
Differentially Private Matrix Factorization∗

Jingyu Hua, Chang Xia, Sheng Zhong
State Key Laboratory for Novel Software Technology,

Department of Computer Science and Technology, Nanjing University, China
huajingyu@nju.edu.cn, changxia656569@gmail.com, zhongsheng@nju.edu.cn

Abstract

Matrix factorization (MF) is a prevailing collabora-
tive filtering method for building recommender sys-
tems. It requires users to upload their personal pref-
erences to the recommender for performing MF,
which raises serious privacy concerns. This pa-
per proposes a differentially private MF mecha-
nism that can prevent an untrusted recommender
from learning any users’ ratings or profiles. Our
design decouples computations upon users’ private
data from the recommender to users, and makes the
recommender aggregate local results in a privacy-
preserving way. It uses the objective perturbation to
make sure that the final item profiles satisfy differ-
ential privacy and solves the challenge to decom-
pose the noise component for objective perturba-
tion into small pieces that can be determined lo-
cally and independently by users. We also propose
a third-party based mechanism to reduce noises
added in each iteration and adapt our online algo-
rithm to the dynamic setting that allows users to
leave and join. The experiments show that our pro-
posal is efficient and introduces acceptable side ef-
fects on the precision of results.

1 Introduction
Recommendation systems (RSes), which provide users per-
sonalized recommendations of contents and services, have
been demonstrated to be extremely valuable for boosting
websites’ revenue and improving user experience. However,
everything has two sides, so do these systems. To offer useful
recommendations, a RS usually requires users to supply their
personal preferences for various items, which raise serious
privacy concerns.

Many early studies [Aı̈meur et al., 2008; McSherry and
Mironov, 2009; Calandrino et al., 2011] have shown that even
those user preferences typically considered insensitive (e.g.,
ratings of movies and TV viewing history) may be exploited
to infer a user’s health condition, political inclinations, and

∗This work was supported by NSFC-61321491, NSFC-
61425024, and NSFC-61300235

even his real identity. What’s worse, we have no way to guar-
antee that recommenders do not abuse user data for financial
benefits [Canny, 2002; Nikolaenko et al., 2013]. So, an ap-
pealing question is raised: is it possible to build a recommen-
dation system without the recommender learning the users’
ratings of items?

There are many collaborative filtering techniques available
to build a recommendation system. Matrix factorization (ab-
brev. MF) [Koren et al., 2009; Candès and Recht, 2009] is
among the most popular and successful. It wins the famous
Netflix prize competition [Koren et al., 2009], and is being
used in a lot of real-world recommendation systems. So, this
paper aims to propose a privacy-preserving MF scheme.

Just as the name suggests, MF aims to factorize the user-
item rating matrix R into the product of two smaller matri-
ces U and V , which are considered to capture latent features
of users and items, respectively. The core of this method is
to utilize some machine learning algorithm, e.g., Stochastic
Gradient Descent, to search for U and V that minimize the
prediction errors on the set of known ratings. A privacy-
preserving MF scheme should guarantee that the execution of
the learning algorithm exposes only V to the recommender
but never any information about individual ratings or even U .

Nikolaenko et al. [2013] first study this problem, and pro-
pose an elegant solution through a cryptographic technique
known as garbled circuits. Nevertheless, garbled circuits are
considered computation expensive even if they have signifi-
cantly reduced time overheads by exploiting the sparsity char-
acteristic of users’ rating matrix. In this paper, we aim to
propose a more lightweight solution under the constraint of
differential privacy [Dwork et al., 2006], which is a recently
hot privacy model with provable privacy guarantees but fewer
computation overheads. Specifically, we make the following
contributions:

(1) We first consider the scenario where the recommender
is trusted, which means personal ratings can be exposed to
the recommender. The goal here is to ensure that the final
item profile matrix V to be published satisfies ε-differential
privacy. Our proposal utilizes objective-perturbation tech-
nique, which is first proposed in [Chaudhuri and Monteleoni,
2009] to implement differentially private logistic regression,
to achieve this goal. We figure out the required distribution of
the noise component for objective perturbation in MF.

(2) We then extend the above proposal to the scenario

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1763

where the recommender is untrusted. For this purpose, we
decouple the computations on private ratings from the rec-
ommender to users in each iteration of learning. The recom-
mender is only responsible for aggregating perturbed local
results in a differentially private way. We address the chal-
lenge to decompose the noise component for objective per-
turbation into small pieces that can be determined locally and
independently by users. We also propose a third-party-based
optimization to reduce the noises needed to add in each itera-
tion for improving the precision of results.

(3) The above proposal assumes that every user remains
online during the whole process MF. However, MF may last
for more than one week so that it is impractical to make such
assumption. Therefore, we further present an improvement
to make our proposal support the more practical setting that
allows users to leave and join during MF.

(4) We conduct experiments based on two datasets. The
results demonstrate that our proposal is efficient enough and,
moreover, the privacy protection measures bring limited side
effects on the precision of learning results.

2 Related Work
There have been some work introducing differential privacy
to recommender systems. Nevertheless, most of them [McSh-
erry and Mironov, 2009; Machanavajjhala et al., 2011; Park
and Acharya, 2011] consider that the recommender is trusted
and allowed to explicitly aggregate users’ ratings. Their only
goal is to guarantee that the distribution of the results pub-
lished by the recommender is insensitive to any individual
record and thus prevent other parties from inferring a single
user’s ratings. Xin and Jaakkola [2014] are the first to deal
with the untrusted recommender without using cryptographic
tools. Similar with our work, they separate sensitive compu-
tations that can be executed on the user side from those must
be carried out on the server. However, their proposal demands
the existence a group of public users who are willing to share
their ratings with the recommender, which is not fulfilled in
our scenario. In addition, this proposal does not satisfy dif-
ferential privacy, i.e., is not provably secure.

As the core of MF is a machine learning algorithm, our
work is also quite related to another area: differentially pri-
vate machine learning [Chaudhuri and Monteleoni, 2009;
Chaudhuri et al., 2011]. Work in this area aims to implement
differentially private versions of prevailing machine learning
algorithms such as logistic regression and support vector ma-
chines. These algorithms mostly focus on the single-party
setting, where all the user data has been aggregated on a singe
trusted party. Their goal is to guarantee that any published
model that is learned from the data satisfies differential pri-
vacy. Rajkumar and Agarwal [2012] propose an elegant dif-
ferentially private stochastic gradient descent algorithm for
the multi-party setting. Note that stochastic gradient descent
is a key solution to MF. Unfortunately, we cannot directly ap-
ply this proposal since the scenario we consider in this paper
is not completely the same with theirs although both of them
involve multi-parties. The biggest difference is that the par-
ties in their setting are organizations owning a large number
of users’s data, while the ones in our setting are individual

users owning their own data. As we mentioned in Sec. 4.2, if
we directly apply their approach, the precision of the obtain
model will be extremely low. Moreover, their proposal can
only guarantee a slightly weaker form of differential privacy
instead of the original form.

3 Preliminaries
3.1 Matrix Factorization
This paper considers the standard setting of collaborating
filtering, in which n users rate a small subset of m items.
We denote by R = [rij]n×m the full rating matrix, and by
R ⊂ [n]× [m] the user-item pairs that have values in R, i.e.,
for which ratings have been generated. Note that R is usually
extremely sparse, i.e., W = |R| = Θ(m + n) � m × n.
The goal of a recommendation system is to predict the blank
ratings for the user-item pairs in [n]× [m] \ R.

MF is one of the most popular methods for solving this
problem. In its basic form, each user i is characterized by a
profile vector ui ∈ Rd, and each item j is characterized by a
profile vector vj ∈ Rd. User i’s rating of item j, which is de-
noted by rij , is then approximated by the inner product of ui
and vj , i.e., uTi vj . The dimension d of these vectors are very
small, say 20 to 100. The recommender computes the profile
matrix U = [uTi]i∈[n] and V = [vTj]i∈[m] by performing the
following regularized least squares minimization (RLSM):

min
U,V
C(U, V) =

1

M

∑
(i,j)∈R

(rij − uTi vj)2 + λ
∑
i∈[n]

‖ui‖22

+ µ
∑
j∈[m]

‖vj‖22,
(1)

where both λ and µ are positives. The same as the work in
Nikolaenko et al. [2013], we focus on the popular approach,
stochastic gradient descent (abbr. SGD), to minimize Equa-
tion (1). Denote byE(U, V) the squared prediction error. i.e.,
E(U, V) =

∑
(i,j)∈R(rij − uTi vj)2. SGD iteratively learns

U and V based on the following updating rules:

ui(t) =ui(t− 1)− γ · (∇ui(U(t− 1), V (t− 1))

+ 2λui(t− 1)),
(2)

vj(t) =vi(t− 1)− γ · (∇vj (U(t− 1), V (t− 1))

+ 2µvj(t− 1)),
(3)

where γ > 0 is a small gain factor and

∇ui(U, V) = −2
∑

j:(i,j)∈R

vj(rij − uTi vj), (4)

∇vj (U, V) = −2
∑

i:(i,j)∈R

ui(rij − uTi vj). (5)

The initialU(0) and V (0) are composed of uniformly random
norm 1 rows.

3.2 Differential Privacy
Differential privacy becomes a hot privacy model recently as
it provides provable privacy guarantees but introduces fewer
computation overheads. It requires that the output of any
computation based on a underlying database is insensitive to

1764

the removal and the addition of a particular record. This indi-
cates that it is privacy harmless for a record owner to include
his record in the database. We formally give the definition of
different privacy below [Mohammed et al., 2011].

Definition 1 (ε-differential privacy) A randomized algo-
rithm Ag is differentially private if and only if any two
databases D and D′ contain at most one different record (i.e.,
|D4D′| ≤ 1), and for any possible anonymized output O ∈
Range(Ag): Pr[Ag(D) = O] ≤ eε × Pr[Ag(D′) = O],
where the probability is taken over the randomness of Ag.

In the above equation, ε is positive, and it is believed that the
smaller its value is, the stronger the privacy guarantee is.

3.3 Setting
This paper considers a recommender system including two
types of actors: users and the recommender. Every user
i ∈ [n] wants to preserve her ratings. The recommender is
untrusted, which means he is curious about and even may
misuse users’ ratings for making profits.

Our objective is to design a differentially private MF
scheme to allow the recommender to obtain the accurate item
profile matrix, i.e., V , but neither the user profile matrix, i.e.,
U , nor the individual ratings. Note that we should prevent
the recommender from getting U since they can derive users’
ratings precisely by computing the product of U and V . As
Nikolaenko et al. [2013] mentioned, once V is learned and
published, a user i can infer her user profile ui by solving (1)
w.r.t. ui via ridge regression. With both ui and V , she can
further predict her preferences on all the items locally.

4 Differentially Private Matrix Factorization
4.1 Scenario with Trusted Recommender
We first consider the simple centralized scenario, where
the recommender is assumed to have collected the ratings
of users and wants to learn and publish V satisfying ε-
differential privacy. In this scenario, the recommender is con-
sidered to be trusted and never disclose users’ privacy. Ma-
trix U must be kept secret, otherwise the attacker can predict
a specific user’s ratings of all the items as long as she knows
which vector in U corresponds to this user.

We apply the objective perturbation method, which is first
proposed by [Chaudhuri and Monteleoni, 2009], to fulfill the
above goal. Its basic idea is to achieve differential privacy
by randomly perturbing the objective function instead of per-
turbing the output of the leaning algorithm. Specifically, in
our case, the objective in (1) is perturbed as follows:

min
V
C̃(V) =

1

M

∑
(i,j)∈R

(rij − uTi vj)2 + λ
∑
i∈[n]

‖ui‖22

+ µ
∑
j∈[m]

‖vj‖22 +
1

M

m∑
j=1

ηTj vj ,

(6)

where N = [ηj]d×m is a noise matrix for objective perturba-
tion. Because U is kept confidential, the recommender can
first perform the original RLSM in (1), and then use the ob-
tainedU as a constant profile matrix when minimize (6). That
is why (6) contains only one matrix variable, i.e., V .

Theorem 1 Let [minr,maxr] (minr,maxr ∈ R) be the
range of users’ rating values. If each vector ηj ∈ N in (6) is
independently and randomly picked from the density function

p(ηj) ∝ e−
ε‖ηj‖

2∆ , where ∆ = maxr −minr, the derived V
satisfies ε-differential privacy.

Proof 1 Let D = {ri1j1 , ri2j2 , · · · , riW−1jW−1
, rpq}

and D′ = {ri1j1 , ri2j2 , · · · , riW−1jW−1
, r′pq} be two

sets of ratings differing at one record rpq . Here,
{(i1, j1), (i2, j2), · · · , (iW−1, jW−1, (p, q))} = R. Let
N and N ′ be the noise matrices in (6) when training with
D and D′, respectively. Obviously, C̃(V) is differentiable
anywhere.

Let V̄ be the derived item profile matrix minimizes both
the optimization problems, we have ∀j ∈ {1, 2, · · · ,m},
Ovj C̃(D, v̄j) = Ovj C̃(D′, v̄j) = 0. Thereby,

ηj − 2
∑

i:(i,j)∈η

ui(rij − uTi v̄j) = η′j − 2
∑

i:(i,j)∈η

ui(r
′
ij − uTi v̄j).

(7)
If j 6= q, we can derive from (7) that:

ηj = η′j .

So, ∀j 6= q, ‖ηj‖ = ‖η′j‖.
If j = q, we can derive that:

ηj − 2up(rpq − uTp v̄q) = η′j − 2up(r
′
pq − uTp v̄q)

ηj − η′j = 2up(rpq − r′pq).

Since ‖up‖ ≤ 1 and |rpq − r′pq| ≤ ∆, we obtain that ‖ηj −
η′j‖ ≤ 2∆.

Therefore, for any pair of rpq and r′pq ,

Prob[V = v̄j |D]

Prob[V = v̄j |D′]
=

∏
j∈{1,2,··· ,m} p(ηj)∏
j∈{1,2,··· ,m} p(η

′
j)

= e−
ε(

∑
j∈{1,2,··· ,m} ‖ηj‖−

∑
j∈{1,2,··· ,m} ‖η

′
j‖)

2∆

= e−
ε(‖ηq‖−‖η′q‖)

2∆ .
(8)

As ‖ηq − η′q‖ ≤ 2∆, the above ratio is no more than eε.

In this scenario, we do not jointly optimize (6) w.r.t. U and
V because it would invalidate Theorem 1. We cannot guaran-
tee that the values of ui at the both sides of Eqa (7) are equal
in this case. As a result, it would significantly increase the
difficulty of deriving the distribution of eta, which is critical
for our proposal.

4.2 Scenario with Untrusted Recommender
We now try to extend our proposal to the scenario described in
Sec. 3.3. In this new setting, the central recommender is con-
sidered to be non-trusted. Therefore, users can no longer feel
free to send their raw ratings of items to the recommender.

Fortunately, we observe from (2) that the adaption of a
user’s profile vector ui only relies on user i’s own ratings
rather than those of other users, which means all these com-
putations can be performed locally instead of centrally on the
recommender side. Therefore, user profile vectors can be kept

1765

secret on the user side, and thus protected against the recom-
mender. Certainly, user i has to request the immediate profile
vectors of items that he has rated from the recommender in
each round. So long as these item profile vectors satisfying ε-
differential privacy, the user profile vector derived from them
must satisfy ε-differential privacy as well, which means no
user can learn private ratings of others in this process.

Different from the user profile vectors, the adaption of
each item profile vector vj in each iteration relies on mul-
tiple users’ ratings of item j as well as their private user pro-
file vectors, which means such computations involve multi-
parties. We may leverage existing secure multi-party com-
puting methods based on cryptographic techniques to protect
user privacy in this process, however these methods usually
rely on too many heavyweight cryptographic operations that
are far from practical. In this paper, we try to implement a
multi-party version of the objective perturbation method de-
scribed in the last section to address this challenge.

Specifically, after the objective is perturbed as (6), the up-
dating rule of vj in (3) becomes

vj(t) = vi(t− 1) + γ · (∇vj (U(t− 1), V (t− 1))

+ 2µvj(t− 1)− ηj),
(9)

where ηj is a random noise vector whose density function

p(ηj) = k · e−
ε‖ηj‖

2∆ . Suppose that Userj = {i1, i2, · · · , ik}
are k users that have rated item j. Our proposal de-
composes this update and make these users each compute
a piece of information, i.e., her local gradient ∇̂isvj (t) =

∇isvj (t) + ηisj , where ∇isvj (t) = −2ui(t)(rij − ui(t)T vj(t))
and

∑
s=1,2,··· ,k η

is
j = ηj . They then forward these partial

results to the recommender, who combines them to update
vj(t). However, this extension encounters two challenges in
order to satisfy ε-differential privacy:

(1) According to Theorem 1, the objective perturbation will
preserve differential privacy if each noise vector ηj ∈ N has
the density

p(ηj) ∝ e−
ε‖ηj‖

2∆ . (10)

However, in the distributed scenario, ηj is no longer selected
individually by the recommender. So, the first challenge is
how the k users can independently select ηisj such that the re-
sulting sum

∑
s=1,2,··· ,k η

is
j follows the distribution of (10)?

(2) The objective perturbation guarantees that publishing
final V does not breach ε-differential privacy. Nevertheless,
in the current setting, the untrusted recommender obtain not
only final V but also a series of immediate results (i.e., ∇̂isvj)
from each user after each iteration. Although each of these
results include a noise vector, the recommender can easily
eliminate their effect: Considering the following difference
between results of consecutive iterations

∇̂isvj (uis(t), vj(t))− ∇̂
is
vj (uis(t− 1), vj(t− 1)) =

∇isvj (uis(t), vj(t))−∇
is
vj (uis(t− 1), vj(t− 1)),

(11)

the recommender learns the difference between the true local
gradients and the effect of ηisj has been eliminated. This
may help the recommender predict some information about

user is’s ratings, and thus compromise privacy constraint. We
name this attack difference attack.

Our solution to the first problem relies on the lemma below.
Lemma 1 If each element in every ηj of (6) is independently
and randomly picked from Laplace (0, 2∆

√
d/ε), the derived

item profile matrix V satisfies ε-differential privacy.
Proof 2 We still follow the proof of 1 and come to (8). Sup-
pose that ηq = [x1, x2, · · · , xd]T . As each element xi is in-
dependently randomly picked from the Laplace (0, 2∆

√
dε)

distribution, its probability density function is p(xi) =
ε

4∆
√
d
e
− ε|xi|

2∆
√
d .

Prob[V = v̄j |D]

Prob[V = v̄j |D′]
=

∏
j∈{1,2,··· ,m} p(ηj)∏
j∈{1,2,··· ,m} p(η

′
j)

=
p(ηq)

p(η′q)

= e
−
ε
∑
k=1,2,··· ,d |xk|

2∆
√
d /e

−
ε
∑
k=1,2,··· ,d |x

′
k|

2δ
√
d

= e
ε
∑
k=1,2,··· ,d(|xk|−|x

′
k|)

2∆
√
d

≤ e
ε
√
d
∑
k=1,2,··· ,d(xk−x

′
k

)2

2∆
√
d

= e
ε
√
d‖ηq−η′q‖

2∆
√
d ≤ eε

So, we obtain the conclusion.
Besides this lemma, we also have the following theorem:

Theorem 2 If random number h ∼ Exponential(1), and
random number c ∼ N(0, 1) independent of h, then X =

µ+ b
√

2hc ∼ Laplace(µ, b). Here, the notation “∼” means
“distributed as”.
Proof 3 Please see [Kotz et al., 2001].

We can then use the above theorem to guide each user
is ∈ Userj to pick ηjis independently such that the resulting
sum ηj satisfying (10). In particular, before the first round
of iteration, the recommender picks a random number vector
Hj ∈ Rd, of which each element Hj [l] ∼ Exponential(1),
and sends it to every user in Userj . Then, user is inde-
pendently selects a random vector Cis , where each element
Cis [l] ∼ N(0, 1/k) and computes ηisj according to

ηisj [l] =
2∆
√
d

ε
·
√

2Hj [l]Cis [l]. (12)

She will use ηisj to compute ∇̂isvj in each round. It is easy to
prove that the resulted sum of ηisj on k users satisfies (10).

Here, although Hj is picked by the recommender, he has
no ways to predict the real value of ηisj due to the existence of
Cis determined by the user locally. Thus, it is infeasible for
him to remove this noise piece from ∇̂isvj . In addition, users
can easily monitor whether the recommender generatesCis [l]
following Exponential(1). Revealing one user’s piece noise
to the recommender can only harm himself, not give the rec-
ommender extra information about the values of other users.

For the scend challenge, Rajkumar and Agarwal [2012]
propose a smart solution by adding another noise vector
ρisj (t) to each local gradient:

∇̃isvj (t) = ∇isvj (t) + ηisj + ρisj (t). (13)

1766

Note that ρisj (t) should be re-sampled during each iteration.
They show that the privacy leak due to (11) can be pre-
vented if ρisj (t) can guarantee that ∇isvj (t) + ρisj (t) satisfies
ε-differential privacy. In our case, it is easy to prove this re-
quirement is fulfilled if the value of ρisj (t) is generated ac-

cording to the density p(ρisj (t)) ∝ e−
ε‖ρis

j
(t)‖

2∆ .
Unfortunately, if each local gradient value sent to the rec-

ommender includes such noise, the utility of V that we obtain
is significantly affected according to our experiment. The
previous work does not encounter this problem because it
considers a different scenario: the parties participating in the
distributed learning are organizations having aggregated the
records of many users, rather than end users. As a result,
the number of parties is far smaller than that in our scenario,
which indicates that much fewer noises are introduced in each
iteration. Thus, the utility of the final result is affected not as
significantly as in our case.

We exploit a semi-honest third-party to address this prob-
lem. Here, semi-honest means that this party follows the pro-
tocol but is curious about user’s privacy. In particular, our
solution is composed of the following four steps:

(1) When user is requests vj(t) from the recommender in
the beginning of the t-th iteration, the server generates a ran-
dom noise vector ψisj (t), of which the elements are i.i.d. on
[0, P]. Here, we denote by P a big integer. It then returns
ψisj (t) together with vj(t) to user is.

(2) User is first computes ∇̃isvj (t) = ∇isvj (t) + ηisj + ρ̃isj (t).
Note that the noise vector ρ̃isj (t)) here is different from ρisj (t)
in (13). We will describe its valuation later. Afterwards, the
user further computes φisj (t) = ∇̃isvj (t) + ψisj (t) modP, and
forwards it to the third-party.

(3) The third-party aggregates the results from users in
Userj and computes φj(t) =

∑k
s=1 φ

is
j (t) modP . The re-

sult is forwarded to the recommender.
(4) The recommender computes ∇̃vj (t) = φj(t) −∑k
s=1 ψ

is
j (t) modP , and uses it to update vj(t).

Due to the existence of ψisj (t), it is infeasible for the curi-
ous third-party to learn any useful information about the real
value of ∇isvj (t) in the above process provided that it does
not collude with the recommender. Thereby, the rating value
risj is also protected against the third-party. By applying this
optimization, to defend against the difference attack we men-
tioned earlier, we require

∑k
s=1(∇isvj (t) + ρ̃isj (t)) rather than

every ∇isvj (t) + ρisj (t) to satisfy ε-differential privacy. It is
easy to prove that so long as

ρ̃j(t) =

k∑
s=1

ρ̃isj (t) ∝ e−
ε‖ρ̃j(t)‖

2∆ ,

such requirement is fulfilled. Each user uis can use the same
method proposed earlier for picking ηjis(t) to pick ρ̃isj (t)

based on Theorem 2. It is easy to demonstrate that ρ̃isj (t)

is much smaller than ρisj (t) with a high probability, which
means our scheme above can significantly reduce the side ef-
fects on the utility of the learning result.

4.3 Further Practical Consideration

By now, our proposal requires every user to stay online all
the time during MF. Nevertheless, this is impractical as MF
may last for one or several weeks and there must exist users’
leaving and joining during such a long time. Fortunately, ac-
cording to our experiments on Netflix datasets, SGD-based
MF is robust against dynamic changes of users. In the experi-
ments, we make users leave and join with specific proabilites
before every iteration, and the adaption in each learning is
just based on the data of currently online users. The results
show that the precision of the final results is slightly affected.

However, our protection proposal confronts a big challenge
under this dynamic setting: it is difficult for different groups
of users to produce random variables with the same sum.
Note that, in our current design, every noise vector ηj for ob-
jective perturbation equals the sum of random vectors locally
picked by all the users in Userj . This vector should remain
constant in different iterations. Nevertheless, in the dynamic
setting, as online users in Userj are always changing, ηj will
vary in differential iterations, which result in that final V no
longer satisfies ε-differential privacy.

We make use of the semi-honest third-party described ear-
lier to address this problem. In this improvement, before
starting MF, we add an additional initialization phase to de-
termine every ηj in advance. In particular, this initialization
works as follows:

(1) The recommender randomly picks k online users, i.e.,
UO = {ui1 , ui2 , · · · , uik}, and sends each uis ∈ UO a ran-
dom vector βisj , of which the elements are i.i.d. on [0, P].

(2) Then, user uis picks the local noise vector ηisj the same
as before, and computes τ isj = ηisj + βisj modP . The result
is forwarded to the third-party.

(3) The third-party aggregates the results from each user
and computes τ̃j = αj +

∑k
s=1 τ

is
j modP , where αj is

another random vector, of which the elements are i.i.d. on
[0, P]. The result is sent to the recommender.

(4) The recommender then derives τ̂j = αj +∑k
s=1 η

is
j modP by removing each βisj , and keeps it secret.

When MF starts, every iteration executes the same as de-
scribed in the end of Sec. 4.2 except three exceptions: First,
in Step 1, if there are k′ online users collaborating to update
vj , the recommender randomly divides τ̂j into k′ pieces, and
sends every user uis in this group a piece τ̂ isj . Second, user
uis will use τ̂ isj to replace ηisj in Step 2. Third, in Step 3 the
third-party minuses αj from φj(t) before uploading.

It is easy to find that by applying the above adaption, ηj no
longer varies in different iterations and equals the sum of ηisj ,
determined by the k online users in the initialization process.
Moreover, it is infeasible for the recommender or the third-
party to infer the true value of ηj if they do not collude. The
recommender may compute ∇̃vj (t) − τ̂j to remove ηj from
∇̃vj (t). However, this operation will introduce a new and
more random noise, i.e., −αj , which can better protect the
user privacy. The situation is the same for the third-party.

1767

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

iterations=20

iterations=40

iterations=60

iterations=80

iterations=100

(a) ε = 0.1, change iterations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

ǫ=0.05

ǫ=0.1

ǫ=0.15

(b) 100 iterations, change ε

Figure 1: CDF of prediction errors for Netflix in S1: the rec-
ommender is trusted

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

iterations=20

iterations=40

iterations=60

iterations=80

iterations=100

(a) ε = 0.1, change iterations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

ǫ=0.05

ǫ=0.1

ǫ=0.15

(b) 100 iterations, change ε

Figure 2: CDF of prediction errors for MovieLens in S1: the
recommender is trusted

5 Evaluation
We now evaluate the performance of our proposal based on
two public datasets. The first one is reduced from the well-
known Netflix dataset. Specifically, it is composed of 191668
users’ ratings of 100 movies. The movies were selected uni-
formly & randomly from the original dataset, and all the
users’ ratings of these movies were included. We repeated
each experiment by selecting different sets of movies, and
did not observe obvious differences among the results. The
second one is MovieLens 100k, which consists of 943 users’
ratings of 1682 movies. For simplicity, we below refer to
them as Netflix and MoveLens, respectively. The range of
ratings is on a 5 star range for both.

It is obvious that our privacy-protection mechanism mainly
brings two kinds of side-effects on MF: First, it introduces in-
accuracies due to the perturbations of the objective and inter-
mediate results. Second, it brings communication overheads
among users, the recommender and the third-party in each it-
eration, which dominate the time costs of the whole system.
So, our evaluations mainly use MF accuracy and communi-
cation overheads as the key metrics.

For MF accuracy, we mainly consider two metrics. The
first is the cumulative distribution function (CDF) of predic-
tion errors, i.e., {|r′ij − rij ||(i, j) ∈ R}. We denote by r′ij
the ratings predicted by the inner product of ui and vj derived
from MF, and by ri,j the real ratings of users. The second one
is the mean increase of prediction errors compared with the
baseline, i.e., the original MF scheme without any protection
running 100 iterations. We do not take [Nikolaenko et al.,
2013]’s mechanism as the baseline because its computation
loads are several orders of magnitude greater than ours al-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

iterations=20

iterations=40

iterations=60

iterations=80

iterations=100

(a) ε = 0.1, change iterations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

ǫ=0.05

ǫ=0.1

ǫ=0.15

(b) 100 iterations, change ε

Figure 3: CDF of prediction errors for Netflix in S2: the rec-
ommender is untrusted but the online users are static

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

iterations=20

iterations=40

iterations=60

iterations=80

iterations=100

(a) ε = 0.1, change iterations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

ǫ=0.05

ǫ=0.1

ǫ=0.15

(b) 100 iterations, change ε

Figure 4: CDF of prediction errors for MovieLens in S2: the
recommender is untrusted but the online users are static

though they used a much smaller dataset. In addition, as they
introduce few noises, their accuracy infinitely approaches the
unprotected MF.

We implement our proposals for all the three scenarios con-
sidered in this paper: (S1) the recommender is trusted; (S2)
the recommender is untrusted but the online users are static;
(S3) the recommender is untrusted and the online users are
dynamic. For each scenario, we vary ε and the iteration
counts. The gain factor γ is 2−5. The parameters λ and µ
in (1) are both set to 0.001. The dimension d of all the profile
vectors is set to 50.

The results of the first metric for S1 are present in Fig. 1
and Fig. 2. We find that the precision increases with the it-
eration number and the privacy budget ε. Specifically, the
side effects of objective perturbation on MF precision become
negligible when ε ≥ 0.15 for Netflix after 70 iterations. Ac-
cording to Fig. 7(a), the mean increase of prediction errors
is below 0.03 compared with the baseline. The results for
MovieLens are much better: the MF precision becomes ex-
tremely approaching the baseline just after 40 iterations when
ε = 0.05. According to Fig. 8(b), the mean increase of pre-
diction errors even slightly deceases compared with the base-
line. This is because the precision of the raw MF (i.e., the
baseline) is not so high that introducing noises in learning
may help some elements escape from local optimums.

The results for S2 are present in Fig. 3 and Fig. 4. We can
find that the results of this scenario are very close to those
of S1 for both datasets, which indicates that the additional
noises added in each iteration for defending against the dif-
ference attack (Please refer to Sec. 4.2) will not significantly
affect MF precision as well. In particular, the mean increase

1768

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

iterations=2000

iterations=4000

iterations=6000

iterations=8000

iterations=10000

(a) ε = 0.8, change iterations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

ǫ=0.4

ǫ=0.8

ǫ=1.2

ǫ=1.6

(b) 10000 iterations, change ε

Figure 5: CDF of prediction errors for Netflix in S3: the rec-
ommender is untrusted and the online users are dynamic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

iterations=2000

iterations=4000

iterations=6000

iterations=8000

iterations=10000

(a) ε = 0.1, change iterations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 100
0

20%

40%

60%

80%

100%

Prediction Error

P
e
rc

e
n
ta

g
e
 o

f
R

a
ti
n
g
s

baseline

ǫ=0.05

ǫ=0.1

ǫ=0.15

ǫ=0.2

(b) 10000 iterations, change ε

Figure 6: CDF of prediction errors for MovieLens in S3: the
recommender is untrusted and the online users are dynamic

of prediction errors for Netflix is around 0.14 when ε = 0.15
(Please see Fig. 7(a)), and this value declines to near 0 for
MovieLens (Please see Fig. 8(a)).

For S3, we first assume that the users get online and offline
with probability of 0.005 and 0.01, respectively, after each
iteration. The recommender randomly selects at most 1000
and 100 of the online users to participate in the learning in
each iteration for Netflix and MoveLens, respectively. The
results are shown in Fig. 5 and Fig. 6. We find that for Net-
flix if we slightly relax the privacy requirement, i.e., improve
ε from 0.1 to 0.8, the precision of the results can also become
extremely close to the baseline after 10000 iterations. In par-
ticular, according to Fig. 7(b) the mean increase of prediction
errors is below 0.1 when ε = 0.8. The increase of iteration
rounds is due to that each iteration only covers the data of
1000 online users but not all the 191668 users. In addition,
although the iteration round increases, the time cost for each
iteration greatly decreases. The performance on MovieLens
is still much better than Netflix: the curves in Fig. 6 has
become indistinguishable from the baseline after 10000 iter-
ations even when ε ≥ 0.05.

We also evaluate our proposals when the joining and leav-
ing probabilities are varied. The results are present in Fig.
9 and Fig. 10. We can find that as the joining probability
increases between [0.005, 0.02], the mean increase of predic-
tion errors compared with the baseline declines. This is easy
to understand because a larger joining probability indicates
more offline users getting online in each iteration, which re-
sults in that the MF process can cover a wider set of users
after the same number of iterations. Compared with the join-
ing probability, the effect of the leaving probability is not so

0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ǫ

M
e
a
n
 I
n
c
re

a
s
e
s
 o

f
P

re
d
ic

ti
o
n
 E

rr
o
rs

S1

S2

(a) Scenario 1 and 2 (100 itera-
tions)

0.4 0.8 1.2 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ǫ

M
e
a
n
 I
n
c
re

a
s
e
s
 o

f
P

re
d
ic

ti
o
n
 E

rr
o
rs

(b) Scenario 3 (10000 itera-
tions)

Figure 7: Mean increases of prediction errors for Netflix com-
pared with the baseline

0.05 0.1 0.15 0.2
−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−5

ǫ

M
e
a
n
 I
n
c
re

a
s
e
s
 o

f
P

re
d
ic

ti
o
n
 E

rr
o
rs

S1

S2

(a) Scenario 1 and 2 (100 itera-
tions)

0.05 0.1 0.15 0.2
−8

−7

−6

−5

−4

−3

−2

−1
x 10

−3

ǫ

M
e
a
n
 I
n
c
re

a
s
e
s
 o

f
P

re
d
ic

ti
o
n
 E

rr
o
rs

(b) Scenario 3 (10000 itera-
tions)

Figure 8: Mean increases of prediction errors for MovieLens
compared with the baseline

obvious, especially for Netflix. This is because the base num-
ber of online users are much smaller than that of the offline
users in the beginning, and thus the slight changing of the
leaving probability cannot greatly change the composition of
users participating in each iteration.

We next evaluate the communication overheads of our pro-
posal. In S1, MF is performed completely by the recom-
mender, who does not communicate with users. Thus, our
proposal introduces no communication overheads. However,
the proposals designed for S2 and S3 require cooperations
among the recommender, the users and the third-party, and
thus do bring communication overheads. Since S2 is not prac-
tical, we only consider S3 here.

In this scenario, according to our simulation, if a user rated
no more than 20 items, she only needs to download at most
12KB data from the recommender and uploads at most 5KB
data to the third-party in each iteration. This indicates that
our proposal is efficient enough to be deployed on mobile
devices. In addition, for Netflix if the total number of items
that the 1000 online users rated are at most 10000 (the number
in the real-world is usually much smaller than this value), the
total data that the third-party has to send to the recommender
in each iteration is less than 3MB, which is still very efficient.

According to our experiment on Netflix, the average times
for doing optimization on each client and the third party in
each iteration are about 5.7 × 10−4ms and 400ms, respec-
tively. It is infeasible to conduct real experiments to mea-
sure the time costs for communication since we are lack of a
testbed with 1000 concurrent users. Nevertheless, the litera-

1769

0.005 0.01 0.015 0.02
−0.2

−0.1

0

0.1

0.2

0.3

Joining Possibility

M
e
a
n
 I
n
c
re

a
s
e
s
 o

f
P

re
d
ic

ti
o
n
 E

rr
o
rs

(a) Leaving probability=0.01

0.005 0.01 0.015 0.02
−0.05

0

0.05

0.1

0.15

0.2

Leaving Possibility

M
e
a
n
 I
n
c
re

a
s
e
s
 o

f
P

re
d
ic

ti
o
n
 E

rr
o
rs

(b) Joining probability=0.01

Figure 9: Effects of joining and leaving probabilities in S3
for Netflix (10000 iterations, ε = 0.8)

0.005 0.01 0.015 0.02
−0.02

0

0.02

0.04

0.06

0.08

Joining Possibility

M
e
a
n
 I
n
c
re

a
s
e
s
 o

f
P

re
d
ic

ti
o
n
 E

rr
o
rs

(a) Leaving probability=0.01

0.005 0.01 0.015 0.02
5

6

7

8

9

10
x 10

−3

Leaving Possibility

M
e
a
n
 I
n
c
re

a
s
e
s
 o

f
P

re
d
ic

ti
o
n
 E

rr
o
rs

(b) Joining probability=0.01

Figure 10: Effects of joining and leaving probabilities in S3
for MovieLens (10000 iterations, ε = 0.1)

ture [Kimpe et al., 2012; Crovella et al., 1999] shows that it is
not so difficult for an average provider to build a web system
that can handle 1000 concurrent users (each may download
or upload a file about 10kb) with the average response time
below 1s. So, it is safe to assume that the total time for each
iteration can be confined to 5s. Although this is slower than
the baseline (0.46s), it is much faster than [Nikolaenko et al.,
2013]’s mechanism which took 2.5hr to finish one iteration
based on a smaller dataset. For MovieLens, since there are
up to 100 users participating in learning in each iteration, the
communication overheads are no greater than those of Netflix
according to our analysis.

6 Conclusion and Future Work
We conclude that a differentially private MF mechanism is
feasible when the central server is untrusted. The results show
that our proposals have little side effects on the precision of
results and the efficiency is also high. People can leverage
these proposals to build recommender systems in a privacy-
preserving way. To the best of our knowledge, we are the first
to apply differential privacy to the task of MF.

A promising future work is to adapt our proposal to
improved variants of the raw MF, such as WNMF (i.e.,
Weighted Non-negative MF). According to our experiments,
such mechanism may significantly improve the precision of
MF.

References
Esma Aı̈meur, Gilles Brassard, José M Fernandez, and et al.

Alambic: a privacy-preserving recommender system for elec-

tronic commerce. International Journal of Information Security,
7(5):307–334, 2008.

Joseph A Calandrino, Ann Kilzer, Arvind Narayanan, and et al. “you
might also like”: Privacy risks of collaborative filtering. In Pro-
ceedings of the 32nd IEEE Symposium on Security and Privacy
(SP), pages 231–246. IEEE, 2011.

Emmanuel J Candès and Benjamin Recht. Exact matrix completion
via convex optimization. Foundations of Computational mathe-
matics, 9(6):717–772, 2009.

John Canny. Collaborative filtering with privacy. In Proceedings of
the 23rd IEEE Symposium on Security and Privacy (SP), pages
45–57. IEEE, 2002.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving lo-
gistic regression. In Advances in Neural Information Processing
Systems, pages 289–296, 2009.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate.
Differentially private empirical risk minimization. The Journal
of Machine Learning Research, 12:1069–1109, 2011.

Mark E Crovella, Robert Frangioso, and Mor Harchol-Balter. Con-
nection scheduling in web servers. Technical report, Boston Uni-
versity Computer Science Department, 1999.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and et al. Cali-
brating noise to sensitivity in private data analysis. In Theory of
cryptography, pages 265–284. Springer, 2006.

Dries Kimpe, Philip Carns, Kevin Harms, and et al. Aesop: Ex-
pressing concurrency in high-performance system software. In
Proceedings of the 7th International Conference on Networking,
Architecture and Storage (NAS), pages 303–312. IEEE, 2012.

Yehuda Koren, Robert Bell, and et al. Matrix factorization tech-
niques for recommender systems. Computer, (8):30–37, 2009.

Samuel Kotz, Tomasz Kozubowski, and Krzysztof Podgorski. The
Laplace distribution and generalizations: a revisit with applica-
tions to communications, exonomics, engineering, and finance.
Number 183. Springer Science & Business Media, 2001.

Ashwin Machanavajjhala, Aleksandra Korolova, and Atish Das
Sarma. Personalized social recommendations: accurate or pri-
vate. Proceedings of the VLDB Endowment, 4(7):440–450, 2011.

Frank McSherry and Ilya Mironov. Differentially private recom-
mender systems: building privacy into the net. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 627–636. ACM, 2009.

Noman Mohammed, Rui Chen, Benjamin Fung, and et al. Differ-
entially private data release for data mining. In Proceedings of
the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 493–501. ACM, 2011.

Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, and et al.
Privacy-preserving matrix factorization. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications
security, pages 801–812. ACM, 2013.

Yubin Park and Ayan Acharya. Differentially private recommenda-
tion systems: Practical implementation and interpretation. 2011.

Arun Rajkumar and Shivani Agarwal. A differentially private
stochastic gradient descent algorithm for multiparty classifica-
tion. In International Conference on Artificial Intelligence and
Statistics, pages 933–941, 2012.

Yu Xin and Tommi Jaakkola. Controlling privacy in recommender
systems. In Advances in Neural Information Processing Systems,
pages 2618–2626, 2014.

1770

