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Abstract

In this paper we focus on the greedy matrix com-
pletion problem. A simple atom selection strategy
is proposed to find the optimal atom in each iter-
ation by alternating minimization. Based on this
per-iteration strategy, we devise a greedy algorithm
and establish an upper bound of the approximat-
ing error. To evaluate different weight refinement
methods, several variants are designed. We prove
that our algorithm and three of its variants have
the property of linear convergence. Experiments
of Recommendation and Image Recovery are con-
ducted to make empirical evaluation with promis-
ing results. The proposed algorithm takes only 700
seconds to process Yahoo Music dataset in PC, and
achieves a root mean square error 24.5 on the test
set.

1 Introduction
Low rank matrix completion is among the most basic prob-
lems in machine learning and data analysis. It plays a key
role in solving many important problems, such as collabora-
tive filtering [Rennie and Srebro, 2005; Koren et al., 2009;
Rendle et al., 2009], dimensionality reduction [Weinberger
and Saul, 2006; So and Ye, 2005], clustering [Eriksson et al.,
2011; Yi et al., 2012], and multi-class learning [Argyriou et
al., 2008; Obozinski et al., 2010; Xu et al., 2013].

Matrix completion can be formulated as seeking the ma-
trix with lowest rank that fits the observed data. However,
directly solving such problem is NP-hard and of little prac-
tical use [Chistov and Grigor’ev, 1984] which leads to many
approximation strategies. One principled approach is to adopt
nuclear norm as surrogate for the rank [Cai et al., 2010;
Jain et al., 2010; Lin et al., 2010; Mazumder et al., 2010;
Toh and Yun, 2010]. Non-convex surrogates, usually com-
plex pseudo norms, have also been brought forth to gain
better accuracy or nearly unbiased estimation [Liu et al.,
2013]. Although recovery guarantees in these contexts are
established [Candès and Recht, 2009; Candès and Tao, 2010;
Keshavan et al., 2010], the demand of expensive truncated
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Singular Value Decomposition (SVD) prevents the applica-
tions of nuclear norm based methods to large real-world prob-
lems.

Recently, remarkable progress has been made for greedy
matrix completion techniques. The idea behind them is to
represent matrix A ∈ Rm×n as a sparse code over a dic-
tionary of infinite unit rank-one matrices which are referred
to as atoms [Lee and Bresler, 2010]. Such representation
makes low rank matrix completion a natural extension of
greedy selection for optimization with sparsity constraint
[Mallat and Zhang, 1993; Pati et al., 1993; Tropp, 2004;
Shalev-Shwartz et al., 2010; Zhang, 2011] to the matrix case.

Typically, greedy matrix completion algorithms, like
GECO [Shalev-Shwartz et al., 2011], R1MP and ER1MP
[Wang et al., 2014], BOOST [Zhang et al., 2012], and JS
[Jaggi et al., 2010], proceed in two core steps in each itera-
tion. The first step selects a locally optimal atom. The second
step refines the weights of all atoms chosen up to this itera-
tion. Since atom selection and weight refinement can be much
cheaper than truncated SVD, such a two-step scheme brings
us better scalability than nuclear norm based methods.

In the previous works, the second step, i.e., the weight re-
finement step was the research focus and almost all the exist-
ing greedy matrix algorithms differ mainly in their refinement
steps[Wang et al., 2014]. For the first step, i.e., the atom se-
lection step, only one strategy, called T1SVD in our paper,
was used in current greedy matrix completion literatures, to
our best knowledge. The main reason is that the T1SVD strat-
egy corresponds to a Top-1 SVD problem which is numeri-
cally easy to solve and has plenty of efficient algorithms.

In this paper, we further explore the atom selection prob-
lem and present a simple strategy, called Optimal Atom (OA),
to select the best atom. Our research is partially inspired
by the work of optimization problem with sparsity constraint
[Shalev-Shwartz et al., 2010; Liu et al., 2014]. We directly
solve a coordinate optimization problem to find the optimal
atom in each step, rather than deal with the first order ap-
proximation to the optimal atom choice as T1SVD does. In
this line, our Optimal Atom based Matrix Completion algo-
rithm (OAMC) adopts an alternating method instead of the
common Top-1 SVD solver to conduct the matrix comple-
tion. We show that OA is a better strategy to construct the
greedy matrix completion algorithm than T1SVD. The major
contributions are summarized as follows:
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• We propose a simple atom selection strategy, called OA,
which finds the optimal atom in each iteration by al-
ternating minimization with computational complexity
comparable to common Top-1 SVD solvers.

• Under suitable assumptions, we construct an upper
bound of the approximating error for OA strategy, which
is independent of the largest singular value of underly-
ing residual matrix. Such result is important since it pro-
vides a tighter training error bound for OAMC than for
the T1SVD baselines.

• A greedy algorithm, called OAMC, is devised to solve
the matrix completion problem. Several variants are de-
signed according to different weight refinement meth-
ods. We prove that OAMC and three of its variants have
the property of linear convergence.

In the experiments, we evaluate the performance of the pro-
posed OAMC algorithm by applying it to the tasks of Recom-
mendation and Image Recovery. We perform matrix com-
pletion on three largest publicly available recommendation
datasets: MovieLens 10M, NetFlix, and Yahoo Music. In
all these experiments, OAMC and its variants significantly
outperform their T1SVD-based competitors in terms of both
speed and accuracy. Some of these variants are 5 times faster
than existing methods when using efficient random initializa-
tion for the alternating minimization scheme. Besides, we are
able to process Yahoo Music dataset in about 700 seconds in
PC workstation and achieve a root mean square error 24.5 on
the test set.

2 Preliminaries
For a matrix M ∈ Rm×n, let Ω ⊂ {1, · · · ,m} × {1, · · · , n}
denote the indices of observed entries. In this paper, we al-
ways assume m ≤ n. We consider the following low rank
matrix completion problem:

min
X∈Rm×n:

rank(X)≤K

L(X) ,
1

2
‖PΩ(M−X)‖2F, (1)

where K � min(m,n) is a constant, ‖ · ‖F is the Frobenius
norm, and the operator PΩ : Rm×n 7→ Rm×n is defined as
follows:

[PΩ(A)]i,j =

{
Ai,j if (i, j) ∈ Ω,

0 otherwise.

Usually, we call the Ω as the support of PΩ(A). In practice,
problem (1) is relaxed by replacing the rank(X) with a sur-
rogate function to fit more effective algorithms.

Actually, we can also depict problem (1) in an infinite vec-
tor form 1. Consider a dictionary like D = U × V , in which
U = {u ∈ Rm : ‖u‖ = 1}, V = {v ∈ Rn : ‖v‖ = 1},
where we let ‖ · ‖ be the 2-norm of vector. A pair (u,v) ∈ D
denotes an atom in this dictionary. OverD, a vector λ ∈ R|D|

1We follow the notation of [Shalev-Shwartz et al., 2011], in
which an assumption of finite representation for real number is used
to simplify the presentation.

can be used to represent an arbitrary m × n matrix. That is,
given vector λ ∈ R|D|, we have a correspondentm×nmatrix

X(λ) =
∑

(u,v)∈D

λ(u,v)uv>,

where X : R|D| 7→ Rm×n is a linear map, and λ(u,v) ∈ R
denotes the value of λ in the coordinate indexed by the pair
(u,v). From the SVD theorem, if rank(X(λ)) ≤ r, then
there must be a λ satisfying ‖λ‖0 ≤ r. We also define a
standard basis vector e(u,v) ∈ R|D| over this dictionary as

e
(u,v)
(p,q) =

{
1 if p = u and q = v,

0 otherwise,

where p ∈ U , and q ∈ V . The difference between e(u,v) and
standard basis vector ei in Euclidean space is that e(u,v) is
indexed by pair (u,v) instead of the number i.

Thus, greedy algorithm for (1) can be developed by resort-
ing to the following equivalent problem:

min
λ∈R|D|:
‖λ‖0≤K

Q(λ) (2)

where Q(λ) , L(X(λ)) = 1
2‖PΩ(M − X(λ))‖2F. For

convenience, we also define residual function R : R|D| 7→
Rm×n as R(λ) = PΩ(M −X(λ)). We call M −X(λ) the
underlying matrix of R(λ). To solve problem (2), the current
state-of-the-art greedy methods choose to find the atom us-
ing maximum gradient in each iteration. That is, the selected
atom comes from following formulation

(û, v̂) = argmax
(u,v)

∣∣∣∣ ∂Q(λ)

∂λ(u,v)

∣∣∣∣ . (3)

We call this atom selection method maximum gradient strat-
egy or T1SVD since it is based on solving Top-1 SVD prob-
lem.

A few more notations will be useful in our narration. Given
a rank r matrix A with SVD

∑r
i=1 σiuivi

>, σ1 ≥ · · · ≥ σr.
We define S1(A) = σ1u1v

>
1 , S2(A) =

∑r
i=2 σiuiv

>
i , and

σ1(A) = σ1(the maximum σi, for i = 1, · · · , r). We use
Ai to represent the ith column of A and Ai,: to represent the
ith row. O denotes the big-O notation in mathematics. 〈·, ·〉
represents the inner product of two matrices, and ∇ denotes
the Del operator of a function.

3 Methodology
We start from λ(0) = 0. In the k-th iteration , suppose
λ = λ(k). The locally optimal u∗, v∗, and α∗ need to be
estimated to approximate the residual R(λ). First of all,
for a fixed pair (u,v), we should find an α that minimizes
Q(λ + αe(u,v)) which results in the optimization problem
minαQ(λ + αe(u,v)). Second, we expect that (u,v) can
make the maximum progress after an increment αe(u,v) is
added into λ. Thus, by combining these two goals, we have
the following optimization problem for each iteration.

(u∗,v∗) = argmax
(u,v)

{
Q(λ)−min

α
Q(λ+ αe(u,v))

}
= argmin

(u,v)

min
α
Q(λ+ αe(u,v)). (4)
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Algorithm 1 OAMC

Input: Ω,PΩ(M),K
Output: X(K)

1: Initialize: Set X(0) = 0 and R(0) = PΩ(M)
2: for k = 1, 2, . . . ,K do
3: ū := INIT()
4: repeat
5: v̄ := argminv ‖PΩ(R(k−1) − ūv>)‖F
6: ū := argminu ‖PΩ(R(k−1) − uv̄>)‖F
7: until converge
8: X(k) := X(k) + ūv̄>

9: R(k) := PΩ(M−X(k))
10: end for

3.1 Optimal Atom
Basically, (4) indicates that we should find an optimal coor-
dinate e(u∗,v∗) and a proper step α∗. From the definition of
Q(λ), we have the following objective

(u∗,v∗) = argmin
(u,v)

min
α

1

2
‖PΩ(M−X(λ+ αe(u,v)))‖2F

= argmin
(u,v)

min
α

1

2
‖PΩ(R(λ)− αuv>)‖2F. (5)

Problem (5) has been widely thought to be complicated
to solve because the objective is jointly non-convex over u
and v. However, it’s easy to know that αuv> is a rank
1 matrix. To such a rank invariant situation, if we fixed
u, the original problem becomes convex, specifically a typ-
ical least square problem. The same can be found when
v is fixed. Thus, we can alternately fix one and opti-
mize over the other until convergence. This alternating op-
timization scheme is a special case of the Alternating Least
Square Method [Koren et al., 2009; Jain et al., 2013;
Gunasekar et al., 2013].

Practically, proper initialization of u is crucial for con-
vergence for an alternating optimization procedure. In our
method, random and prior-knowledge based initialization
methods, are tested (see [Gunasekar et al., 2013] for details),
and encapsulated in a macro INIT. In addition, α is re-
dundant. Real implementation can use only two variables:
ū ∈ Rm and v̄ ∈ Rn since it can be easily derived that
u = ū/‖ū‖,v = v̄/‖v̄‖ and α = ‖ū‖‖v̄‖. Furthermore, we
use m × n matrix X and R to represent the function X(λ)
and R(λ) since λ with infinite dimension is simply used in
derivation and analysis. We summarize our pseudo code in
Algorithm 1.

Note that, the first important difference between OA and
T1SVD is that the selected atom in the latter is not derived
from (4). Actually T1SVD simplifies (4) by replacingQ(λ+
αe(u,v)) with

Q(λ) + 〈∇Q(λ), αe(u,v)〉, (6)

which is a first-order approximation ofQ(λ+αe(u,v)). Since
the first item of (6) is irrelevant to (u,v), by restricting α to
be finite, we have

(û, v̂) = argmin
(u,v)

min
α
〈∇Q(λ), αe(u,v)〉

instead of problem (4). Apparently, α will always take the
reverse sign of 〈∇Q(λ), e(û,v̂)〉, thus we have

(û, v̂) = argmax
(u,v)

|〈∇Q(λ), e(u,v)〉|

= argmax
(u,v)

∣∣∣∣ ∂Q(λ)

∂λ(u,v)

∣∣∣∣ ,
which is the problem (3). It is reasonable to infer that the error
from the linear approximation may amplify the necessity of a
fully corrective procedure in current state-of-the-art methods.

The second difference between OA and T1SVD lies in that
the optimization problem of OA involves only the matrix en-
tries in Ω while T1SVD deals with the whole matrix with
plenty of zeros indicating the missing entries. For T1SVD,
the chain rule of partial derivative allows us to write (3) as

(û, v̂) = argmax
(u,v)

∣∣∣∣∂Q(λ)

∂X(λ)
· ∂X(λ)

∂λ(u,v)

∣∣∣∣
= argmax

(u,v)

∣∣< ∇L(X(λ)),uv> >
∣∣

= argmin
(u,v)

min
α
‖R(λ)− αuv>‖2F, (7)

in which equation (7) comes from the fact that

min
α
‖R(λ)− αuv>‖2F

=‖R(λ)‖2F − 〈R(λ),uv>〉2

=‖∇L(X(λ))‖2F − 〈∇L(X(λ)),uv>〉2. (8)

And for equation (8),∇L(X(λ)) = −R(λ) is easy to verify.
Comparing (7) with (5), T1SVD chooses the best atom (û, v̂)
to approximate the whole R(λ), while OA goes through the
same procedure only within Ω which contains the indices of
observed entries.

3.2 Variants for Fully Corrective Selection
Our Algorithm (1) is totally non-corrective, that is, at each
iteration, we only modify the weights of the current atom.
Based on OA, variants for fully corrective selection can also
be developed for better accuracy, especially when sufficient
computational capacity is available.

In order to compare our OA strategy with other state-of-
the-art algorithms, we design OA variants with five main-
stream schemes for weight updating and encapsulate them
in the form of macros to keep the algorithm succinct. The
inputs of these macros are {Ω,PΩ(M),U ∈ Rm×q,V ∈
Rm×q,Φ ∈ R(q−1)×(q−1)}, where U and V have their col-
umn Ui ∈ U and Vi ∈ V respectively, Φ ∈ R(q−1)×(q−1)

is obtained from the previous iteration and q is the iteration
count. The outputs are {Φ ∈ Rq×q,U,V}. U, V, and Φ are
in both input and output set. Our variants for fully corrective
selection are summarized in Algorithm 2. We briefly explain
the weight updating schemes as follows.
ADJ-GECO follows the method in literature [Shalev-
Shwartz et al., 2011] that solves the following regression
problem

S∗ = argmin
S∈Rq×q

H(S) ,
1

2
‖PΩ(USV> −M)‖2F.
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Algorithm 2 OA variants: OA-GECO,OA-R1MP, OA-
ER1MP, OA-JS, and OA-BOOST

Input: Ω,PΩ(M),K

Output: U(K)Φ(K)(V(K))>

1: Initialize: Set U(0) := V(0) := [ ],and R(0) := PΩ(M)
2: for k := 1, 2, . . . ,K do
3: Step 1:
4: ū := INIT()
5: repeat
6: v̄ := argminv ‖PΩ(R(k−1) − ūv>)‖F
7: ū := argminu ‖PΩ(R(k−1) − uv̄>)‖F
8: until converge
9: ū := ū

‖ū‖ and v̄ := v̄
‖v̄‖

10: Step 2:
11: U(k) := [U(k−1), ū] and V(k) := [V(k−1), v̄]
12: Let IN be {Ω,PΩ(M),U(k),V(k)}
13: Let OUT be {Φ(k),U(k),V(k)}
14: Refinement (Choose one of five):

OUT := ADJ-GECO(IN), / ∗ Alg: OA-GECO ∗ /
:= ADJ-R1MP(IN), / ∗ Alg: OA-R1MP ∗ /
:= ADJ-ER1MP(IN), / ∗ Alg: OA-ER1MP ∗ /
:= ADJ-JS(IN), / ∗ Alg: OA-JS ∗ /

or := ADJ-BOOST(IN) / ∗ Alg: OA-BOOST ∗ /

15: R(k) := PΩ(M−U(k)Φ(k)(V(k))>)
16: end for

Let USΦSV>S be the SVD of S∗. We construct outputs as
U := UUS, V := VVS and Φ := ΦS.
ADJ-R1MP is a simplification of ADJ-GECO with a con-
straint that S is diagonal [Wang et al., 2014].
ADJ-ER1MP further simplifies above ADJ-R1MP by set-
ting Si,i = a1Φi,i for i ∈ {1, · · · , (q − 1)} and Sq,q =
a2 [Wang et al., 2014].
ADJ-JS preprocesses the data as in [Jaggi et al., 2010]
and proceeds like ADJ-ER1MP except for an additional con-
straint (a1 + a2 = 1) and a1 and a2 are the only variables.
ADJ-BOOST is similar to ADJ-ER1MP. It adds a regular-
ization term β(a1

∑q−1
i=1 Φi,i+a2) into the objective function

with constraints: a1 ≥ 0 and a2 ≥ 0 [Zhang et al., 2012].

4 Analysis
In this section, we investigate how well OA approximates the
residual R. The upper bound that we obtain is independent of
the largest singular value of the underlying matrix of residual.
We also prove that OAMC and three of its variants converge
linearly.

We start our analysis with the following definition of inco-
herence property of matrix.
Definition 1 (µ-incoherent). Let A ∈ Rm×n be a rank
k matrix with singular value decomposition UΦV>. A is
said to be µ-incoherent if there exists a constant µ such that

max
i∈{1,··· ,m}

‖Ui,:‖ ≤ µ
√

k
m and max

i∈{1,··· ,n}
‖Vi,:‖ ≤ µ

√
k
n .

Lemma 1. Let M = σuv> be a µ-incoherent matrix with
u ∈ U and v ∈ V and N ∈ Rm×n be a noise matrix with
maxi,j Ni,j ≤ cσ

n , where c is a constant. Suppose that the
support Ω of R is obtained by uniformly and independently
sampling from {1, · · · ,m} × {1, · · · , n} with probability p.
Let G = (‖PΩ(N)‖F/

√
p)/σ. If G ≤ C1 ≤

√
3/µ and

p ≥ C2µ
4 log n log(1/µG)

min{δ2, n(µG)4}m
,

where C1, C2 and δ2 ≤ (1/64) are constants, then

σ‖PΩ(uv> − ūv̄>)‖F ≤ Cµ‖PΩ(N)‖F (9)

with probability at least 1 − (1/n3), where (ū, v̄) is the so-
lution of step 1 of Algorithm 2 initialized as in [Gunasekar et
al., 2013] withO(log(1/µG)) iterations, and C is a constant.

Lemma 1 will be used to show that our algorithm needs ap-

proximately pmn ≥ C2µ
4n logn log 1

µG
min{δ2,n(µG)4} samples to fulfill the

completion, whose proof is placed in the long version of this
paper. Note that O(n log n) is the optimum sampling com-
plexity to complete a rank-1 matrix according to the Coupon
collector’s problem. Thus our atom selection strategy is also
optimum in terms of sampling complexity with respect to the
matrix size.

Theorem 1. Let L ∈ Rm×n be the underlying rank-r matrix
of the residual R and suppose maxi,j S2(L) ≤ cσ1(L)

n , with
a constant c. If the support Ω of R is obtained by uniformly
and independently sampling from {1, · · · ,m} × {1, · · · , n}
with probability p defined in Lemma 1 using µ and G derived
from S1(L) and S2(L), then

min
α
‖PΩ(R− αūv̄>)‖F ≤ (1 + Cµ)‖PΩ(S2(L))‖F (10)

with probability at least 1− 1
n3 , where ūv̄> is the atom con-

structed by step 1 of Algorithm 2 andC is a positive constant.

Proof. By the subadditivity of Frobenius norm, we have:

min
α
‖PΩ(L− αūv̄>)‖F

≤min
α

{
‖PΩ(L− αu1v

>
1 )‖F + α‖PΩ(u1v

>
1 − ūv̄>)‖F

}
where u1 and v1 are vectors from S1(L). Taking α = σ1(L),

min
α
‖PΩ(L− αūv̄>)‖F

≤‖PΩ(S2(L))‖F + σ1‖PΩ(u1v
>
1 − ūv̄>)‖F.

(11)

We bound the second term of (11) by Cµ‖PΩ(L≥2)‖F using
Lemma 1. Since PΩ(R) = PΩ(L), we have the result.

This bound shows that the result of Algorithm 2 approx-
imates R with an error independent of the largest singular
value of L.

The following Lemma is used to prove the linear conver-
gence of OAMC and three of its variants.
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Lemma 2. Let (ū, v̄) be the atom selected by the step 1 of
Algorithm 2 and the step 1 is initialized by any pair (û, v̂).
We have

min
α
‖PΩ(R−αūv̄>)‖F ≤ min

α
‖PΩ(R−αûv̂>)‖F. (12)

The result of Lemma 2 can be easily obtained since the
alternating minimization does not increase the value of the
objective in any iteration. Now we present a simple proof
to show that OAMC and three of its variants converge lin-
early with proper initialization. We choose OA-R1MP as an
example and use notations conforming to the description of
Algorithm 2.

Theorem 2. The residual R(k+1) ∈ Rm×n of OA-R1MP
satisfies

‖R(k+1)‖F ≤ γk‖PΩ(M)‖F, (13)
with the ApproxSV defined in [Shalev-Shwartz et al., 2011] as
the initialization for step 1 in each iteration, where γ ∈ [0, 1)
is a constant.

Proof. From the definition of ADJ-R1MP, we have

‖R(k+1)‖2F = min
Φ is diagonal

‖PΩ(M−U(k+1)ΦV(k+1)>)‖2F.

Let Φ′ be in the form of [[(Φ(k))>, 0]>, [0, α]>]. We have

‖R(k+1)‖2F
≤min

α
‖PΩ(M−U(k+1)Φ′(α)V(k+1)>)‖2F

= min
α
‖PΩ(R(k) − αūv̄>)‖2F.

(14)

Let ûv̂> be the initial atom constructed by ApproxSV. By
applying Lemma 2 to (14) we have

‖R(k+1)‖2F ≤ min
α
‖PΩ(R(k) − αûv̂>)‖2F. (15)

For (15), α has a close form solution

α∗ = 〈PΩ(R(k)),PΩ(ûv̂>)〉/‖PΩ(ûv̂>)‖2F.

Substituting α∗ into (15), we have

‖R(k+1)‖2F ≤ ‖R(k)‖2F −
〈PΩ(R(k)),PΩ(ûv̂>)〉2

‖PΩ(ûv̂>)‖2F
. (16)

We know ‖PΩ(ûv̂>)‖2F ≤ 1 and 〈PΩ(R(k)),PΩ(ûv̂>)〉 =

〈PΩ(R(k)), ûv̂>〉 = 〈R(k), ûv̂>〉 = û>R(k)v̂ ≥ (1 −
δ)σ1(R(k)), where δ is a constant smaller than 1. The last
inequation comes from [Shalev-Shwartz et al., 2011]. Thus,

‖R(k+1)‖2F ≤ ‖R(k)‖2F − (1− δ)2σ2
1(R(k))

= ‖R(k)‖2F(1− (1− δ)2σ2
1(R(k))

‖R(k)‖2F
).

(17)

Further, we have

‖R(k+1)‖ ≤ PΩ(M)
k∏
i=1

√
1− (1− δ)2σ2

1(R(i))

‖R(i)‖2F
. (18)
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Figure 1: Iteration vs. log(Training RMSE). The line of
OAMC overlaps those of OA-ER1MP and OA-R1MP.

It is well known that σ2
1(R(k)) ≥ ‖R(k)‖2F

rank(R(k))
≥ ‖R(k)‖2F

min(m,n)
,

from which we have (1−δ)2σ1(R(k))2

‖R(k)‖2F
< 1. Thus, there

must be a constant γ < 1 that satisfies ‖R(k+1)‖F ≤
γk‖PΩ(M)‖F.

Note that OAMC, OA-GECO, and OA-ER1MP can also be
found convergent linearly by slightly modifying (14) together
with a proper initialization of the alternating minimization
step.

5 Experiment
To make empirical evaluation, we conduct experiments of
Recommendation and Image Recovery. OAMC and its
variants are compared with five state-of-the-art T1SVD
based competitors including GECO, R1MP, ER1MP, JS, and
BOOST. All experiments are conducted on the same PC
(Windows Server 2012 R2, Intel Xeon E5 2690v2*2 CPU,
and 128G RAM).

We call the PROPACK to solve Top-1 SVD for T1SVD
strategy. As for alternating minimization, we use random
and the ApproxSV initialization respectively and set the max-
imum number of iterations to be ten. It turns out that random
initialization does little harm to the convergence rate and the
accuracy in our experiments. We only report the experiments
with random initialization due to limited space.

For the parameter setting, we set the same maximum num-
ber of iteration for all the algorithms. And λ, the regulariza-
tion parameter for BOOST, is selected by 3-fold cross valida-
tion. Additionally, JS requires a regularization parameter t,
which is set to a doubled value of the nuclear norm solved by
OA-ER1MP (This value is close in all OA variants).

To measure the performance, Root Mean Square Errors
(RMSE) on both training set and testing set are calculated.
We also record their running time (in seconds). Experi-
mental results show that using OA strategy speeds up the

Table 1: Statistics for CF datasets

Dataset #row #column #rating
MovieLens10M 69878 10677 1× 107

NetFlix 461444 17770 1× 108

Yahoo Music 1000990 624961 2.5× 108
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Table 2: Test RMSE (10−1) and running time (sec) for 5 Images. We present the running time in square brackets next to RMSE.
OA-JS achieves the best performance.

Image OAMC OA-GECO OA-R1MP OA-ER1MP OA-JS OA-BOOST GECO R1MP ER1MP JS BOOST
Barbra 1.08[1.33] 1.07[48.2] 1.07[12.5] 1.07[1.11] 1.05[1.19] 1.07[1.11] 1.11[54.1] 1.13[19.7] 1.14[9.01] 1.09[8.87] 1.13[8.31]
Clown 0.84[1.08] 0.83[49.0] 0.83[12.3] 0.83[1.14] 0.79[1.19] 0.86[1.11] 0.89[54.3] 0.89[19.4] 0.89[8.79] 0.83[8.78] 0.88[8.40]
Couple 0.84[1.11] 0.83[47.7] 0.83[12.1] 0.84[1.11] 0.81[1.24] 0.83[1.13] 0.86[54.2] 0.89[19.6] 0.89[8.79] 0.84[8.52] 0.88[7.93]
Crowd 1.05[1.12] 1.02[47.8] 1.02[12.5] 1.03[1.12] 1.00[1.23] 1.03[1.23] 1.08[53.5] 1.09[19.5] 1.10[8.67] 1.05[9.03] 1.10[8.84]
Lenna 0.82[1.11] 0.81[47.4] 0.82[12.4] 0.82[1.10] 0.77[1.21] 0.81[1.13] 0.84[55.2] 0.88[19.3] 0.88[8.88] 0.82[8.33] 0.88[7.81]
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Figure 2: Time (sec) vs. Test RMSE. Lines terminate when the corresponding algorithms stop and results beyond the predefined
time limit are not reported.

convergence and reduces the test error. Additionally, non-
corrective algorithm OAMC performs well along with its
variants, which implies that OA strategy reduces the impor-
tance of weight refinement procedure.

5.1 Recommendation
We use three largest publicly available datasets: Movie-
Lens10M, NetFlix, and Yahoo Music to test the matrix
completion based recommendation. The statistics of these
datasets are listed in Table 1. All datasets are randomly split
into equal-sized training and testing parts. The maximum it-
eration K for them are {20, 20, 50} respectively. λ is chosen
from {10i, i ∈ {−1, · · · , 3}} by 3-fold cross validation.

In Figure 1, we plot the logarithm of training error of Ya-
hoo Music dataset in each iteration to compare the conver-
gence rates of different algorithms. We can observe two
phases in all OA based methods in the figure. The first few
iterations drastically reduce the training error, which we at-
tribute to the approximation guarantee of OA: Theorem 1
shows that, when the gap between the singular values of the
underlying matrix is large, OA can remove the impact of the
largest singular value on the training error. In the following it-
erations, the training error decreases slower, but still linearly.
This can be explained by Theorem 2: convergence is linear
regardless of the distribution of the singular values. Addition-
ally, all OA based methods have smaller training error than
T1SVD based methods, even just after one iteration. Fur-
ther, OAMC, OA-GECO, OA-R1MP, and OA-ER1MP have
similar performance. This suggests the inequality (14) is in-
deed tight, which we attribute to the construction of OA. As
for T1SVD based methods, GECO outperforms the rest by
much. Such contrast makes it reasonable to infer that OA
strategy substantially diminishes the contribution of weight
update procedure.

We then plot test error over the running time to show
the accuracy and efficiency of our methods in Figure 2.

It shows that OA based methods achieve small test error
with quite little known entries while T1SVD based meth-
ods fail in these situations. One reason is that the alternat-
ing minimization has recovery guarantee [Jain et al., 2013;
Gunasekar et al., 2013] which ensures the better reconstruc-
tion of underlying matrix. We can also see that all OA based
methods are more efficient than their T1SVD competitors and
some OA variants are even 5 times faster. It is worth empha-
sizing that some of our algorithms take only 700 seconds to
process Yahoo Music dataset in PC, yet achieve a root mean
square error 24.5. We attribute this to the efficiency of alter-
nating minimization procedure.

5.2 Image Recovery
In Image Recovery, we use five 512 × 512 sized gray-scale
benchmark images2. Since images are typically high rank, we
set rank K = 200. We uniformly retain 20% pixels as known
entries. By conducting 10 independent trials for each image,
average RMSE and running time are presented in Table 2.

We first compare the test error of two methods using the
same weight refinement strategy but with different atom se-
lection methods. The advantage of OA over T1SVD is clear,
as all OA based methods outperform their T1SVD based
competitor. Furthermore, we can see that even without fur-
ther weight refinement, OAMC outperforms T1SVD based
algorithms in most cases. Besides, OA based methods are
also much faster, for example, OA-ER1MP is at least 7 times
faster than ER1MP on every image. Explanation for such
observation is similar to the one in Recommendation.

6 Conclusion
We propose a novel atom selection strategy for greedy ma-
trix completion called Optimal Atom, based on which several

2http://www.utdallas.edu/ cxc123730/mh bcs spl.html
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algorithms are derived as well. Both approximation guaran-
tee of OA and the convergence rate of our variants are estab-
lished. Through two applications, Recommendation and Im-
age Recovery, we demonstrate the superiority of our methods
over existing T1SVD based algorithms. In the future work,
we will further investigate the weight refinement step for OA.
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