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Abstract
Modeling the evolution of users’ preference over
time is essential for personalized recommenda-
tion. Traditional time-aware models like (1) time-
window or recency based approaches ignore or
deemphasize much potentially useful information,
and (2) time-aware collaborative filtering (CF) ap-
proaches largely rely on the information of other
users, thus failing to precisely and comprehensively
profile individual users for personalization. In this
paper, for implicit feedback data, we propose a per-
sonalized recommendation model to capture users’
dynamic preference using Gaussian process. We
first apply topic modeling to represent a user’s tem-
poral preference in an interaction as a topic dis-
tribution. By aggregating such topic distributions
of the user’s past interactions, we build her pro-
file, where we treat each topic’s values at different
interactions as a time series. Gaussian process is
then applied to predict the user’s preference in the
next interactions for top-N recommendation. Ex-
periments conducted over two real datasets demon-
strate that our approach outperforms the state-of-
the-art recommendation models by at least 42.46%
and 66.14% in terms of precision and Mean Recip-
rocal Rank respectively.

1 Introduction
In real-world recommendation applications such as Netflix’s
movie recommendation and Amazon’s product recommenda-
tion, users’ preferences are drifting over time. It is thus essen-
tial to capture a user’s dynamic preference to provide timely
personalized recommendation. In contrast to traditional rec-
ommendation scenarios that look at global pattern change,
temporal recommendation focuses on local models. Logi-
cally, modeling users’ dynamic preference requires to address
two challenges: (i) precise preference representation and user
profile building, (ii) accurate preference evolution inference.

Recently, a set of time-aware recommendation models
have been proposed, which give more weight to recent ob-
servations [Ding and Li, 2005; Liu et al., 2010], or incorpo-
rated temporal effects into latent factor models [Koren, 2009;
Xiong et al., 2010; Nguyen et al., 2014]. However, recency

based approaches only focus on partial observations thus
deemphasizing much signal which might also reflect users’
preference (e.g., seasonal/periodic preference) [Aly et al.,
2013]. Moreover, most collaborative filtering (CF) models
primarily rely on similar users/items’ information to combat
data sparsity, thus failing to build personalized models for in-
dividual users who have rich past information [Koren, 2009;
Liu and Aberer, 2014; Li et al., 2011]. On the other hand,
conventional content-based recommendation models typi-
cally utilize concrete contexts such as genres and actors of
a movie to build users’ profiles, thus suffering from the issue
of serendipity (over-specification) [Debnath et al., 2008].

In order to address these issues, we propose a personalized
recommendation model that captures users’ dynamic pref-
erence by applying Gaussian process (GP) [Rasmussen and
Williams, 2005]. In contrast to most approaches that handle
explicit feedback data (e.g., 5-point scale rating), which is of-
ten not available, we focus on implicit feedback data (e.g.,
listened to a song, clicked an advertisement) that is more per-
vasive in online applications [Hu et al., 2008]. Our model
is constructed on top of several building blocks. Firstly, we
assume each item is associated with texts such as its descrip-
tion1. A user u may also generate textual contents (e.g., tags)
in interactions. Based on such texts, we apply Latent Dirich-
let Allocation (LDA) [Blei et al., 2003] to extract a set of
topics to represent u’s temporal preference (i.e., topic distri-
bution) at the time point when an interaction happened. By
aggregating topic distributions and the corresponding times-
tamp of u’s past interactions, we build her profile that records
the evolution of her preference. ates the issue of serendipity
compared to traditional content based models that use con-
crete feature vector to represent preference.

Secondly, for user u, we treat the evolution of each topic
as a time series. We then apply GP, one of the most advanced
methods for modeling time series to build a regression model
to predict u’s future preference, i.e., topic distributions in the
next interactions. Once the future preference is inferred, we
compute the Jensen-Shannon divergence between u’s future
topic distribution and the topic distribution of each item can-
didate to provide top-N recommendation.

Thirdly, our GP based model is particularly designed for

1This assumption holds in most online applications like e-
commerce,review sites, Q&A systems, social media, etc.
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users with rich past interactions. In order to handle data spar-
sity which is common in recommender systems, we propose
two heuristic solutions: (1) profile average, which predicts a
user’s future preference by averaging the topic distributions
of her past interactions. (2) user-based CF, which predicts a
user’s preference by combining the GP derived preference of
other similar users.

The major contribution of this work is to apply GP to cap-
ture users’ dynamic preference which is represented by a
topic distribution. Such a representation not only compre-
hensively measures users’ preference when explicit feedback
data is absence, but also encodes the flexibility and hence
alleviates the issue of serendipity (compared to the content-
based recommendation models that rely on concrete features
to represent preference). To the best of our knowledge, this is
the first work that applies GP to model users’ evolving prefer-
ence for implicit feedback data to provide top-N recommen-
dation. We conduct experiments using two real datasets to
demonstrate the performance of our approach by comparing
with the state-of-the-art models.

2 Related Work
2.1 Time-aware Recommendation.
Traditional neighborhood-based models tackle temporal ef-
fects by assigning more importance to recent observations or
focusing on information in specific time windows. For in-
stance, Xiong et al. [Ding and Li, 2005] proposed to utilize a
decay function f(x) = e−αt to quantize the effect of users’
past ratings, where t is the time at which a rating was given
and α is the decay rate which controls the rate of ignoring
the effect of a past rating. In [Liu et al., 2010], a similar
decay function was used for both similarity computation and
rating prediction. An incremental algorithm was proposed
to update neighborhood similarity by incorporating new data.
In [Lathia et al., 2009], the authors used user-based CF to
provide time-aware recommendations by temporally adjust-
ing the size of users’ nearest neighbors based on the accuracy
measured up to the current time.

For latent factor models, Koren [Koren, 2009] tackled tem-
poral effects by using time functions to model user biases
bu(t), item biases bi(t), as well as users’ latent factors pu(t)
in matrix factorization (MF). The predicted rating is derived
as r̂u,i(t) = µ + bu(t) + bi(t) + qTi pu(t), where µ is the
global bias and qi is item i’s latent factors. In [Xiong et
al., 2010], the authors split time into equal time intervals and
added the time dimension to user-item-rating matrix to form
a 3-dimension tensor. Alternating least square algorithm is
applied to optimize the tensor model. Lu et al. [Lu et al.,
2009] proposed a spatio-temporal model where the spatial
component measures the correlation across factors of users
and items, and the temporal component captures the change
of latent factors. Kalman filtering is applied for model estima-
tion. Most CF based models are designed to handle explicit
feedback data and predict ratings, while our approach focuses
on implicit feedback data and provide top-N recommenda-
tion, which is more practical in real-world applications.

Xiang et al. [Xiang et al., 2010] proposed session based
temporal graph (STG) to simultaneously model users’ long-

term and short-term preferences. An extension based on per-
sonalized random walk was proposed to model impacts of
long-term and short-term preferences for time-aware recom-
mendation. There are some methods like [Li et al., 2012] that
apply Hidden Markov Model to learn users’ dynamic prefer-
ence. The effectiveness of such approaches largely depends
on proper state definition, which is non-trivial (e.g., rely on
side information such as category).

Recently, a series of solutions were proposed to particu-
larly process the highly dynamic data stream in social me-
dia like Twitter [Diaz-Aviles et al., 2012; Chen et al., 2012].
However, these approaches cannot be directly applied to more
generic scenarios in that they only process recent social up-
dates without considering the longstanding information.

2.2 Gaussian Process based Preference Modeling.

In [Adams et al., 2010], the authors proposed a framework
to incorporate side information by coupling multiple proba-
bilistic MF via GP priors, where the latent features are re-
placed by latent feature functions. Platt et al. [Platt et al.,
2002] applied GP for regression to learn a user’s preference
over music. An algorithm, Kernel Meta-Training (KMT) was
proposed to derive a kernel from a set of meta-training func-
tions which share the same function distribution with the final
training function. In [Houlsby et al., 2012], GP and CF were
combined to learn pair-wise preferences expressed by multi-
ple users. Specifically, the task of learning users’ preference
was treated as a binary classification with GP where a pref-
erence kernel is used. Bonilla et al. [Bonilla et al., 2010]
focused on generalizing the knowledge of known users to in-
fer the preference of unknown users. GP prior is applied over
users’ latent utility functions to learn the similarity of users’
preference which can be used to aid in the elicitation process
for a new user. However, these approaches fail to capture dy-
namics when modeling users’ preference.

3 Our Approach

3.1 Personalized Recommendation Model.

We denote user set by U = {u1, u2, ..., um}, and item set
by V = {v1, v2, ..., vn}. By aggregating interactions with
items, each user u ∈ U maintains a profile ρu, recording her
experience with the system. We assume each item v is as-
sociated with a “bag-of-words”, which is constructed from
the relevant textual contents such as its description. More-
over, a user may also generate texts summarizing or indicat-
ing her experience in the interaction (e.g., reviews in Amazon,
tips in Foursquare). We denote user u’s past interactions by
Ψu = {ψ1

u, ψ
2
u, ...}. For each interaction ψiu ∈ Ψu, we de-

note the associated texts by T iu. The summation of these texts
constructs a corpus, which can be used for topic modeling.

User Profiling.
Probabilistic topic models such as LDA have been applied to
extract and represent users’ preference in different applica-
tion scenarios, e.g., Web search and recommendation [Har-
vey et al., 2013; Agarwal and Chen, 2010]. In this work, we
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Figure 1: Users’ dynamic preference modeling and recom-
mendation based on GP. The upper left table gives an example
of user u’s profile ρu, which records the topic distributions of
her past interactions and the corresponding timestamp.

follow this trend to profile users by applying LDA2.
Every interaction ψvu between user u and item v is asso-

ciated with textual content T vu . We treat each such textual
information as a document, and the aggregation of textual
representations of all users’ interactions form a text corpus
T , based on which, we perform LDA to extract k topics
D = {d1, ..., dk} such that each word w has a probability
φw,d of being assigned to topic d, and each document (e.g.,
interaction T vu ) is represented by a topic distribution θvu.

By leveraging topic representation, we build user u’s pro-
file ρu as follows: The interactions (with timestamp) are
sorted in chronological order. Each interaction between user
u and item v is represented by a topic distribution θvu. For
each topic, we model its distribution with time as a time se-
ries. The basic idea of our approach is to predict the value of
each topic at a given time by applying GP, and then recom-
mend the items whose topic distributions are the most similar
to the predicted topic distribution. Fig. 1 (upper left table)
shows an example of user u’s profile.

Dynamic Preference Modeling.
Given user u’s profile ρu, we apply GP to predict her future
preference, i.e., topic distributions of the items that user u is
likely to interact with in the next interactions. For each topic
dj ∈ D, a series of its values Dj = {dj,1, dj,2, ..., dj,x} with
the corresponding timestamp T = {t1, t2, ..., tx} (in chrono-
logical order) forms the training data. We define the func-
tion f that maps the timestamp T to the values of topics D:
f : T → D. To take into account the noise that is com-
mon in practice (e.g., an item’s textual description may not
completely reflect its underlying properties), we assume addi-
tive independent identically distributed Gaussian noise ε with
variance σ2: Dj = f(T) + ε. The purpose of GP regres-
sion is to infer the distribution of function f to predict the
values D′j = {dj,x+1, dj,x+2, ...} of dj at later time points
T′ = {tx+1, tx+2, ...}. The joint distribution of the observed
values and the test values to be predicted is obtained by:[

f
f ′

]
∼ N (

[
µ(T)
µ(T′)

]
,

[
K(T,T) + σ2I K(T,T′)
K(T′,T) K(T′,T′)

]
), (1)

2Remind that our model is designed for implicit feedback data,
so explicit feedback like 5-point rating is not considered for prefer-
ence representation and profile building.

where I is the identity matrix, µ(.) is the mean function
and K is the covariance matrix where the (r, c)th element
of K represents the covariance evaluated at time point tr
and tc, i.e., k(tr, tc). Accordingly, the elements of K(T,T),
K(T,T′) and K(T′,T′) represent the covariances evaluated
at all time point pairs from T, T and T′, and T′ respectively.

By conditioning the joint Gaussian prior distribution on
observations, we derive the probability of f ′, which follows
Gaussian distribution:

f ′|f,T,T′ ∼ N (µ(T′) +K(T′,T)(K(T,T) + σ2I)−1(f−
µ(T)),K(T′,T′)−K(T′,T)(K(T,T) + σ2I)−1K(T,T′)).

(2)

Therefore, the best estimate of f ′ is the mean of its distri-
bution:
f̄ ′ = µ(T′) +K(T′,T)(K(T,T) +σ2I)−1(f −µ(T)), (3)

and the corresponding variance can be used to measure the
confidence of the prediction.

In order to predict the next value of topic dj , it is impor-
tant to define the proper mean function µ(.) and covariance
function k(., .). For mean function, we use a simple linear
function which is parameterized by the weight a and the nor-
malization constant b: µ(t) = at+ b.

Covariance function is the core of GP. By considering
the complexity of the topic time-series (e.g., the smoothness
varies with inputs), we choose a well known non-stationary
function called Neural Network Covariance Function:

k(t, t′) = h2 sin−1(
(1 + tt′)/λ2√

(1 + (1 + t2)/λ2)(1 + (1 + t′2)/λ2)
)

(4)
where h2 and λ are hyperparameters that control the scale

(or variance) of the function output and the length-scale of
the input time respectively.

Once the mean function and the covariance function are
determined, we use Eq. 3 to calculate values of all topics D
(i.e., user u’s temporal preference) at a future time point t′
that is of interest: θu,t′ = {d1,t′ , d2,t′ , ..., dk,t′}. Note that
the final topic distribution is obtained by normalizing the pre-
dicted topic values such that

∑k
i=1 di,t′ = 1.

Making recommendation. To recommend items to user u,
we calculate the (symmetric) Jensen-Shannon divergence be-
tween user u’s temporal preference θu,t′ and the topic distri-
bution θv of each item candidate v:

DJS(θu,t′ ‖ θv) =
1

2
DKL(θu,t′ ‖ θ̄)+

1

2
DKL(θv ‖ θ̄), (5)

where θ̄ =
(θu,t′+θv)

2 and DKL(p1 ‖ p2) is the Kullback-
Leibler divergence:

DKL(p1 ‖ p2) =
∑
i

ln(
p1(i)

p2(i)
)p1(i). (6)

Top-N recommendation is generated by sorting items in as-
cending order of the derived Jensen-Shannon divergence be-
tween their topic representations and the user’s inferred pref-
erence. That is, the items that are most consistent with user
u’s temporal preference are recommended. The entire pro-
cess is depicted in Fig. 1.
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Model Fitting.
GP regression works in practice under the assumption that the
associated hyperparameters are properly chosen. In our per-
sonalized recommendation model, the hyperparameters in-
clude the parameters of mean function, covariance function,
as well as the encoded noise: Θ = {a, b, h, λ, σ}. In this sub-
section, we discuss how to estimate these hyperparameters in
the light of the training data.

According to the definition of GP, the distribution of the
data follows multivariate normal distribution:

p(D|T,Θ) = (2π)−
x
2 |K|− 1

2 e−
1
2 (D−µ)

TK−1(D−µ), (7)
where x is the number of training cases. Then the (log)
marginal likelihood is obtained by marginalizing over the la-
tent function f :

L = log p(D|T,Θ) = −x
2

log 2π − 1

2
log |K|−

1

2
(D− µ)TK−1(D− µ).

(8)

To find the hyperparameters, we maximize the marginal
likelihood function L by seeking the partial derivatives of the
marginal likelihood with respect to the corresponding hyper-
parameters Θ = {a, b, h, λ, σ} (see Eq. 9 and 10). Gradient
based optimizer (e.g., conjugate gradient method) is then ap-
plied to find the best hyperparameters.

∂L

∂Θµ
= −(D− µ)TK−1

∂µ

∂Θµ
, (9)

where Θµ indicates the hyperparameters of mean function,
i.e., a and b.

∂L

∂ΘK
=

1

2
(D− µ)TK−1

∂K

∂ΘK
K−1(D− µ)

−1

2
tr(K−1

∂K

∂ΘK
),

(10)

where tr(A) returns the trace of matrix A and ΘK indicates
hyperparameters of covariance function, i.e., h, λ, σ.

3.2 Handling Data Sparsity
Our personalized recommendation model is particularly de-
signed for users with sufficient historical information such
that a reliable GP regression model can be built. However,
in real-world recommender systems, a large fraction of users
may have limited past information (i.e., data sparsity) thus
cannot benefit from our model. To handle this issue, we pro-
pose two heuristic solutions as follows.

Profile Average. Although user u has only a couple of in-
teractions that are not sufficient for GP, we can simply calcu-
late the average of topics distributions of her past interactions
to represent her current preference:

θu =

∑nu

i=1 θTi

nu
, (11)

where nu is the number of u’s past interactions. We then
use θu to calculate the Jensen-Shannon divergence between
u’ preference and the topic representation θv of an item can-
didate v, based on which we provide top-N items that have
the lowest Jensen-Shannon divergence.

Collaborative Filtering. Another way to handle data spar-
sity is to apply CF by leveraging the information of other sim-
ilar users. We divide user base U into two parts: the users
(denoted by UC) with complete profile for GP3 and users (de-
noted by UI ) whose profiles are incomplete for GP.

We first calculate the average of each user’s topic distri-
butions of her past interactions (see Eq. 11). Then for each
user u ∈ UI , we calculate the similarity between user u and
every user u′ ∈ UC based on the Jensen-Shannon divergence
between their averaged preference:

su,u′ = 1−DJS(θu ‖ θu′) (12)

We apply user-based CF to derive u’s temporal preference
at time point t′. We assume that based on our personalized
GP based model, we have derived the temporal preference
θu′,t′ of each user u′ ∈ UC (see Eq. 3). The temporal
preference of user u at time point t′ is then calculated as:

θu,t′ =
∑Nu

i=1 su,ui
θui,t

′∑Nu
i=1 su,ui

, where Nu is the number of selected

users (ui ∈ UC) that are the most similar to user u. The sim-
ilarity is calculated using Eq. 12.

We will compare the performance of these two heuristic
solutions: profile average and user-based CF in Section 4.

3.3 Discussion.
It is worth noting that we are not going to propose a novel
topic model but rely on existing approaches. From this per-
spective, our model is flexible in that more sophisticated mod-
els such as dynamic topic models [Blei and Lafferty, 2006]
and the ones for short texts [Yan et al., 2013] can be applied.
Note that besides timestamp, other temporal features such as
hour-of-the-day and day-of-the-week may also help to infer
users’ temporal preference. Such features can be easily in-
corporated into GP by adding additional dimensions to the
input T (i.e., multi-dimension input for GP).

The time complexity of our model is mainly determined
by the inversion of a matrix where the standard methods
require time O(n3) for a n × n matrix. This can be im-
proved by applying faster matrix multiplication method such
as Coppersmith-Winograd algorithm. Alternatively, approx-
imation techniques like variational Bayesian inference might
be applied to accelerate the learning process. It is worth men-
tioning that our approach builds recommendation models for
individual users separately4, i.e., there is no need to collect
other users’ information to train a model like factorizing a
rating matrix. So our approach can be completely and safely
parallelized to cater to large-scale datasets.

We also want to emphasize that in contrast to traditional
content-based models which suffer from serendipity issue,
by profiling users using probabilistic topic modeling, our ap-
proach alleviates the serendipity by taking into account the
flexibility for preference representation, i.e., instead of con-
crete meta information, e.g., genres and actors of a movie, we
use topic distribution, which is more flexible.

3The completeness of a user’s profile is determined by multiple
factors, e.g., a user has at least 10 interactions, or the variance of the
inferred posterior distribution is smaller than a threshold.

4This statement holds true if profile average method (see Section
3.2) is applied to handle data sparsity issue.
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4 Evaluation
4.1 Experimental Settings
Datasets
The first dataset we used was collected from Delicious
(http://www.delicious.com). The data [Cantador et al., 2011]
contains 1,867 users and 69,226 URLs with 104,799 unique
(user , URL) pairs. When bookmarking a URL, a user may
also assign tags to the URL. There are 53,388 unique tags
and 437,593 tag assignments (with timestamp). In the ex-
periments, to conduct topic modeling, we treat each URL as
a document, the associated tags as terms of the document.
The purpose of a recommendation model is to recommend
the URLs that the target user is likely to bookmark next time.

We also used the data collected from Last.fm (http://www.
lastfm.com). The data [Cantador et al., 2011] records the in-
formation of 1,892 users’ listening history with 17,632 music
artists. There are 92,834 unique (user , artist) pairs. When
a user listen to an artist, she may assign tags to the artists.
There are 11,946 unique tags and 186,479 tag assignments
(with timestamp). Similar to Delicious data, we treat each
artist as a document and the associated tags as terms for topic
modeling. The purpose of a recommendation model is to rec-
ommend artists that the target user is likely to listen to.

For both datasets, we rank each user’s interactions in
chronological order. The first x interactions are used for train-
ing and the rest are for testing. We will demonstrate how the
value of x influences the performance of our model.

Comparison
We compare the proposed personalized recommendation
model with several representative baselines: (1) UCF-LDA.
This is an extension of a user-based CF where the similar-
ity is measured based on the Jensen-Shannon divergence be-
tween two users’ topic represented preference. We adopted
the incremental algorithm proposed in [Liu et al., 2010] to
timely update neighborhood (with size of 50) similarity. (2)
BaseMF. This is the basic MF that predicts a user’s pref-
erence on an item. Top-N recommendation is provided by
sorting the candidate items in descending order of the pre-
dicted preference. (3) WRMF. This is a representative top-N
recommendation model for implicit feedback data [Hu et al.,
2008]. Count data is modeled as the confidence of preference
inference in MF. (4) timeSVD++. This is a representative
time-aware model incorporating dynamics proposed in [Ko-
ren, 2009]. Specifically, user bias, item bias and user latent
factors are modeled as functions of time.

The parameters of MF based models such as latent factor
vector dimensionality, learning rate, regularization terms are
determined by 5-fold cross validation. For each model, we
ran experiments 10 times and show the averaged results. We
also conducted t-tests to confirm that all results are statisti-
cally significant (two-tailed, paired t-test, p-values < 0.001).

Metrics
We measure the performance of recommendation models us-
ing precision@N, which is the ratio of the successfully pre-
dicted test items to the top-N recommendation. We also use
Mean Reciprocal Rank (MRR), a popular ranking metric to
measure recommendation quality by finding out how far from
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Figure 3: Influence of different recommendation list size.

the top of the list the first successfully predicted item is (av-
eraged over all test cases): MRR = 1

m

∑m
i=1

1
Ri

, where Ri
is the position of the first successfully predicted item in the
recommendation list returned for the ith user.

4.2 Experimental Results
Design Validation.
We use GP based approach to learn dynamic preference of
users who have at least 10 interactions. The hyperparame-
ters h, λ and σ are initialized to 1. Fig. 2 shows the perfor-
mance of our approach when Delicious data5 is used. For ac-
tive users, our approach produces remarkably high precision
and MRR, demonstrating the advantage of GP based model.
When data sparsity handling strategies are adapted to cope
with inactive users whose number of past interactions is less
than 10, the overall performance decreases. An interesting
phenomenon is that the simple GP+AP (i.e., profile average)
outperforms the more complicated GP+CF (i.e., user-based
CF). This is probably due to the characteristics of the data:
users do not significantly change their preference (although
may vary within a certain scope), so the simple GP+AP works
well while GP+CF may introduce noises from other users.
However, we still want to keep GP+CF because it can help to
alleviate over-specification in our content based model, thus
might be more suitable in other scenarios. In the following
experiments where data sparsity handling strategy is needed,
we use GP+AP for our approach.

5The Last.fm data based experiments, which show the similar
results, are not presented due to space limit.
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Table 1: Influence of the volume of training data (top-10 recommendation)
training vol. Delicious data Last.fm data

Precision MRR Coverage Precision MRR Coverage
5 0.0561 0.1399 95.07% 0.1542 0.3234 60.62%

10 0.0588 0.1494 91.16% 0.1635 0.3410 44.56%
15 0.0599 0.1502 88.70% 0.1675 0.3502 36.79%
20 0.0615 0.1534 85.75% 0.1689 0.3577 31.45%

Table 2: Performance comparison (averaged over different
recommendation list sizes)

Delicious data Last.fm data
Precision MRR Precision MRR

Our approach 0.0573 0.1495 0.0985 0.1851
BaseMF 0.0287 0.0367 0.0256 0.0299

timeSVD++ 0.0464 0.0872 0.0489 0.0922
WRMF 0.0447 0.0718 0.0627 0.1492

UCF-LDA 0.0360 0.0701 0.0177 0.0501

Fig. 2 also shows the performance of our approach and its
variants with different number of topics for preference rep-
resentation. The general trends are both precision and MRR
first increase, when arriving at a certain point, they start de-
creasing with the increasing number of topics. Specifically,
for both datasets, 10 topics achieve the highest precision and
MRR. In the following experiments, we use 10 topics for all
top modeling based models.

Next, we study the influence of the volume of training data
on the performance of our GP based recommendation model.
Table 1 summarizes precision@10, MRR@10 and coverage
(fraction of users that can be served by GP model) of our ap-
proach when different number of past interactions is used for
training (ranging from 5 to 20 with 5 as the increment). Obvi-
ously, the more the training data, the higher the precision and
MRR are. But on the other hand, more training data prevents
more users from benefiting from the GP based model. For
this set of experiments, we believe 5–10 past interactions is
a reasonable choice. In the comparison studies (see the next
section), for our approach, we use 10 as the threshold to dis-
tinguish active and inactive users that will be handled by GP
based model and average profile strategy respectively.

Finally, we validate the choice of our covariance function,
the core of GP. We compare the neural network (NN) covari-
ance function with other well known ones: squared exponen-
tial (SE) covariance function and periodic (PD) covariance
function. Experiments over Last.fm data show that NN im-
proves SE by 5.98% and 10.60% in terms of precision and
MRR respectively. Similar results are obtained using Deli-
cious data. This is mainly because SE is infinitely differen-
tiable (too smooth), which might be unrealistic in practice.
PD performs worst among the three functions, which im-
plies that users do not demonstrate evident periodic behavior.
Note that we are not claiming that NN covariance function
is always the best one, and the choice of covariance function
should depend on characteristics of the data, but in our exper-
iments, this is a judicious choice.

Comparison Study.
We compare the performance of our approach (GP+AP) with
that of the state-of-the-art (see Section 4.1). Fig. 3 shows
the precision and MRR of different recommendation models
with different recommendation list sizes (range from 5 to 30
with 5 as the increment). With dynamic user similarity, UCL-
LDA consistently outperforms baseMF when Delicious data
is used. For Last.fm data, baseMF generates higher precision
but lower MRR than UCL-LDA does. This proves that al-
though baseMF has been widely used for rating prediction, it
is not optimized for ranking task. By considering temporal ef-
fects, timeSVD++ evidently outperforms baseMF and UCF-
LDA, demonstrating the importance of modeling users’ dy-
namic preference. As the representative method for implicit
feedback data, even though no temporal information is con-
sidered, WRMF outperforms timeSVD++ for Last.fm data,
but was beaten for Delicious data. In all cases, our approach
significantly outperforms other models due to three important
designs: (1) precisely represent users’ dynamic preference
using topic modeling; (2) model users’ dynamic preference
using GP to accurately infer users’ preference evolution for
time-aware recommendation; (3) design effective topic model
based data sparsity handling strategies to bootstrap users who
have insufficient interaction data for GP.

We also summarize the performance of all recommenda-
tion models by averaging their precision and MRR when dif-
ferent recommendation list sizes are applied (see Tab. 2).
Similar to previous results, UCF-LDA outperforms baseMF
except for the case that is measured by precision for Last.fm
data. WRMF and timeSVD++ perform similarly for Deli-
cious data but WRMF is more advantageous when Last.fm
data is used. In summary, by averaging the performance when
different recommendation list sizes and different datasets
are applied, our approach improves baseMF, timeSVD++,
WRMF and UCF-LDA by 192.21%, 62.46%, 42.46% and
257.83% in terms of precision; 413.21%, 86.10%, 66.14%
and 191.36% in terms of MRR.

5 Conclusion
In this paper, we model users’ dynamic preference for recom-
mendation by (1) applying LDA to represent a user’s temporal
preference; (2) treating the evolution of the user’s preference
(i.e., topic distribution) as time series which are learned and
inferred using GP regression. In order to handle data sparsity
issue, we propose two heuristics to derive the preference of
users who has sparse interaction information. Experiments
conducted over two real datasets show that our approach sig-
nificantly outperforms the state-of-the-art models in terms of
precision and MRR. As for the future work, we intend to in-
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corporate other temporal features to better model users’ pref-
erence evolution.
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