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Abstract
Most existing cross-domain recommendation algo-
rithms focus on modeling ratings, while ignoring
review texts. The review text, however, contains
rich information, which can be utilized to alleviate
data sparsity limitations, and interpret transfer pat-
terns. In this paper, we investigate how to utilize
the review text to improve cross-domain collabo-
rative filtering models. The challenge lies in the
existence of non-linear properties in some transfer
patterns. Given this, we extend previous transfer
learning models in collaborative filtering, from lin-
ear mapping functions to non-linear ones, and pro-
pose a cross-domain recommendation framework
with the review text incorporated. Experimental
verifications have demonstrated, for new users with
sparse feedback, utilizing the review text obtains
10% improvement in the AUC metric, and the non-
linear method outperforms the linear ones by 4%.

1 Introduction
The cold-start problem [Schein et al., 2002] for new users is
one of collaborative filtering (CF)’s inherent limitations for
recommender systems. To solve it, cross-domain CF utilizes
the user feedback in the auxiliary domain to assist the prefer-
ence prediction in the target domain [Hu et al., 2013], which
has been demonstrated effective in many applications [Li et
al., 2009; Pan and Yang, 2013; Singh and Gordon, 2008].

In spite of the significant progress, most existing cross-
domain CF methods only model the numerical rating, while
ignoring the accompanied review text. The review text, how-
ever, contains rich information of items. For example, “Harry
Potter” is popular for its story, while “James Bond” is attrac-
tive for its action. Dropping such content will aggravate the
data sparsity problem. In addition, the learned transfer pat-
terns are not interpretable. In reality, if we know “action”
movies are correlated with “rock” music, for a new user in
the music domain, who has watched many action movies, it
is reasonable to recommend rock music to her/him. But most
cross-domain CF models are built on latent vectors generated
from the matrix factorization, which are difficult to interpret.
∗the corresponding author.

(a) Rating biases (b) Percentage biases

Figure 1: The nonlinear transfer pattern from youth movies
to investment books. X-axis: average biases for youth movies
for each group. Y-axis: average biases for investment books.

Therefore, the goal of this paper is to investigate how to uti-
lize the review text to improve cross-domain CF models, in
order to solve the above limitation.

The challenge we confront is the existence of non-linear
properties in some transfer patterns. Figure 1 shows a study
of the transfer pattern from “youth” movies to “investment”
books. These two categories are representative topics with a
topic model [Wang and Blei, 2011] being conducted on movie
reviews and book reviews, respectively. The analysis is con-
ducted on 8704 Douban1 users, who have given at least 18
movie ratings and 18 book ratings. We rank the users by
her/his rating bias for youth movies in the ascending order,
and divide them into 7 groups. A user’s rating bias for youth
movies (or investment books) refers to her/his average rat-
ing of all reviewed youth movies (or investment books), mi-
nus her/his average rating of all movies (or books). For each
group, the average rating biases for youth movies and invest-
ment books are shown in the left figure. It is observed that
as the preference for youth movies increases, the preference
for investment books first goes down and then rises. We draw
a similar figure based on the percentage bias in the right. A
user’s percentage bias for youth movies (or investment boo-
ks) refers to the number of her/her youth movie (or invest-
ment book) ratings, divided by the total number of her/his
movie (or book) ratings. From the figures, it concludes that
the transfer pattern from youth movies to investment books is
non-linear. Users who favor or reject youth movies are more
likely to take interest in investment books; while moderate

1http://www.douban.com, a popular review site in China.
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users are likely to take less interest. Previous linear cross-
domain CF models, however, cannot work well in such cases.

In this paper, we propose a non-linear cross-domain collab-
orative filtering framework with the review text incorporated.
The contribution lies in the following three aspects:
• Exploring the utility of the review text. The previously

ignored review text has been studied to improve cross-
domain CF, complemented with the rating. The rich con-
tent alleviates the data sparsity problem, and makes the
learned transfer patterns interpretable.
• Dealing with non-linear transfer patterns. We extend

previous cross-domain CF, from utilizing linear map-
ping functions to utilizing non-linear ones. The radial
basis function (RBF) kernel is employed to map a user’s
preference vectors between two domains.
• Real evaluation. Through experimental verifications in a

real-world dataset, we demonstrate for new users, incor-
porating the review text improves the performance by
10% in the AUC metric, and the proposed non-linear
framework outperforms linear ones by 4%.

2 Related Work
2.1 Fundamental Collaborative Filtering
CF algorithms are divided into memory-based [Breese et
al., 1998; Ma et al., 2007] and model-based [Koren et al.,
2009]. A competitive representative is the factorization-
based model [Salakhutdinov and Mnih, 2007; Zhang and
Koren, 2007]. Compared with explicit ratings, implicit rat-
ings such as purchase histories, have attracted significant at-
tention in industry [Hu et al., 2008; Rendle et al., 2009;
Weimer et al., 2007], because it is easier to obtain from users.

Recently, the review text has been proven effective in im-
proving recommender systems [Diao et al., 2014; McAuley
and Leskovec, 2013], where topic models are utilized to ana-
lyze the review text, and then incorporated with the matrix
factorization to be a joint framework [Agarwal and Chen,
2010; Blei et al., 2003; Wang and Blei, 2011].

2.2 Link-Based Cross-domain CF
The link-based cross-domain CF model links items of
different domains, which share similar side informa-
tion [Berkovsky et al., 2007; Cremonesi et al., 2011; Shapira
et al., 2013]. Tags have been typically utilized to bridge these
items [Enrich et al., 2013; Shi et al., 2011; Fernndez-Tobłas
and Cantador, 2013]. The assumption is that if the active user
prefers items with a certain tag in the auxiliary domain, she/he
is also likely to prefer items with the same tag in the target do-
main. For example, users who like a “romantic” movie might
also like a “romantic” book.

Differences. The work in this paper does not belong to this
category. When dealing with review texts, words across do-
mains might not always have overlaps. In this case, mining
transfer patterns between cross-domain review topics is re-
quired (e.g., youth movies and investment books), which is
the target of this paper, rather than relying on the existence
of common words across domains, as in the above work. But
our work also has limitation, such as relying on a set of cross-
domain users, which the above works do not need.

2.3 Transfer-Based Cross-domain CF
The transfer-based cross-domain CF model aims at mining
transfer patterns in modeling the user feedback from multiple
domains. Typical methods include collective matrix factor-
ization [Singh and Gordon, 2008], collective SVD [Pan and
Yang, 2013], the tensor model [Hu et al., 2013], factorization
machines [Loni et al., 2014], etc [Cremonesi and Quadrana,
2014; Li et al., 2009; Tang et al., 2012].

Differences. Although our work belongs to this category,
there are two differences. (1) The above algorithms only fo-
cus on ratings. As a complement, our work incorporates the
review text.(2) The above transfer learning algorithms lin-
early map the user’s cross-domain latent vectors, while our
framework utilize non-linear mapping functions.

3 Problem Definition
Users’ implicit feedback from two domains is shown in the
left matrix of Fig. 2 (a), with the entry “1” denoting that the
user has visited the item. The left part of the matrix denotes
the target domain, and the right part denotes the auxiliary do-
main. In the system, some users have feedback in both do-
mains. For items in a single domain, an item-word matrix
is utilized to present all reviews, with each entry denoting a
word’s occurrence time in an item’s reviews, as shown in the
right of Fig. 2 (a). By defining the cross-domain feedback
matrix and the item-word matrices, the problem to be studied
is, how to leverage a user’s implicit feedback in the auxil-
iary domain, and the item review texts in both domains, to
improve her/his preference predictions in the target domain?

4 Non-linear Transfer Learning Framework
4.1 Collaborative Topic Ranking
In a single domain, we deploy a novel collaborative topic
ranking (CTR) model, extended from the collaborative topic
modeling (CTM) [Wang and Blei, 2011], to incorporate the
review information into factorization based CF models. The
previous CTM is designed to deal with explicit ratings, while
we confront the implicit feedback. Therefore, a variance of
the CTM is designed, by borrowing the ranking-based op-
timization objective from the Bayesian personalized rank-
ing [Rendle et al., 2009] model.

The intuition of the CTR is to utilize the topic proportion
of an item as its feature vector, to substitute for its previous
latent vector learned by factorization. Topics are learned from
the review corpus. They divide characteristic descriptions of
items into categories, presented by word distributions over a
fixed vocabulary. A topic proportion is a distribution over
all topics. Consequently, an item’s topic proportion reveals
its characteristics; and the numerical value in each dimen-
sion of a user’s latent vector reveals her/his preference for the
corresponding characteristic. It makes latent feature vectors
interpretable. A direct advantage is to alleviate the data spar-
sity problem for new items. For a new movie as an example,
by only obtaining very few reviews, or just utilizing its meta
data (actors, genre, etc.), its topic proportion can be learned
accurately, and further be utilized for preference predictions.

For the review text, suppose there arem items and k topics.
Let φz denote the word distribution of topic z (1 ≤ z ≤ k),
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Figure 2: Problem definition and graphical models. The CTR in (b) is a combination of topic analysis (left) and matrix
factorization (right); and the proposed non-linear cross-domain CF framework in (c) combines the CTR models in multiple
domains, and is jointly learned with the non-linear mapping functions (denoted by dashed lines), in a way of regularization.

and let θb denote the topic proportion of item b’s review (1 ≤
b ≤ m). It is assumed that item b’s review is generated fol-
lowing the left part of Fig. 2 (b). For each word w, a topic
z is first sampled from the proportion θb, and then the word
is sampled from topic z’s word distribution φz . Let C denote
the corpus, and Hb denote the word length in item b’s review,
the likelihood for generating the overall review corpus is

p(C|θ,φ) =
∏
b∈C
∏Hb

j=1

(∑k
zbj=1 θbzbjφzbjwbj

)
.

For the implicit feedback, as shown in the right part of
Fig. 2 (b), let n be the user number, and let F be an n×m data
matrix, whose element Fab is the preference score of user a
on item b. This matrix is factorized by two matrices, U and
T . U is an n × k matrix, with each row Ua denoting a k-
dimensional latent feature vector of user a; and T is anm×k
matrix, with each row T b denoting a k-dimensional vector of
item b. For user a, if she/he has visited item b, and has not
visited item b′, we say user a prefers item b more than item
b′, denoted by b �a b′. The probability is defined as

p(b �a b′|U ,T ) = 1

1+e−(UT
a T b−UT

a T
b′ )
.

Let D denote all the triples of (a, b, b′) being observed, the
likelihood of observing these triples is

p(D|U ,T ) =
∏
a,b,b′∈D p(b �a b′|U ,T ).

To bridge θb and T b for an arbitrary item b, a zero-mean
Gaussian-distributed offset εb is designed between them,
which is denoted as

T b = θb + εb, εb ∼ N (0, σ2
t I).

The offset εb models an item’s individual bias. When suffi-
cient feedback is obtained, T b is dominated by both θb and
εb. But when item b is new, εb tends to be near 0. Thus T b is
dominated by θb, which alleviates the data sparsity problem.

The overall likelihood of the model in Fig. 2 (b) is

p(C, D,U , ε;θ,φ) = p(C|θ,φ) · p(D|U ,θ, ε) · p(U) · p(ε),

where p(U) is the zero-mean Gaussian prior. The intuition of
p(C|θ,φ) is that words for the same item tend to be the same
topic, by which item characteristics are automatically clus-
tered according to the word occurrence pattern; the intuition
of p(D|U ,θ, ε) is to assume that the feedback matrix has the
low-rank property, which has been demonstrated effective in
modeling user preference patterns; and the intuition of the last
two terms are regularization. The joint optimization also has
another intuition, that the topics are learned by considering
both word occurrence patterns and user preference patterns,
as θ occurs in two terms, which is more reasonable.

LCTR(U , ε,θ,φ) =
∑
b∈C
∑Hb

j=1 ln
(∑k

zbj=1 θbzbφzbjwbj

)
−
∑
a,b,b′∈D ln

(
1 + exp(−(UT

a (θb + εb)−U
T
a (θb′ + εb′))

)
− 1
σ2
u

∑n
a=1U

T
aUa − 1

σ2
t

∑m
b=1 ε

T
b εb.

The log transform of p(C, D,U , ε;θ,φ) is presented in the
above equation, which is maximized by a scholastic gradient
descent method2. In the following steps, we fix the learned
{θ,φ}, and adjust other parameters only. Through experi-
ments, jointly tuning them will increase the computational
complexity, and obtain only marginal improvements.

4.2 Non-linear User Vector Mapping
Mapping a user’s latent feature vectors in two different do-
mains is the main idea in this paper to bridge the cross-
domain implicit feedback. For user a, suppose her/his la-
tent feature vector in the target domain is Ua, and the one
in the auxiliary domain is U ′a. The target is to find mapping
functions to transfer them between each other, to simultane-
ously improve the performances in the two domains. Intu-
itively, one invertible mapping function between Ua and U ′a
is an ideal choice. But as we demonstrated in Fig. 1, by fix-
ing a value in the y-axis, there are two values in the x-axis.
Thus invertible functions cannot be found in this case. We
propose to find two mapping functions, f(U ′a) ≈ Ua and
g(Ua) ≈ U ′a3. Consequently, the user feature vector of one
domain can be transferred, and then utilized for inferring the

2Please refer to [Agarwal and Chen, 2009] and [Wang and Blei,
2011] for the detail algorithm.

3In practice, normalizing U by U/‖U‖ before mapping can ob-
tain slightly better results. We omit this formula for simplicity.
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feature vector in the other domain. In this section, we only
introduce the formulation of f(U ′a), and the one for g(Ua)
is similar.

For simplicity, supposeUa andU ′a are both k-dimensional
vectors. In practice, they are not required to be the same.
Then f(U ′a) can be split into a set of k functions, with each
function, f i(U ′a), i ∈ {1, ..., k}, mapping U ′a to the ith di-
mension of Ua, denoted by f i(U ′a) ≈ U ia. We first assume
f i to be linear, and then extend it to be non-linear by the ker-
nel trick. The original linear presentation for f i is defined as

f i(U ′a) = (ωi)T ·U ′a + βi,

where ωi is the weight vector of U ′a’s dimensions. Suppose
S is the user set having feedback in both domains. The error
between f i(U ′a) and U ia is assumed to follow a zero-mean
Gaussian distribution. A zero-mean Gaussian prior is set for
ωi. Consequently, maximizing the likelihood for the map-
ping error in S is equivalent to finding {ωi, βi} that mini-
mizes the quadratic errors with regularization terms, as

min
ωi,βi

1

2
(ωi)Tωi + γ

1

2

∑
a∈S

e2a,

s.t. U ia = f i(U ′a) + ea, a ∈ S.

Through the Karush-Kuhn-Tucker (KKT) conditions, the
target is equivalent to solving the following linear system[

0 1Tn
1n K + 1

γ
I

] [
βi

αi

]
=

[
0
U i

]
, (1)

whereU i is an |S|-dimension vector, with the ath dimension
denoting U ia, and Kab = K(U ′a,U

′
b) = φ(U ′a)

Tφ(U ′b) is
the Kernel matrix4. By the kernel trick, K can be substituted
by non-linear functions, where the RBF is chosen, defined as,

K(U ′a,U
′
b) = exp

(
(‖U ′a −U ′b‖2)/σ2) .

We successfully find the non-linear presentation of f i, to map
U ′a to U ia, formulated as

f i(U ′a) =
∑
b∈S

αibK(U ′a,U
′
b) + βi,

whereωi is eliminated, and {αi, βi} are the final parameters.

4.3 The Joint Transfer Learning Framework
The graphical model of the proposed joint framework is

shown in Fig 2 (c). F is an n ×m implicit feedback matrix
of the target domain, factorized by an n× k matrix U and an
m×k matrix T . G is an n× l implicit feedback matrix of the
auxiliary domain, factorized by an n×kmatrix U ′ and an l×k
matrix A. The user feature vector Ua is influenced by the
transferred information f(U ′a). Similarly, the user feature
vector U ′a is also influenced by g(Ua).

4From the Mercer’s theorem, K is a symmetric positive semi-
definite matrix.

Algorithm 1 Parameter Estimation
Input: The cross-domain feedback matrix and {θ,θ′}
Outputs: {U ,U ′, ε, ε′,α,β,α′,β′}

1: Initialize {U ,U ′, ε, ε′,α,β,α′,β′}
2: for each iteration do
3: Update {U ,U ′, ε, ε′} by the stochastic gradient de-

scent method, according to Eq. 3
4: Update {α,β,α′,β′} by solving Eq. 1
5: end for

In the framework, parameters of the CTR, {U ,U ′, ε, ε′},
are jointly optimized with parameters of the mapping func-
tions, denoted as {α,β} for f , and {α′,β′} for g. By fix-
ing the learned topic proportion for items in both domains,
{θ,θ′}, the optimization objective is to maximize the log-
likelihood of the joint model, defined as

L(U ,U ′, ε, ε′ α ,β,α′,β′) = λLMAP (U ,U ′,α,β,α′,β′) +
(1− λ)

(
LCTR(U , ε|θ,φ) + LCTR(U ′, ε′|θ′,φ′)

)
, (2)

LMAP (U ,U ′,α,β,α′,β′) =
−
∑n
a=1 ‖f(U

′
a)−Ua‖2 −

∑n
a=1 ‖g(Ua)−U ′a‖2,

LCTR(U , ε|θ,φ) = − 1
σ2
u

∑n
a=1U

T
aUa − 1

σ2
t

∑m
b=1 ε

T
b εb

−
∑
a,b,b′∈D ln

(
1 + exp(−(UT

a (θb + εb)−U
T
a (θb′ + εb′))

)
,

Given {α,β,α′,β′}, the parameters of the mapping func-
tions, LMAP can be seen as regularization terms for optimiz-
ing the CTR model. It makes sense thatUa (orU ′a) should be
similar with the transferred vector f(U ′a) (or g(Ua)). Given
{U ,U ′, ε, ε′}, the parameters of the CTR model, it is equiv-
alent to the summation of the objectives for each individual
mapping function.

Parameter Estimations
The task is to find {U ,U ′, ε, ε′,α,β,α′,β′} that can max-
imize the joint optimization objective, defined in Eq. 2. An
iterative process is conducted, as shown in Algorithm 1.

Given {α,β,α′,β′}, the parameters of the mapping func-
tions, a stochastic gradient descent method is utilized in
searching {U ,U ′, ε, ε′}. In each step, we sample a triple
(a, b, b′) ∈ DT in the target domain, and a triple (a, c, c′) ∈
DA in the auxiliary domain. The gradient to {Ua, εb, εb′} is
calculated as (similar for {U ′a, ε′c, ε′c′})

∇Ua
LCTR(U , ε) = (1− λ) (T b−T b′ ) exp(−U

T
a T b+U

T
a T b′ )

1+exp(−UT
a T b+UT

a T b′ )
,

− 1
σ2
u
Ua − λ(Ua − f(U ′a))

∇εbLCTR(U , ε) = (1− λ)Ua exp(−UT
a T b+U

T
a T b′ )

1+exp(−UT
a T b+UT

a T b′ )
− 1

σ2
t
εb,

∇εb′LCTR(U , ε) = (1− λ)−Ua exp(−UT
a T b+U

T
a T b′ )

1+exp(−UT
a T b+UT

a T b′ )
− 1

σ2
t
εb′ .(3)

Given {U ,U ′, ε, ε′}, the parameters of the CTR model, the
objective in Eq. 2 is converted to
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minα,α′,β,β′
∑k
i=1

∑n
a=1

(
f i(U ′a)− U ia

)2
+
∑k
m=1

∑n
b=1

(
gm(U b)− U

′m
b

)2
,

Due to the independency of the 2×k functions, minimizing
the summation is equivalent to minimizing each individual in-
dependently. Thus the optimization is converted to solve the
linear system in Eq. 1, where the three-level learning method
in Suykens’s book [Suykens et al., 2002] is employed. In
practice, to reduce the noise and the complexity, only a set
of users S who have dense feedback in the two domains is
utilized for learning the mapping functions.

Complexity Analysis
The complexity for the stochastic gradient descent in each it-
eration is O(k), where k is the dimension of latent vectors
and is also the number of topics. The complexity for learning
the mapping function is O(|S|2), where |S| is the number of
cross-domain dense users. We set k = 15, |S| = 1000 em-
pirically, which will be discussed in the experiments. From
Eq. 1, learning a mapping function is equivalent to the least
squares support vector machines with k = 15 features. 1000
instances are sufficient and efficient through verifications.

5 Experiments
5.1 Experimental Setup
The dataset is crawled from Douban, a review site in China,
which contains both book reviews and movie reviews. 8,704
users are finally crawled, who have 3,769,055 visits on 9,420
movies, and 1,023,742 visits on 9,268 books. Each user has
at least 18 visits in both domains. The top 20 reviews for
each item are crawled, with stopwords discarded. Detailed
statistics of the dataset are provided in Table 1.

Following Rendle’s work [Rendle et al., 2009], we utilize
the area under the ROC curve (AUC) to evaluate performan-
ces of different models. The larger the value is, the better the
performance is. Users’ feedback is divided into two disjoint
sets, Strain and Stest. The average AUC is calculated5as

AUC =
1

|U |
∑
u

1

|E(u)|
∑

(a,b)∈E(u)

δ(UT
uT a > U

T
uT b)

E(u) := {(a, b)|(u, a) ∈ Stest ∧ (u, b) /∈ (Stest ∪ Strain)}.

We implement the following baselines, including (1)
Popularity, (2) BPR+MF [Rendle et al., 2009], (3)
BPR+CMF [Singh and Gordon, 2008], (4) BPR+Tensor [Hu
et al., 2013], and (5) BPR+CSVD [Pan and Yang, 2013]. The
last three methods are cross-domain CF algorithms, which
utilize the feedback from both domains. The proposed model
is divided into four variations: (1) The proposed framework
(CTR+RBF); (2) RBF kernel is replace by linear regression
(CTR+Li); (3) all review topics are removed (BPR+RBF);
and (4) a single-domain CF with review incorporated (CTR).
We set 1

σ2
u

= 1
σ2
u′

= 1
σ2
t
= 1

σ2
a

= 0.1, k = 15, λ = 0.5,

σ2 = 2.5 and γ = 500. 80% of users are randomly selected
for training, and the others are for testing.

5δ(x) = 1 if x = true; or δ(x) = 0 if x = false.

Table 1: Statistics of the dataset
Book Movie

user book user movie
Min. #feedback 18 1 18 1
Max. #feedback 2,033 3,612 3,257 6,511
Avg. #feedback 116.7 109.6 433.0 400.1

Avg. #word – 1,145 – 2,335
Total #word – 10M – 22M

Table 3: The learned topics from the two domains

Topics of the movie domain
Politics Youth Wars Romantic Horror Cop
history music human girl death police

government youth war marriage ghost gun
politics dream hero love horror murder
British girl earth lose mother killer

freedom memory Japan beauty doctor crime
Topics of the book domain

Politics Investment Novel Suspense Education Food
soviet customer Harry murder peking taipei
civics invest prejudice Sherlock abroad kitchen

socialism economics Rowling sanctum code milk
despotism Web Hiyawu Higashino plagiarism egg
Nepoleon sale Rochester crime graduate corn

In choosing parameters of the proposed model and the
baselines, we traverse them in a common range, and sele-
ct the best performance through cross validation for compar-
isons. For example, k = 15 achieves the best performance
of the proposed framework, while in CSVD, k = 35 achieves
the best performance, which is much larger. This is consistent
with the discussion in [McAuley and Leskovec, 2013].

5.2 Overall Performance
To simulate cold-start users, for each test user, we randomly
select x implicit ratings (x ranges from 0 to 7 respectively) to
learn feature vectors, and evaluate performances of different
models. Table 2 shows the overall performances. Top rows
are the results when book is the target domain, and bottom
rows are the results when movie is the target domain. Imp. 1
denotes the relative improvements over the best of the five
baselines; and Imp. 2 denotes the relative improvements over
the CTR-Li method. It is observed that the proposed frame-
work with the review text incorporated outperforms previous
baselines by around 10%. Non-linear models constantly per-
forms better than linear models, by around 4%.

5.3 Interpretations
Table 3 shows the top words of some learned topics, from the
review texts in both domains, which helps us to understand
the user latent vectors. To analyze the insight transfer pat-
terns, we study the mapping relation between cross-domain
topic pairs. For example, we manually set a user latent vec-
tor in the movie domain, with other dimensions being 0, and
adjust the corresponding dimension of “youth movies” in the
range of [−0.1, 0.1]. Through the learned mapping function,
we observe the mapping value in the book domain, on the
dimension of “investment books”. Figure 3 (a) shows the re-
sult. It is observed that as the value in “youth movies” goes
up, the value in “investment books” first goes down, and then
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Table 2: Overall performances of different methods for cold-start users
Target #Train Popularity BPR+MF BPR+CMF BPR+Tensor BPR+CSVD BPR+RBF CTR CTR-Li CTR-RBF Imp. 1 Imp. 2

Book

0 0.6168 0.6153 0.6396 0.6460 0.6519 0.6653 0.6189 0.6879 0.7180 10.14% 4.38%
1 0.6168 0.6321 0.6477 0.6597 0.6531 0.6737 0.6750 0.6978 0.7267 10.16% 4.14%
2 0.6166 0.6482 0.6606 0.6685 0.6728 0.6823 0.6939 0.7035 0.7377 9.64% 4.85%
3 0.6168 0.6524 0.6707 0.6844 0.6801 0.6931 0.7061 0.7141 0.7429 8.55% 4.03%
4 0.6167 0.6595 0.6773 0.6876 0.6930 0.7028 0.7185 0.7176 0.7505 8.30% 4.59%
5 0.6162 0.6639 0.6850 0.6964 0.7023 0.7097 0.7239 0.7208 0.7593 8.12% 5.34%
6 0.6168 0.6702 0.6876 0.7028 0.7064 0.7136 0.7325 0.7307 0.7644 8.22% 4.61%
7 0.6163 0.6781 0.6957 0.7091 0.7161 0.7251 0.7372 0.7420 0.7697 7.49% 3.74%

Movie

0 0.6413 0.6416 0.6435 0.6446 0.6480 0.6623 0.6422 0.6691 0.7086 9.357% 5.91%
1 0.6412 0.6423 0.6506 0.6545 0.6528 0.6687 0.6695 0.6771 0.7120 8.784% 5.15%
2 0.6411 0.6437 0.6560 0.6617 0.6596 0.6720 0.6763 0.6884 0.7198 8.790% 4.57%
3 0.6410 0.6459 0.6592 0.6637 0.6623 0.6791 0.6832 0.6948 0.7167 7.988% 3.15%
4 0.6409 0.6477 0.6619 0.6678 0.6679 0.6831 0.6906 0.7038 0.7252 8.585% 3.05%
5 0.6408 0.6499 0.6634 0.6688 0.6732 0.6883 0.6928 0.7088 0.7301 8.447% 3.01%
6 0.6409 0.6531 0.6708 0.6740 0.6788 0.6994 0.7010 0.7143 0.7363 8.468% 3.08%
7 0.6406 0.6572 0.6761 0.6798 0.6849 0.7068 0.7119 0.7210 0.7434 8.533% 3.10%

(a) Non-linear transfer pat-
terns

(b) Linear transfer patterns

Figure 3: The interpretation of transfer patterns.

Figure 4: Parameter and convergence analysis.

rises. This exactly matches the study in the introduction, indi-
cating that non-linear transfer patterns can be learned by the
proposed framework. Figure 3 (b) shows the learned mapping
relation from “politics movies” to “politics books”. This time,
the learned mapping relation becomes a linear one. It also
makes sense, because these two topics are correlated. This
analysis explains the insight advantage of the RBF kernel.

5.4 Parameter and Convergence Analysis

λ is the parameter in Eq. 2, balancing the weights of the
CTR model and the mapping functions. From Fig. 4 (left),
performances are not sensitive with λ being changed. Fig-
ure 4 (right) shows the convergence. An iteration means an
exchange between learning the CTR parameters and the map-
ping function parameters. Within an exchange, tens of thou-
sands sub-iterations are conducted for the stochastic gradient
descent method of the CTR model. According to the figure,
we set the iteration number to be 5 in the experiments.

(a) Performances (b) Training time

Figure 5: Changing the size of cross-domain users in training,
with book as the target domain, and #Train=7.

5.5 How to Choose the Cross-domain Dense Users
In choosing the size of the cross-domain users for learning
mapping functions, we randomly selected 1,963 users from
the training set to form a validation set, and ranked the re-
mained 5,000 users in the descending order according to their
minimum feedback number in the two domains. From the
top 500 users to all 5,000 users, we add them gradually and
observe the performances and the training time. We repeat
this process for 5 times, and the average results are shown in
Fig. 5. It is observed that performances are not sensitive with
the setting being changed. If the size is large, the included
sparse users slightly impairs the performance, and the com-
plexity increases; while if it is small, there are insufficient
training data. By considering both accuracy and complexity,
we select the top 1000 users in practice. In previous work
based on linear mappings, due to the linear time complexity,
selecting dense users is not needed, and all users are utilized.

6 Conclusion
We have proposed a non-linear transfer learning framework,
to incorporate the review text for improving the cross-domain
recommendation. For users with sparse implicit feedback, the
proposed framework outperforms previous methods without
the review text by 10% in the AUC metric, and the non-linear
mapping functions outperforms linear ones by 4%.
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