searched by standard minimax search applied to
raw low-level actions. This definition contains a total of 11
methods for 3 different tasks. Low Level with Pathfinding
(AHTN-LLPF) is similar to Low Level, but instead of mov-
ing step by step, the move action is defined as taking a tar-
get as parameter (the A* algorithm is used to find a shortest
path). This definition contains a total of 12 methods for 4 dif-
ferent tasks. Portfolio (AHTN-P), in which the main task of
the game can be achieved only by three non-primitive tasks
(three rushes with three different unit types in the game) that
encode three different hard-coded strategies to play the game.
Thus, the game tree only has one max/min choice layer at the
top, followed by scripted action sequences. This definition
contains a total of 76 methods for 28 different tasks. Flexible
(AHTN-F) which is a more elaborate AHTN for uRTS, with
non-primitive tasks for harvesting resources, training units of
different types, and attacking the enemy. An example method
from this definition is shown in Figure 3. This definition con-
tains 49 methods for 19 different tasks. Flexible Single Tar-
get (AHTN-FST) which is similar to Flexible, but encoded
in such a way that all units that are sent to attack are sent to
attack the same target. This drastically reduces the branch-
ing factor because Flexible considers all the combinatorics of
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Figure 3: A sample method from the AHTN-F definition stat-
ing that a way to destroy player p2, (the (unit ? ? ?p2) con-
dition checks that player p2 has at least one unit) if we have
a base and a worker, is to 1) “harvest” resources, and 2) per-
form a “worker rush” with the remaining units.

sending each unit to attack every possible target. This defini-
tion contains a total of 51 methods for 21 different tasks.

Our AHTN framework is flexible enough to generalize
standard minimax game tree search (AHTN-LL) and port-
folio search (AHTN-P), in which the only decision is which
strategy out of a predefined set of strategies to deploy for each
player. To evaluate AHTN, we compared it against the fol-
lowing collection of players:

RandomBiased is a random player with action probability
biased toward attacking, if possible. LightRush is a hard-
coded rush strategy based on producing light units and send-
ing them to attack immediately. RangedRush is identical
to LightRush, except for producing ranged units. Worker-
Rush is a hardcoded rush strategy that constantly sends work-
ers to attack. ABCD (Alpha-Beta Considering Durations,
[Churchill ef al., 2012]) is a version of alpha-beta search de-
signed to handle domains with simultaneous and durative ac-
tions that uses a playout policy in the leaves of the tree to
evaluate the states (in our version we did not use scripted
move ordering, as in the original ABCD). MonteCarlo is
standard Monte Carlo search which performs as many ran-
dom playouts as possible for each of the actions available,
and returns the one achieving the highest average evalua-
tion. UCT is a standard implementation of UCT [Kocsis and
Szepesvri, 2006], extended with the same modifications as
ABCD to handle domains with simultaneous and durative ac-
tions. NaiveMCTS is a Monte Carlo Tree Search algorithm
specifically designed to games with large branching factors,
such as RTS games [Ontafién, 2013].

We gave every player a budget of 200 playouts per game
frame to decide on actions (but players can split the search
process over multiple frames; for example, if the game state
does not change during 10 game frames before a player needs
to issue an action, then such player has had time to perform
2000 playouts to decide for such action). All playouts were
limited to 100 game frames using RandomBiased as playout
policy, after which an evaluation function is used to determine
the value of the final state reached in the playout. ABCD’s
playout policy was chosen to be WorkerRush because in our
experiments, ABCD worked better with deterministic play-



Table 1: Average score for each player.
Total| Maps Total

Player M1 M2 M3| Player M1 M2 M3
RndBiased | .20 |.19 .17 .23| ABCD .36 |46 38 24
LightRush | .52 [.35 .61 .61 |MonteCarlo| .52 |.68 .51 .39
RangedRush | .43 |.28 .47 .53 UCT 37 1.53 35 24
WorkerRush | .64 .69 .60 .73 |NaiveMCTS| .56 .59 .63 .47
AHTN-LL | .11 |.12 .08 .14| AHTN-F | .90 |.87 .90 .92
AHTN-LLPF| .32 |.33 .27 .35| AHTN-FST| .79 |.80 .77 .81
AHTN-P | .77 |.71 .75 .84

Maps

Table 2: Game tree statistics for AHTN players: average
value and the maximum (in parenthesis)

d Tree Leaves Lookahead

LL 1.71 (6) 3065.66 (12020) 13.71 (40)
LLPF 2.44 (28) 3053.03 (9415) 37.20 (1001)
P 23.03 (123) 6.12 (8) 183.29 (1111)

F 4.58 (13) 1254.89 (11140) 48.50 (210)
FST 5.83 (20) 474.82 (2355) 58.52 (200)

out policies (since it does a single playout in each leaf of the
tree). For the players that require an evaluation function we
use a function that — inspired by LTD2 [Churchill and Buro,
2013] — computes the sum of the cost of each friendly unit
multiplied by the square root of their hitpoints, minus the cor-
responding sum for the enemy units.

The implementation of the AHTN algorithm that we used
employs alpha-beta search, and, in order to improve the eval-
uation of game states, it performs one single playout at each
terminal leave, before applying the evaluation function (ex-
actly in the same way as ABCD does).

To evaluate each algorithm we played a round-robin tour-
nament, in which each algorithm played 20 games (with var-
ious starting positions) against each other in each of 3 differ-
ent maps, making a total of 60 games per pair of algorithms
(13 x 13 x 3 x 20 = 10, 140 games in total). To compute
a score, we reward wining with 1 point and tying with 0.5
points. If a game reaches 3000 game cycles, it is considered
a tie. The three maps we used for our experimentation are:
M1 (8x8 tiles), M2 (12x 12 tiles), and M3 (16x16 tiles). All
players start with one base and one worker.

Table 1 shows the results we obtained. The “Total” column
lists the average score obtained by each player, showing that
the best scoring players are all AHTN players. Specifically,
the best performing player is AHTN-F (0.90), followed by
AHTN-FST, and AHTN-P. AHTN outperforms state of the art
MCTS algorithms such as UCT, or NaiveMCTS. This is re-
markable, because NaiveMCTS uses specialized Monte Carlo
search designed for RTS games. The map specific scores in-
dicate that the performance of non-AHTN methods (ABCD,
MonteCarlo, UCT, and NaiveMCTS) deteriorates as the size
of the map grows. This is expected, because more units are
produced in games played on larger maps which increases the
branching factor and thus reduces the search depth. For ex-
ample, ABCD achieves a score of 0.46 on the 8 x8 map, but
only 0.24 on the 16x 16 map. Some of the scripted meth-
ods seem to perform better on larger maps (e.g., LightRush),
but this is in fact caused by ABCD, MonteCarlo, UCT and
NaiveMCTS under-performing on larger maps.

10000 ¢ T T
E AHTN-LLPF
AHTN-LL
ABCD
AHTN-F
AHTN-FST
AHTN-P

1000 ¢

100 F

10 ¢

1 I I I I I
2 4 6 8 10 12

Figure 4: Time required (vertical axis, in milliseconds) to
reach a certain depth for the algorithms listed in Table 2.

To gain more insight into the performance of AHTN, we
analyzed the game trees the various AHTN players generate
when given a fixed time budget. Table 2 shows the average
depth (d) the players using iterative deepening had time to
reach, the number of tree leaves, and the lookahead which
is the average difference measured in game time between the
game state at the root of the tree and the game state at the
leaves of the tree. Notice that depth is measured in number
of actions issued, and lookahead in number of game cycles,
which might not be the same, since there are durative actions.
To generate these statistics we made each of the players in
Table 2 play one game against all other players on all maps
giving them 100 ms of time per game cycle.

Finally, Figure 4 shows the average time that the different
AHTN players and ABCD require to reach a certain search
depth (defined as number of primitive actions produced in se-
quence). AHTN-P is the method whose time grows slow-
est because there is only one decision point at the beginning.
The time required by AHTN-LL and AHTN-LLPF grows the
fastest (AHTN-LL and ABCD explore the full game search
space). AHTN-LLPF is slower than AHTN-LL because
the actions considered by AHTN-LLPF are higher-level than
those considered by AHTN-LL (although the branching fac-
tor can also be higher). Also, we can see that even if the
search space explored by AHTN-LL is equivalent to that ex-
plored by ABCD, ABCD is faster because it is a specialized
algorithm, whereas AHTN-LL pays the extra computational
cost of the AHTN planning machinery. In summary, AHTN
can be “configured” via different HTN domain definitions
that represent different tradeoffs between search-space size,
completeness, and computation time.

Conclusions and Future Work

Large branching factors caused by independent action selec-
tion have held back search-based Al systems for complex ad-
versarial real-time decision domains, such as real-time strat-
egy video games. The AHTN algorithm we introduced in
this paper addresses this problem by combining the idea of
hierarchical task decomposition with minimax search. The
positive results we obtained when comparing AHTN with nu-
merous state-of-the-art methods in a minimalistic RTS game
leads us to believe that AHTN has the potential to tackle more
complex decision problems involving concurrent actions and
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long-range economic planning, subject to the availability of
effective task decompositions.

There are multiple directions future research can expand
on AHTN’s ability to significantly decrease branching fac-
tors and to look ahead much farther than traditional adversar-
ial search methods that optimize raw action sequences. For
instance, existing scripted players for popular RTS games
such as StarCraft can be combined using AHTN to improve
their playing strength. Also, with thousands of RTS game
replays available, automatically extracting HTNs that mimic
human expert play at various strategic levels seems possible
and could enable AHTN-based Al systems to defeat human
experts who excel at long-range planning.
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