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Abstract

Items in real-world recommender systems exhibit
certain hierarchical structures. Similarly, user pref-
erences also present hierarchical structures. Re-
cent studies show that incorporating the explicit hi-
erarchical structures of items or user preferences
can improve the performance of recommender sys-
tems. However, explicit hierarchical structures are
usually unavailable, especially those of user prefer-
ences. Thus, there’s a gap between the importance
of hierarchical structures and their availability. In
this paper, we investigate the problem of explor-
ing the implicit hierarchical structures for recom-
mender systems when they are not explicitly avail-
able. We propose a novel recommendation frame-
work HSR to bridge the gap, which enables us to
capture the implicit hierarchical structures of users
and items simultaneously. Experimental results on
two real world datasets demonstrate the effective-
ness of the proposed framework.

1 Introduction

Recommender systems [Resnick and Varian, 1997] intend
to provide users with information of potential interest based
on their demographic profiles and historical data. Collab-
orative Filtering (CF), which only requires past user rat-
ings to predict unknown ratings, has attracted more and
more attention [Hofmann, 2004; Zhang et al., 2006; Koren,
2010]. Collaborative Filtering can be roughly categorized
into memory-based [Herlocker et al., 1999; Yu et al., 2004;
Wang ef al., 2006] and model-based methods [Hofmann,
2004; Mnih and Salakhutdinov, 2007; Koren et al., 2009].
Memory-based methods mainly use the neighborhood in-
formation of users or items in the user-item rating matrix
while model-based methods usually assume that an underly-
ing model governs the way users rate and in general, it has
better performance than memory-based methods. Despite the
success of various model-based methods [Si and Jin, 2003;
Hofmann, 2004], matrix factorization (MF) based model has
become one of the most popular methods due to its good per-
formance and efficiency in handling large datasets[Srebro et
al., 2004; Mnih and Salakhutdinov, 2007; Koren et al., 2009;
Gu et al., 2010; Tang et al., 2013; Gao et al., 2013].
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Figure 1: Netflix Movie Hierarchical Structure and half.com
Book Hierarchical Structure

Items in real-world recommender systems could exhibit
certain hierarchical structures. For example, Figure 1(a) and
1(b) are two snapshots from Netflix DVD rental page!. In
the figure, movies are classified into a hierarchical struc-
ture as genre—subgenre—detailed-category. For example,
the movie Schindler’s List first falls into the genre Faith
Spirituality, under which it belongs to sub-genre Faith &
Spirituality Feature Films and is further categorized as In-
spirational Stories (see the hierarchical structure shown in
Fig. 1(a)). Similarly, Fig. 1(c) shows an Antiques & Col-
lectibles category from half.com?. We can also observe hi-
erarchical structures, i.e., category—sub-category. For ex-
ample, the book Make Your Own Working Paper Clock be-
longs to Clocks & Watches, which is a sub-category of An-
tiqgues & Collections. In addition to hierarchical structures
of items, users’ preferences also present hierarchical struc-
tures, which have been widely used in the research of deci-
sion making [Moreno-Jimenez and Vargas, 1993]. For exam-
ple, a user may generally prefer movies in Faith Spiritual-
ity, and more specifically, he/she watches movies under the
sub-category of Inspirational Stories. Similarly, an antique
clock collector may be interested in Clocks & Watches sub-
category under the Antiques & Collections category. Items

!Snapshots are from http://dvd.netflix.com/AllGenresList

ZSnapshot is from http://books.products.half.ebay.com/antiques-
collectibles_W0QQcZ4QQcatZ218176



in the same hierarchical layer are likely to share similar
properties, hence they are likely to receive similar rating
scores. Similarly, users in the same hierarchical layer are
likely to share similar preferences, thus they are likely to
rate certain items similarly [Lu et al., 2012; Maleszka et al.,
2013]. Therefore, recently, there are recommender systems
exploiting explicit hierarchical structures of items or users
to improve recommendation performance [Lu et al., 2012;
Maleszka et al., 2013]. However, explicit hierarchical struc-
tures are usually unavailable, especially those of users.

The gap between the importance of hierarchical structures
and their unavailability motivates us to study implicit hierar-
chical structures of users and items for recommendation. In
particular, we investigate the following two challenges - (1)
how to capture implicit hierarchical structures of users and
items simultaneously when these structures are explicitly un-
available? and (2) how to model them mathematically for
recommendation? In our attempt to address these two chal-
lenges, we propose a novel recommendation framework HSR,
which captures implicit hierarchical structures of users and
items based on the user-item matrix and integrate them into
a coherent model. The major contributions of this paper are
summarized next:

e We provide a principled approach to model implicit hi-
erarchical structures of users and items simultaneously
based on the user-item matrix;

We propose a novel recommendation framework HSR,
which enables us to capture implicit hierarchical struc-
tures of users and items when these structures are not
explicitly available; and

We conduct experiments on two real-world recommen-
dation datasets to demonstrate the effectiveness of the
proposed framework.

The rest of the paper is organized as follows. In Section 2,
we introduce the proposed framework HSR with the details
of how to capture implicit hierarchical structures of users and
items. In Section 3, we present a method to solve the op-
timization problem of HSR along with the convergence and
time complexity analysis. In Section 4, we show empirical
evaluation with discussion. In Section 5, we present the con-
clusion and future work.

2 The Proposed Framework

Throughout this paper, matrices are written as boldface cap-
ital letters such as A and B;. For an arbitrary matrix M,
M(4, j) denotes the (4, j)-th entry of M. ||M||r is the Frobe-
nius norm of M and T'r(M) is the trace norm of M if M is
a square matrix. Let i/ = {uq,usg,...,u,} be the set of n
users and V = {vy,v2, ...,V } be the set of m items. We
use X € R™ "™ to denote the user-item rating matrix where
X(i, ) is the rating score from u; to v; if u, rates v;, oth-
erwise X(4,7) = 0. We do not assume the availability of
hierarchical structures of users and items, hence the input of
the studied problem is only the user-item rating matrix X,
which is the same as that of traditional recommender systems.
Before going into details about how to model implicit hierar-
chical structures of users and items, we would like to first
introduce the basic model of the proposed framework.
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2.1 The Basic Model

In this work, we choose weighted nonnegative matrix factor-
ization (WNMF) as the basic model of the proposed frame-
work, which is one of the most popular models to build
recommender systems and has been proven to be effective
in handling large and sparse datasets [Zhang et al., 2006].
WNMF decomposes the rating matrix into two nonnegative
low rank matrices U € R™*? and V € R%*™_ where U is the
user preference matrix with U(¢, :) being the preference vec-
tor of u;, and V is the item characteristic matrix with V(:, j)
being the characteristic vector of v;. Then a rating score from
u; to vj is modeled as X (¢, j) = U(4,:)V(:,j) by WNMFE. U
and V can be learned by solving the following optimization
problem:

min

_ 2 2 2
pin W o X —UV)lE+A(IU]F + [VIF) @)

where © denotes Hadamard product and W (4, j) controls the
contribution of X(4,5) to the learning process. A popular
choice of W is - W (i, j) = 1 if u; rates vj, and W (7, 5) =0
otherwise.

2.2 Modeling Implicit Hierarchical Structures

In weighted nonnegative matrix factorization, the user pref-
erence matrix U and the item characteristic matrix V can
indicate implicit flat structures of users and items respec-
tively, which have been widely used to identify communi-
ties of users [Wang ef al., 2011] and clusters of items [Xu er
al., 2003]. Since both U and V are nonnegative, we can fur-
ther perform nonnegative matrix factorization on them, which
may pave the way to model implicit hierarchical structures
of users and items for recommendation. In this subsection,
we first give details about how to model implicit hierarchical
structures based on weighted nonnegative matrix factoriza-
tion, and then introduce the proposed framework HSR.

The item characteristic matrix V' € R%*™ indicates the
affiliation of m items to d latent categories. Since V is non-
negative, we can further decompose V into two nonnegative
matrices Vi € R”1 %™ and V, € R¥X™1 1o get a 2-layer im-
plicit hierarchical structure of items as shown in Figure 2(a):

2

where m; is the number of latent sub-categories in the 2-nd
layer and V indicates the affiliation of m items to m; latent
sub-categories. We name V', as the latent category affiliation
matrix for the 2-layer implicit hierarchical structure because
it indicates the affiliation relation between d latent categories
in the 1-st layer and m latent sub-categories in the 2-nd layer.
Since V3 is non-negative, we can further decompose the la-
tent category affiliation matrix Vo to Vo € R™2*™1 and
V3 € R4X™2 (o get a 3-layer implicit hierarchical structure
of items as shown in Figure 2(b):

V =~ V3V,V,

V =~ \72V1

3)

Let \7(1_1 be the latent category affiliation matrix for the
(¢ — 1)-layer implicit hierarchical structure. The aforemen-
tioned process can be generalized to get the g-layer implicit
hierarchical structure from (¢ — 1)-layer implicit hierarchical
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Figure 2: Implicit Hierarchical Structures of Items via Deeply Factorizing the Item Characteristic Matrix.

structure by further factorizing Vq_l into two non-negative
matrices as shown in Figure 2(c):

V ~ VqVq,1 e V2V1 (4)

Similarly, to model a p-layer user implicit hierarchical
structure, we can perform a deep factorization on U as

UNUlUQ...Up_lUp (5)

where U; is an X ny matrix, U; (1 < i < p)isan;—1 X n;
matrix and U, is a n,_; X d matrix.

With model components to model implicit hierarchical
structures of items and users, the framework HSR is proposed
to solve the following optimization problem

v IWo (X -U;...U,V,...V))|%

min
Ulv--*7U1)7V17"'7

p q
+AQNUE + D IVSIIE)
i=1 =1

U,>0,ic{l1,2,...
V;>0,je{1,2,...

s.t. 7p}7

,q}
(6)

An illustration of the proposed framework HSR is demon-
strated in Figure 3. The proposed framework HSR performs
a deep factorizations on the user preference matrix U and the
item characteristic matrix V to model implicit hierarchical
structures of items and users, respectively; while the original
WNMF based recommender system only models flat struc-
tures as shown in the inner dashed box in Figure 3.

3 An Optimization Method for HSR

The objective function in Eq.(6) is not convex if we update
all the variable jointly but it is convex if we update the vari-
ables alternatively. We will first introduce our optimization
method for HSR based on an alternating scheme in [Trigeor-
gis er al., 2014] and then we will give convergence analysis
and complexity analysis of the optimization method.

3.1 Inferring Parameters of HSR

Update Rule of U;
To update U,, we fix the other variables except U;. By re-
moving terms that are irrelevant to U;, Eq.(6) can be rewritten

as:

i X — A.UH.)|I2 112
in [[W o ( Ui |[7 + Al[Uil[7

)
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Figure 3: An Illustration of The Proposed Framework HSR.

where A; and H;, 1 < i < p, are defined as:

[ UU,. Uy ifi£ 1
Al—{ I ifi=1 ®)
And
o Ui+1...Uqu...V1 lfl#p
Hl—{ V,...V, ifi=p @

The Lagrangian function of Eq.(7) is

L(U;) = ||[Wo (X~ AUH,)|2+ U2 - Tr(PTU,)

(10)

where P is the Lagrangian multiplier. The derivative of
L(U;) with respect to Uj is

o0L(U;)

ou;

=2A7 [W o (A UH, - X)|H] +2)\U, - P
1D
By setting the derivative to zero and using Karush-Kuhn-
Tucker complementary condition [Boyd and Vandenberghe,
20041, i.e., P(s,t)U;(s,t) = 0, we get:

[AZT [W ® (AZUZV — X)] HZT + /\UJ (S, t)Ui(S, t) =0
12)

Eq.(12) leads to the following update rule of U; as:

(AT (W © X)HT] (s, 1)

[AT(W & (A;U;H,)HT + AU (s,1)
13)

UZ'(S7 t) — Ui(s, t)\/



Update Rule of V;

Similarly, to update V;, we fix the other variables except V.
By removing terms that are irrelevant to V;, the optimization
problem for V; is:

min [[Wo (X —B;ViMy)|[5 + A[Vil[i  (14)
where B; and M;, 1 < < ¢, are defined as
B1—{U1...U],, ifi=qg 13
and
ViV ifi#1
Mi—{ I ifi=1 (16)

We can follow a similar way as U; to derive update rule for
V,; as:

Vi(s,t) — Vi(&t)\/[B-

T
%

(WO X)M{] (s
(WG (B

b)
M,)M? + V] (s, 1)
(a7

Algorithm 1 The Optimization Algorithm for the Proposed
Framework HSR.
Input: X € R"*™ X, p,q,d and dimensions of each layer
Output Xpred
: Initialize {U;}’_; and {V;}_,
U1,V1 — WNMF(X d)
fori=1top-1do
Ui7 Ui+1 — I\H\/IF(UZ7 nl)
end for
fori=1toqg-1do
Vig1, Vi NMF(V“mz)
end for_ _
U,=U, V,=V,
repeat
fori=1topdo
update B; and M; using Eq.(15) and Eq.(16)
update V; by Eq.(17)
end for

PRDINE RN

R

10:
11:
12:
13:
14:
15:
16:
17:

fori=pto1ldo
update A; and H; using Eq.(8) and Eq.(9)

18: update U; by Eq.(13)

19: end for

20: until Stopping criterion is reached

21: predict rating matrix X,.cq = Uy ...

U,V,...V,

With the update rules for U; and V, the optimization
algorithm for HSR is shown in Algorithm 3.1. Next we
briefly review Algorithm 3.1. In order to expedite the ap-
proximation of the factors in HSR, we pre-train each layer
to have an initial approximation of the matrices U; and V.
To perform pretraining, we first use WNMF [Zhang et al.,
2006] to decompose the user-item rating matrix into U1V
by solving Eq.(1). After that, we further decompose U; into
le ~ U;Ug and V; =~ Vng using nonnegative matrix
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factorization. We keep the decomposition process until we
have p user layers and g item layers. This initializing process
is summarized in Algorithm 3.1 from line 1 to line 9. After
initialization, we will do fine-tuning by updating the U; and
V,; using updating rules in Eq.(13) and Eq.(17) separately.
The procedure is to first update V; in sequence and then U,
in sequence alternatively, which is summarized in Algorithm
3.1 from line 10 to line 20. In line 21, we reconstruct the
user-item matrix as Xpeq = Uy ... U,V4... Vi, A miss-
ing rating from u; to v; will be predicted as Xpreq(%, j )3

3.2 Convergence Analysis

In this subsection, we will investigate the convergence of Al-
gorithm 3.1. Following [Lee and Seung, 20011, we will use
the auxiliary function approach to prove the convergence of
the algorithm.

Definition [Lee and Seung, 2001] G(h,h) is an auxiliary
function for F'(h) if the conditions

G(h,h') > F(h),G(h,h) = F(h)

(18)
are satisfied

Lemma 3.1 [Lee and Seung, 2001] If G is an auxiliary func-
tion for F, then F is non-increasing under the update

RHD = arg min G(h, h't))
Proof F(hit!) < G(hUHD pM) < GAM p1) <
G(h®)

Lemma 3.2 [Ding et al., 2006] For any matrices A &
RT". B € R¥**'S ¢ RP* S ¢ RYF and A, B are
symmetric, the following inequality holds

5 ()

s=1

19)

Tr(STASB)

k 2
ZASB )(s,t)S 20)

— = (s,1)

Now consider the objective function in Eq.(7), it can be writ-
ten in the following form by expanding the quadratic terms
and removing terms that are irrelevant to U,

J(U;) =Tr (—2AT (W e X)H U)
+Tr (AT (Woe (ATUH))HU]) @D
+ Tr(A\U,UT)
Theorem 3.3 The following function
G(U,U)
U,(s,t)

:fQZ(AiT(WQX)HiT)(s,t)Ui( )(1+lo S

)

AT W o (AT UH,)) HY ) (s,t)Uj (s, 1)
U, (s,t)

+Z

(22)

3The code can be downloaded from

http://www.public.asu.edu/~swang187/



is an auxiliary function for J (U;). Furthermore, it is a con-
vex function in U; and its global minimum is

_ , [AT(W o X)HT] (s,1)

Usle ) ¢ UZ(S’“\/ [AT(W & (A,UH,)HT + AU (5,0
(23)

Proof The proof is similar to that in [Gu et al., 2010] and

thus we omit the details.

Theorem 3.4 Updating U; with Eq.(13) will monotonically
decrease the value of the objective in Eq.(6).

Proof With Lemma 3.1 and Theorem 3.3, we have
JU) = ¢u® u?) > g, ul”) > gul) >

... That is, J(U;) decreases monotonically.

Similarly, the update rule for V,; will also monotonically
decrease the value of the objective in Eq.(6). Since the value
of the objective in Eq.(6) is at least bounded by zero , we
can conclude that the optimization method in Algorithm 3.1
converges.

3.3 Complexity Analysis

Initialization and fine-tuning are two most expensive opera-
tions for Algorithm 3.1. For line 3 to 5, the time complex-
ity of factorization of U; € R™-1%? to U; € Rmi-1X™
and fJiH € R"*?is O(tn;_1nd) for 1 < i < p, and
O(tnnyd) for i = 1, where ¢ is number of iterations takes
for the decomposition. Thus the cost of initializing U;’s is
O(td(nny +ning + - - - + np_anp_1). Similarly, the cost of
initializing V;’s is O(td(mmq +mima+- - - +mg_omg_1)
(line 6 to 8). The computational cost of fine-tuning U, in
each iteration is O(nn;_1n; + nny;m + n;_yn;m). Sim-
ilarly, the computational cost of fine-tuning V; in each it-
eration is O(mm;_1m; + mm;n + m;_1m;n). Let ng =
n,mg = m,n, = my = d, then the time comlexity of fine-
tuning is O(t¢[(n +m)(3F_y mi—1ni + Y7y mi_ymy) +
nm(327_ ni + Y25_, my)]), where ¢ is the number of iter-
ations takes to fine-tune. The overall time conplexity is the
sum of the costs of initialization and fine-tuning.

4 Experimental Analysis

In this section, we conduct experiments to evaluate the ef-
fectiveness of the proposed framework HSR and factors that
could affect the performance of HSR. We begin by introduc-
ing datasets and experimental settings, then we compare HSR
with the state-of-the-art recommendation systems. Further
experiments are conducted to investigate the effects of dimen-
sions of layers on HSR.

4.1 Datasets

The experiments are conducted on two publicly available
benchmark datasets, i.e., MovieLens100K # and Douban 7.
MovieLens100K consists of 100,000 movie ratings of 943
users for 1682 movies. We filter users who rated less than 20
movies and movies that are rated by less than 10 users from

“http://grouplens.org/datasets/movielens/
>http://dl.dropbox.com/u/17517913/Douban.zip

the Douban dataset and get a dataset consisting of 149,623
movie ratings of 1371 users and 1967 movies. For both
datasets, users can rate movies with scores from 1 to 5. The
statistics of the two datasets are summarized in Table 1.

Table 1: Statistics of the Datasets

Dataset #of users | # of items | # of ratings
MovieLens100K 943 1682 100,000
Douban 1371 1967 149,623

4.2 Evaluation Settings

Two widely used evaluation metrics, i.e., mean absolute er-
ror (MAE) and root mean square error (RMSE), are adopted
to evaluate the rating prediction performance. Specifically,
MAE is defined as

S per XG5 —X(,5)]

MAE = (24)
7]
and RMSE is defined as
Sper (X00.5) - X(m))Q
RMSE = ' (25)

7l

where in both metrics, 7 denotes the set of ratings we want
to predict, X(4,j) denotes the rating user 7 gave to item j
and X(4, j) denotes the predicted rating from u; to v;. We
random select % as training set and the remaining 1 — %
as testing set where x is varied as {40, 60} is this work. The
random selection is carried out 10 times independently, and
the average MAE and RMSE are reported. A smaller RMSE
or MAE value means better performance. Note that previous
work demonstrated that small improvement in RMSE or MAE
terms can have a significant impact on the quality of the top-
few recommendation[Koren, 2008].

4.3 Performance Comparison of Recommender
Systems

The comparison results are summarized in Tables 2 and 3 for
MAE and RMSE, respectively. The baseline methods in the
table are defined as:

e UCF: UCF is the user-oriented collaborative filtering
where the rating from u; to v; is predicted as an aggre-
gation of ratings of K most similar users of u; to v;. We
use the cosine similarity measure to calculate user-user
similarity.

e MF: matrix factorization based collaborative filtering
tries to decompose the user-item rating matrix into

two matrices such that the reconstruction error is min-
imized [Koren et al., 2009].

o WNMEF: weighted nonnegative matrix factorization tries
to decompose the weighted rating matrix into two non-
negative matrices to minimize the reconstruction er-
ror [Zhang et al., 2006]. In this work, we choose
WNMF as the basic model of the proposed framework
HSR.
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Table 2: MAE comparison on MovieLens100K and Douban

Methods UCF MF | WNMF | HSR-User | HSR-Item | HSR
MovieLens100K 40% | 0.8392 | 0.7745 | 0.8103 0.7559 0.7551 0.7469
60% | 0.8268 | 0.7637 | 0.7820 0.7359 0.7363 0.7286
Douban 40% | 0.6407 | 0.5973 | 0.6192 0.5792 0.5786 0.5767
60% | 0.6347 | 0.5867 | 0.6059 0.5726 0.5721 0.5685

Table 3: RMSE comparison on MovieLens100K and Douban

Methods UCF MF WNMEF | HSR-User | HSR-Item | HSR
MovieLens100K 40% | 1.0615 | 0.9792 | 1.0205 0.9681 0.9672 0.9578
60% | 1.0446 | 0.9664 | 0.9953 0.9433 0.9412 0.9325
Douban 40% | 0.8077 | 0.7538 | 0.7807 0.7313 0.7304 0.7284
60% | 0.7988 | 0.7403 | 0.7637 0.7225 0.7219 0.7179

e HSR-Item: HSR-Item is a variant of the proposed
framework HSR. HSR-Item only considers the implicit
hierarchical structure of items by setting p = 1 in HSR.

e HSR-User: HSR-User is a variant of the proposed

framework HSR. HSR-Users only considers the implicit
hierarchical structure of users by setting ¢ = 1 in HSR.

1000 100 " 1000 100 n

m m,

(a) RMSE for Douban 60% (b) MAE for Douban 60%

00
1000 100 1000 100 n
m

(c) RMSE for MovieLens100K (d) MAE for

MovieLens100K

60% 60%

Figure 4: Parameter Analysis for HSR.

Note that parameters of all methods are determined via
cross validation. Based on the results, we make the following
observations:

e In general, matrix factorization based recommender sys-
tems outperform the user-oriented CF method and this
observation is consistent with that in [Koren et al.,
2009].

e Both HSR-Item and HSR-Users obtain better results
than WNMEF. We perform ¢-test on these results, which
suggest that the improvement is significant. These re-
sults indicate that the implicit hierarchical structures of
users and items can improve the recommendation per-
formance.

e HSR consistently outperforms both HSR-Item and
HSR-Users. These results suggest that implicit hierar-

chical structures of users and items contain complemen-
tary information and capturing them simultaneously can
further improve the recommendation performance.

4.4 Parameter Analysis

In this subsection, we investigate the impact of dimensions
of implicit layers on the performance of the proposed frame-
work HSR. We only show results with p = 2 and ¢ = 2, i.e.,
WoX ~Wo (U UyVoVy) with U; € R™*™ U, €
R™*4 V; € R¥™>™ and Vo € R™*™ gince we have
similar observations with other settings of p and q. We fix
d to be 20 and vary the value of n; as {100, 200, 300, 400,
500} and the value of m; as {200, 400, 600, 800, 1000}. We
only show results with 60% of the datasets as training sets due
to the page limitation and the results are shown in Figure 4.
In general, when we increase the numbers of dimensions, the
performance tends to first increase and then decrease. Among
n; and m, the performance is relatively sensitive to m;.

5 Conclusion

In this paper, we study the problem of exploiting the implicit
hierarchical structures of items and users for recommendation
when they are not explicitly available and propose a novel
recommendation framework HSR, which captures the im-
plicit hierarchical structures of items and users into a coher-
ent model. Experimental results on two real-world datasets
demonstrate the importance of the implicit hierarchical struc-
tures of items and those of users in the recommendation per-
formance improvement.

There are several interesting directions needing further in-
vestigation. First, in this work, we choose the weighted non-
negative matrix factorization as our basic model to capture
the implicit hierarchical structures of items and users and we
would like to investigate other basic models. Since social net-
works are pervasively available in social media and provide
independent sources for recommendation, we will investigate
how to incorporate social network information into the pro-
posed framework.
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