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Abstract

We usually use hit rate to measure the performance
of item recommendation algorithms. In addition
to hit rate, we consider additional two important
factors which are ignored by most previous works.
First, we consider whether users are satisfied with
the recommended items. It is possible that a user
has bought an item but dislikes it. Hence high
hit rate may not reflect high customer satisfaction.
Second, we consider whether the website retailers
are satisfied with the recommendation results. If a
customer is interested in two products and wants
to buy one of them, it may be better to suggest
the item which can help bring more profit. There-
fore, a good recommendation algorithm should not
only consider improving hit rate but also consider
optimizing user satisfaction and website revenue.
In this paper, we propose two algorithms for the
above purposes and design two modified hit rate
based metrics to measure them. Experimental re-
sults on 10 real-world datasets show that our meth-
ods can not only achieve better hit rate, but also
improve user satisfaction and website revenue com-
paring with the state-of-the-art models.

1

Recommender systems have been widely applied to online
shopping websites for better user experience. Traditional
recommendation algorithms try to leverage item aspects and
historical user behaviors to exploit the potential user prefer-
ences. Broadly, a customer’s behavior can be divided into
two types: explicit feedback and implicit feedback. The for-
mer, such as rating scores, reveals the preference degree of
buyers, and the latter, such as browsing and clicking informa-
tion, records valuable customer actions. Based on them, most
well-known methods utilize the collaborative filtering (CF)
technique, which learns the correlations of users and items
beneath the feedback, in order to recognize potential user-
item associations [Koren et al., 2009]. To measure recom-
mendation performance, researches have also considered de-
signing good metrics. For rating prediction, we usually eval-
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uate the difference between predicted rating values and actual
rating values by computing root mean square error (RMSE),
mean square error (MSE) or mean absolute error (MAE). For
item recommendation, we consider whether the most relevant
items are recommended with the highest priority by measur-
ing a ranked item list for each user in terms of precision, re-
call, normalized discounted cumulative gain (NDCG), area
under the curve (AUC), expected reciprocal rank (ERR), etc.
[Weimer et al., 2007; Rendle et al., 2009; Shi et al., 2013;
Pan and Chen, 2013].

Despite those algorithms and metrics, it is still challeng-
ing to comprehensively measure the performance of a partic-
ular recommendation algorithm. The rating prediction met-
rics (e.g., RMSE, MAE, MSE) or some item recommendation
metrics on the whole item lists (e.g., NDCG, AUC, ERR) may
not directly reflect system performance in applications, where
only top-K items are provided. On the other hand, the hit rate
based metrics (e.g. precision and recall) cannot convey pref-
erence degree information. Hence, in this paper, we consider
two other important factors for designing and evaluating rec-
ommendation algorithms.

User Satisfaction We define user satisfaction as how much
a user satisfies with an item (s)he has already bought. The
models with higher hit rate performance may recommend
more items that users tend to buy, but they do not guaran-
tee that the proposed items suit the customers. An extreme
example is that many users are not pleased with the bought
items that recommended by the system. In this case, although
the models achieve high hit rate, it is even worse than not
recommending the items to these users, because they are dis-
appointed with the items and even distrust the recommender
systems in the future.

Website Revenue Another destination of recommender
systems is to help website retailers earn more revenue (which
is narrowly defined as retailer satisfaction for convenience).
Unfortunately, it is ignored by almost all the related algo-
rithms. Improving hit rate can indeed help improve sales,
but it is limited and indirect. Suppose a user intends to buy
one of two selected items, recommending any one of them
will gain the same hit rate, but it is better to choose the item
with higher profit for it can help the website earn more money
without reducing users’ satisfaction.

To illustrate the impact of these factors, we show a simple
example in Table 1. It contains three similar items that the



Table 1: A customer’s wish list.
[ [ itemI [ item2 [ item3 |

satisfaction of u 3 2 5
revenue ($) 5 10 9
algl (algorithml) hit - -
alg2 (algorithm?2) - hit -
alg3 (algorithm3) - - hit

customer u is interested in. The satisfaction denotes the rat-
ing value that u will give to each item if s(he) buys it, and
the revenue is related to item price. The following three lines
show the performance of three recommendation algorithms
(denoted as algl, alg2 and alg3), and the hit means that u will
buy the item if it is recommended. From the table, we im-
mediately know that both alg1, alg2 and alg3 achieve similar
performance in terms of hit rate (i.e., the same prediction, re-
call and F1 score), because they both hit one item. However,
those methods have different performance when we consider
the other two factors. If u buys the item recommended by
algl, he will give 3 stars to the item, and the retailer will get
5 dollars. If u buys the item recommended by alg2 instead,
the user satisfaction value will drop 1 score, but the retailer
can get double revenue. To the item recommended by alg3,
the user gives the highest score, and the website retailer can
get approximate optimal revenue. Therefore, we think that
alg3 is the best algorithm because it satisfies both users and
the retailer, and alg2 may be better than argl because it helps
to double the revenue with the cost of only losing 1 level of
user satisfaction.

To conclude, a good recommendation algorithm should not
only improve hit rate, but also consider optimizing user sat-
isfaction and website revenue, or at least achieve a balance
among them. As a response, in this paper, we propose two
novel algorithms to optimize them simultaneously. To test
the performance of our methods in terms of user and retailer
satisfaction, we design two simple but convincing metrics.
The experimental results on 10 real-world datasets show that
our models provide better overall performance than existing
methods.

2 Background

In this section, we review several related studies and perform
some analysis on real-world datasets.

The most popular techniques for collaborative filtering are
matrix factorization(MF) models [Koren et al., 2009], which
are effective in fitting the rating matrix with low-rank ap-
proximations. MF uses the latent factor U € RP*VN to
represent N users and V' € RPXM to represent M items,
and it employs the D-rank matrix UTV € RN¥*M for rat-
ing prediction. The latent factors can be trained by adopt-
ing Singular Value Decomposition(SVD) [Koren, 2008].
For example, Salakhutdinov et al.  [2008b; 2008al pro-
pose a probabilistic matrix factorization (PMF) model, in
which the factors and ratings are assumed to be sampled from
Gaussian distribution, and the latent factors are learned by
maximum likelihood estimation, which equals to minimiz-
ing 3, e, (UT Vi — su)? + 01 32, U2 4+ A0 3, Vil 2.
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Figure 1: Statistics on real-world datasets.

where s,,; is the rating score that u gives to ¢; T, denotes the
set of observed (user, item) pairs; ||U]|? and ||V||? are regu-
larization terms for avoiding over-fitting.

Many MF models are originally proposed for rating pre-
diction, hence they are weak for ranking tasks. To improve
hit rate performance for implicit feedback, one-class collab-
orative filtering (OCCF) [Pan et al., 2008] and implicit ma-
trix factorization (iMF) [Hu et al., 2008; Lin et al., 2014]
are proposed based on the assumption of pointwise prefer-
ences on items. Both of them treat users’ feedback as an in-
dication of positive and negative preferences with different
levels (cy;) and try to minimize Zu,iETo cui(l = UTV)? +

> ujer,, Cuj(0— UI'V;)? for each (user,item) pair. In addi-
tion to these absolute preference assumptions, many pairwise
algorithms such as BPR and some of its extensions are pro-
posed [Rendle er al., 2009; 2010; Krohn-Grimberghe et al.,
2012; Pan and Chen, 2013]. They directly optimize the ob-
served and unobserved (user,item) pairs with relative prefer-
ence assumptions. Although those algorithms are for implicit
feedback, they can also be applied to ranking items with ex-
plicit information; the drawback is that the user satisfaction
information (i.e., rating values) cannot be efficiently lever-
aged.

Nowadays, more and more methods try to utilize explicit
information for item recommendation. For example, Weimer
et al. [2007] propose a maximum margin matrix factorization
(MMMF) method CofiRank to optimize ranking in terms of
NDCG score. Similr to CofiRank, xCLiMF proposed by [Shi
et al., 2013] builds a recommendation model by generalizing
collaborative less-is-more filtering assumption and optimizes
expected reciprocal rank (ERR). ListRank [Shi et al., 2010]
combines a list-wise learning-to-rank algorithm with MF. It
optimizes a loss function that represents the cross-entropy of
the output rating lists and training lists. These algorithms per-
form well when the data is dense, but they may be unsuitable
for sparse datasets, because few explicit ratings can be used
to compare and learn users’ preferences.

Beyond product ratings, directly optimizing website rev-
enue is another interesting topic. Although a few researches
have considered on how to make price with the help of rec-
ommender systems [Bergemann and Ozmen, 2006] or how to
recommend discount items to users [Kamishima and Akaho,
2011], they do not consider optimizing the website revenue
directly. A good recommender system should not only pro-



vide potential items to users that they like, but let the website
earn as much money as possible. We study many real-world
datasets and find it is feasible to both optimize user satisfac-
tion and website revenue in applications. We briefly discuss
it here by making a qualitative analysis of the relationship
between user satisfaction and website revenue. Figure 1(a)
shows our statistics on 13 Amazon datasets. The horizon-
tal axis is user’s satisfaction and the vertical axis represents
the proportion of items which are above average price. Fig-
ure 1(b) records the rating values and related normalized item
price of an example dataset. It is obvious that user satisfaction
and website sales have some positive correlation and can be
optimized simultaneously. Overall, we can draw the follow-
ing conclusions: (1)For the products in the same category,
item price has some impact on user satisfaction. The items
with higher price may have good quality and hence tend to re-
ceive higher rating values. (2)Involving price information can
not only benefit the website retailer, but also help to predict
user satisfaction, because we can learn the acceptable price
range of each user and avoid recommending the items that
users do not accept.

3 Our Models and Metrics

In this section, we propose two different solutions to optimize
Hit rate, user Satisfaction and website Revenue (HSR) simul-
taneously. We denote the probability (or the tendency) of a
user u buying an item ¢ by P(b,;). We use s,; to indicate the
rating score that u gives to ¢ and use P(s,;) to represent how
much u prefers ¢ after (s)he has already bought it. Specifi-
cally, we assume the greater rating score that u gives to ¢ in
the dataset, the more likely u likes ¢. For the online retailer,
we denote 7,,; as the revenue it gets when u buys 7. There-
fore, P(r,;) can be regarded as retailer satisfaction. In this
paper, the revenue information is considered as the only fac-
tor to influence retailer satisfaction and is determined by hit
rate and item price. The more sales the retailer achieves, the
higher value of P(r,;) will be. With the above assumptions,
our goal is to maximize both P(b;), P(sy;) and P(ry;).

3.1 Algorithm1: HSR-1

Since b,,; has two states, i.e., b,; € {buy,notbuy}, we use
Bernoulli distribution to model it for HSR-1. The probability
of b,; is defined as follows:

P(byil0us) = o(u,9)% (1 — o(u,i)) =% (1)
where §,; is an indicator parameter. J,,; = 1 if u buys ¢ in the
training set, otherwise d,;, = 0. Here o(u, %) is the sigmoid
funciton with f;(u, 7) denoting the user-item association,
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where c is a constant.
Our next task is to model user satisfaction and retailer sat-
isfaction given b,,;. We note that some items, (1)items that
users like but do not pretend to buy, and (2)items with high
price but irrelevant to users, should not be over optimized
due to the risk of reducing the hit rate. Hence, s,; and r;
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are considered only when d&,; = 1. In other words, we opti-
mize s,,; and r,,; when (user, item) pair is observed. Since the
correlation of s,; with r,; is obviously positive based on our
analysis in the previous section, we assume they are sampled
from bivariate normal distribution, that is,

lin

(3)

where K1 = 1/(2r0s0,.4/1 — p?), Ko = 1/(2(1 — p?)),
Ag = (Syi — fs(u,1)) and A, = (ry; — fr(u,i)). Here o de-
notes standard deviation of each factor and p is the correlation
between s,,; and 7;. fs(u,?) and f,.(u, %) can be depicted as
satisfaction function for « and 7.

Because s,,; and r,,; have different ranges, in applications,
we standardize both of them to [0, L]. For example,
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where 7p7q, and 774, are supremum and infimum of item
price set. We then formulate the maximum posterior to derive
our optimization criterion:

OPT(HSR-1) o< In [ P(buildui) P(Buis uildui) 5)
u, €T

where some model parameters are ignored for the sake of
brevity. We assume b,;, s,; and r,; are influenced by U,
and V;, and a straightforward assumption is that fj(u,i) =
Folwd) = folu,i) = UTV;.

We add regularization terms ||U||? and ||V||? for avoiding
over-fitting, and conduct stochastic gradient descent (SGD)
algorithm to update U and V. Different from PMF, we update
the latent factors with both observed and unobserved (user,
item) pairs. Specifically, in each iteration, we sample two
pairs from each class and update the latent factors in turn. In
order to make a prediction, we compute the expected value
UL'V; for each (u, i) pair after finishing the update process.
For u, the item with higher U V; will rank higher and will be
recommended with higher probability.

3.2 Algorithm2: HSR-2

Because the Gaussian assumption in HSR-1 may not be an
optimal solution to modeling discrete values (i.e., Sy;), wWe
use binomial distribution to model user satisfaction inspired
by [Wu, 2009; Kim and Choi, 2014]. We further integrate b,;
into s,; for consistency. Then the probability of s,; can be
written as:

P(sui) = B(sui|L, o (u,1))

_<L

Sui
where BB denotes binomial distribution, and L is the maximal
rating score in the dataset.

Intuitively, binomial distribution is always unimodal,
which is more reasonable than Gaussian models. HSR-2 has
another advantage than HSR-1: UI'V; will not be limited by
Sy and r,; when optimizing o (u, 7).

)O’(u7i)5ui(1 fa(u,i))l‘fﬁui 6)



We also use binomial distribution to model r,;. Note that
r; needs not to be an integer because the first term in Eq.(6)
will be eliminated in the optimization process. Similar to
HSR-1, we also assume user satisfaction and retailer satisfac-
tion are correlated but conditional independent given U, and
V;. Combining distributions of s,; and r,;, and formulating
the maximum posterior, we obtain the following optimization
criterion:

OPT(HSR-2) ocIn ] P(8u:)P(Fuildus) 7
u,te€T

We also conduct SGD algorithm to update U and V' for
HSR-2 and the learning process is similar to HSR-1. In each
iteration, the time complexity of our methods is O(D), there-
fore the execution time is comparable to the existing pairwise
item recommendation methods.

3.3 Discussion and Explanation

Both HSR-1 and HSR-2 rank items based on UI'V;. This is
because if UL'V; is greater, P(by;), P(sy;) and P(r,;) will
also be greater, and hence u will be more likely to choose and
prefer ¢, while the website retailer will get relatively higher
revenue. It can be explained in Figure 2, where the horizontal
axis denotes user satisfaction, vertical axis represents website
revenue and the contour expresses P(sy;)P(r,;) that HSR
try to optimize. The black points represent the items that u
wants to buy and the gray points are irrelevant items.

We now compare HSR with other related models and give
an interpretation of their assumptions. For implicit feedback,
the algorithms such as iMF and BPR aim to find the most
relevant items but ignore horizontal and vertical directions.
Therefore, they do not consider whether w likes the recom-
mended items or not. The recommendation methods based on
explicit feedback, e.g, CofiRank, ListRank and xCLiMF, try
to search the potential items from direction A, in which the
items that v most likes are supposed to be first recommended.
However, because they do not try to avoid the irrelevant items
when training the models, some points with high UI'V; may
be irrelevant to « in the test set.

For HSR, we search the items from direction B, which
guarantees both user satisfaction and retailer satisfaction. We
also try to avoid the irrelevant items in a training set by afore-
mentioned Bernoulli or binomial assumptions, so the cheap
and relevant items can also be recommended with many op-
portunities. From Eq.(5) and Eq.(7) we find that by involving
item price information, HSR-1 and HSR-2 can not only glob-
ally optimize the website revenue, but also try to learn the
acceptable price range of each customer, which is beneficial
to learning user satisfaction. Because of those reasons, HSR
are more comprehensive than existing approaches.

We note that for some datasets, the item price and user sat-
isfaction may not be correlated obviously. In this case, we
still try to balance all the factors for it can improve overall
performance. In practice, we can also adjust the weight of hit
rate part, user satisfaction part and revenue part of Eq.(5) and
Eq.(7) for different purposes.

3.4 The Metrics

To measure user satisfaction and website revenue, we design
two modified hit rate based metrics - satisfaction recall (S-R)
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Figure 2: Model comparison.

and price recall (P-R) as follows:

S-R = M(s)R(b) )

P-R = M(r)R(b) 9)

where R(b) is the recall metric on the test set. It can be rep-
resented as:
X, 1LY 0 L/

10
~ (10)

R(b) =

where N is the number of users, Lff denotes the recom-
mended item set for u, and L¢ is the observed item set. M (s)
and M (r) are the mean rating score and mean price of hit
items in the test set. For example,

S ruid(i € L A LE)

M(r) == nor

an

From Eq.(8), we observe that if an algorithm achieves a
high S-R score, it must guarantee both recall and mean rat-
ing score of hit items. This idea also applies to P-R, which
balances both recall and mean price of hit items. Hence, our
metrics describe overall system performance.

4 Experiments

4.1 Datasets

To fairly evaluate the performance of our models, we study
10 Amazon datasets provided by [McAuley and Leskovec,
2013]. Each dataset contains plenty of review information
such as rating scores, item price, user comments and review
time. We only consider user ratings and item price. Some
related statistic information is summarized in Table 3. We
preprocess the data by dropping the items without rating or
price information, and subdivide them into training, valida-
tion and test sets, where 80% is used for training and the left
20% is evenly split between validation and test sets.

4.2 Baselines and Parameter Settings

We compare our models with 4 state-of-the-art methods for
ranking: (1)CofiRank, (2)ListRank, (3)iMF and (4)BPR.
CofiRank [Weimer et al., 2007] and ListRank [Shi et al.,
2010] are listwise methods for item ranking with explicit
feedback (e.g, ratings). Both of them directly optimize a



Table 2: Prediction and recall performance of compared models on 10 real-world datasets.

. . clothing& | industrial& musical tools& toys& video
metric method | automotive | beauty . o . shoes | software
accessories scientific nstruments home games games
CofiRank 0.0009 0.0021 0.0039 0.0006 0.0003 0.0081 0.0018 0.0005 | 0.0005 | 0.0042
ListRank 0.0001 0.0023 0.0072 0.0009 0.0013 0.0016 | 0.0022 0.0009 | 0.0006 | 0.0023
Precision iMF 0.0038 0.0102 0.0248 0.0102 0.0050 0.0613 | 0.0091 0.0022 | 0.0011 0.0023
K—5 BPR 0.0057 0.0301 0.0449 0.0172 0.0062 0.0762 | 0.0080 0.0040 | 0.0015 | 0.0078
o HSR-1 0.0072 0.0337 0.0470 0.0193 0.0073 0.0832 | 0.0099 0.0028 | 0.0012 | 0.0084
HSR-2 0.0064 0.0323 0.0484 0.0239 0.0073 0.0804 | 0.0110 0.0050 | 0.0017 | 0.0087
improve 26.32% 11.96% 7.80% 38.95% 17.74% 9.19% | 20.88% | 25.00% | 13.33% | 11.54%
CofiRank 0.0041 0.0102 0.0188 0.0023 0.0017 0.0272 | 0.0045 0.0022 | 0.0022 | 0.0152
ListRank 0.0003 0.0108 0.0357 0.0012 0.0064 0.0075 | 0.0036 0.0040 | 0.0020 | 0.0012
Recall iMF 0.0155 0.0439 0.1215 0.0176 0.0218 0.2341 0.0426 0.0101 | 0.0053 | 0.0088
K—=5 BPR 0.0220 0.1327 0.2112 0.0641 0.0274 0.2890 | 0.0256 0.0188 | 0.0063 | 0.0329
- HSR-1 0.0286 0.1501 0.2199 0.0683 0.0322 0.3124 | 0.0436 0.0133 | 0.0060 | 0.0401
HSR-2 0.0246 0.1446 0.2271 0.0814 0.0325 0.3044 | 0.0514 0.0231 | 0.0082 | 0.0410
improve 30.00% 13.11% 7.53% 26.99% 18.61% 8.10% | 20.66% | 22.87% | 30.16% | 24.62%
[ FI_ [ improve | 27.06% | 12.17% | 7.5% | 36.24% | 17.90% | 8.96% | 20.84% | 24.62% | 16.22% | 13.83% |
. L. (1) Because our test sets are very sparse, the precision re-
Table 3: Basic statistics of the data. sults are small comparing with recall when K = 10.
dataset #users  #items r;‘ﬁg priiveg( s  sparsity We also observe that the models considering unobserved
automotive 116898 40256 4.1641 _ 56.0249 _ 0.0035% items (i.e., iMF, BPR, HSle and HSR-2) per fo?m much
beauty 14477119159 4.1712__ 23.9697 _ 0.0077% better than the models which only use rating informa-
clothing&accessories 14849 2278 3.9649 23.0374 0.0571% tion (1e CofiRank and ListRank). Extremely when
industrial&scientific 26381 17155 4.3450 42.1607 0.0192% h ’ v h b di in th .7
musical instruments | 52665 9532 4.0403 598015 0.0132% cach user only has one observed item 1n the training set,
shoes 4762 1275 42541 42.0972 _ 0.1966% CofiRank and ListRank will be next-to-no benefit for ex-
software 33302 3823 3.3448  54.5471  0.0334% ploiting the relevant items, and that is the reason for their
tools&home 235731 36784 40681 593773 0.0037% formance in our experiments
toys& games 215373 30835 41607  46.1495  0.0045% poor per P :
video games 174014 12257 39857 457538 O00157% (2) On average, BPR is better than iMF due to the pairwise

list of items based on rating values. iMF [Hu et al., 2008;
Lin ef al., 2014] is a pointwise method that updates observed
and unobserved pairs individually. BPR [Rendle et al., 2009]
adopts a pairwise ranking method with the assumption that
the observed (user,item) pairs are more positive than the un-
observed (user,item) pairs, and optimizes the comparison in
each iteration. For iMF and BPR, we take a pre-processing
step by keeping the ratings as observed positvie feedback and
other (user, item) pairs as unobserved feedback. We conduct
comparisons with iMF and BPR because they perform better
in very sparse datasets than the other baseline methods.

We set the learning rate to 0.001 for iMF, ListRank and
HSR-2 and to 0.01 for CofiRank, BPR and HSR-1. We fix la-
tent dimension D = 10 and choose regularization coefficient
from A € {0.001,0.01,0.1,1}. The correlation p is set to
0.1 and L = 5. We adopt precision, recall and our proposed
metrics S-R and P-R to test the performance. The length of
recommendation lists is fixed at K = 5 for all metrics.

4.3 Analysis of Hit Rate

We show the hit rate performance comparison of our moth-
ods with other baseline models. The precision and recall re-
sults are shown in Table 2, where the best performance is in
bold font. For comprehensive comparison, we also list the
improvement of F1 score in the last row. From the table, we
have the following observations:
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assumption. Although iMF considers the unobserved
pairs, it is based on an absolute assumption that the s, ;
will be 1 when u buys ¢, and 0 otherwise. On the con-
trary, BPR, HSR-1 and HSR-2 try to take feedback as
relative preferences rather than absolute ones.

Both HSR-1 and HSR-2 are better than the other base-
line methods in terms of both precision and recall re-
sults. They improve the precision by an average of more
than 18% and improve the recall by an average of more
than 20% comparing with the best baseline models. It
is mainly because that HSR-1 and HSR-2 not only con-
sider all possible (user, item) pairs, but also adopt ex-
plicit feedback information.

3)

4.4 Analysis of User Satisfaction

We then analyse the performance of the compared models
on S-R metric and list the improvement of our models on
mean ratings of hit items (M(s)). The experimental results
are shown in Table 4, from which we can have the following
observations and conclusions:

(1) Some models with lower precision or recall values can
achieve higher S-R scores. For example, on the video
games dataset, HSR-1 has lower recall performance than
HSR-2 but achieves better S-R due to higher M (s).

(2) Both HSR-1 and HSR-2 are better than the other base-
line models on S-R, which demonstrates the benefit of



Table 4: S-R and P-R performance of compared models on 10 real-world datasets.

. . clothing& | industrial& musical tools& toys& video
metric method automotive | beauty . S . shoes software
accessories scientific instruments home games games
CofiRank 0.0174 0.0455 0.0891 0.0106 0.0071 0.1274 0.0148 0.0092 | 0.0094 | 0.0706
ListRank 0.0012 0.0436 0.1493 0.0053 0.0265 0.0356 0.0123 0.0172 | 0.0086 | 0.0055
S.R iMF 0.0672 0.1861 0.5026 0.0724 0.0990 1.0332 0.1632 0.0444 | 0.0228 0.0400
E—5 BPR 0.0967 0.5644 0.8861 0.2634 0.1220 1.2592 0.0886 0.0805 0.0271 0.1466
B HSR-1 0.1249 0.6414 0.9167 0.3021 0.1415 1.3422 0.1744 0.0546 | 0.0268 0.1848
HSR-2 0.1093 0.6171 0.9644 0.3443 0.1460 1.2993 0.2011 0.0992 | 0.0359 | 0.1799
improve 29.15% 13.64% 8.84% 30.70% 19.66% 6.59% 23.21% | 23.24% | 32.11% | 26.05%
\ M(s) \ improve \ 1.09% \ 0.53% \ 1.24% \ 7.33% \ -1.14% \ -2.65% \ 4.54% \ -1.83% \ 3.22% \ 1.33% \
CofiRank 0.0303 0.0499 0.1507 0.0108 0.0176 0.3384 0.1180 0.0302 | 0.0346 | 0.1896
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Figure 3: Performance comparison with different recommendation list size.

combining b,,; and s,,;. We also find that M (s) is not im-
proved in some datasets. This is mainly because HSR try
to balance hit rate and user satisfaction instead of simply
optimizing the latter one. Because HSR have much bet-
ter performance than the other models on recall values,
the influence of M (s) is not obvious here.

4.5 Analysis of Revenue

We compare our models with other baselines on P-R metric,
and list the improvement of HSR on mean price of hit items
(M(r)). The results are summarized in the lower portion of
Table 4, and we find that

(1) There is plenty of room to optimize the website rev-
enue. Some algorithms with poor recall performance
may achieve better P-R metric and M (r). For example,
on the toys&games dataset, iMF has nearly 19% lower
recall score than BPR, but it performs better than BPR
when we consider P-R metric, because it increases the
average revenue a lot at the cost of decreasing a certain
degree of the recall value.

(2) Our models achieve much better performance than any
other models on both P-R metric and M (r). For many
datasets, the improvement is over 50%, and for some

datasets, such as industrial&scientific and video games,
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the performance can even double the best baseline mod-
els, which shows the efficiency of HSR by integrating
the price factor into the recommendation models. Be-
cause total revenue and profit are almost always corre-
lated, our methods have high degree of confidence to
help earn much more money for the online aggregators.

4.6 Analysis of Stability

Finally, to study the recommendation stability, we vary the
recommendation size K to be values of {1,3,5,7,9}, and
some results are shown in Figure 3. As can be seen, when K
increases, the precision scores have general downward trend,
and other metrics pretend to increase. HSR-1 and HSR-2 are
consistently better than other models. In particular, when K
increases, the advantages of our models on P-R become more
and more obvious.

5 Conclusion and Future Work

In this paper, we consider three important factors, (1)hit rate,
(2)user satisfaction, and (3)website revenue, to measure the
performance of recommender systems. We then propose two
algorithms, called HSR-1 and HSR-2, to optimize them. Fi-
nally, two simple but convincing metrics are designed to mea-
sure the comparison models. The experimental results show



that our models can achieve better hit rate and user satisfac-
tion results and also significantly improve website revenue.
In the future, we intend to exploit more kinds of user be-
haviors and design some mechanisms for recommendation di-
versification. To better measure the overall recommendation
performance, we will try to design more effective metrics.
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