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Abstract
Knowledge bases (KBs) are often greatly incom-
plete, necessitating a demand for KB completion.
A promising approach is to embed KBs into la-
tent spaces and make inferences by learning and
operating on latent representations. Such embed-
ding models, however, do not make use of any rules
during inference and hence have limited accuracy.
This paper proposes a novel approach which incor-
porates rules seamlessly into embedding models for
KB completion. It formulates inference as an in-
teger linear programming (ILP) problem, with the
objective function generated from embedding mod-
els and the constraints translated from rules. Solv-
ing the ILP problem results in a number of facts
which 1) are the most preferred by the embedding
models, and 2) comply with all the rules. By in-
corporating rules, our approach can greatly reduce
the solution space and significantly improve the in-
ference accuracy of embedding models. We fur-
ther provide a slacking technique to handle noise in
KBs, by explicitly modeling the noise with slack
variables. Experimental results on two publicly
available data sets show that our approach signifi-
cantly and consistently outperforms state-of-the-art
embedding models in KB completion. Moreover,
the slacking technique is effective in identifying er-
roneous facts and ambiguous entities, with a preci-
sion higher than 90%.

1 Introduction
Knowledge bases (KBs), e.g., WordNet [Miller, 1995], Free-
base [Bollacker et al., 2008], and YAGO [Suchanek et al.,
2007], are extremely useful resources for many AI related ap-
plications. KBs contain rich information of entities and their
relations, stored in triples of the form (head entity, relation,
tail entity), called facts. Although typical KBs may contain
millions or even billions of facts, they are still greatly incom-
plete [West et al., 2014]. KB completion, i.e., automatically
inferring missing facts from existing ones, has thus become
an increasingly important task.

A promising approach to KB completion is to embed KBs
into low-dimensional vector spaces [Bordes et al., 2011;

2013; 2014; Nickel et al., 2011; Socher et al., 2013]. Specif-
ically, given a KB, entities and relations are first represented
in a low-dimensional vector space, and for each triple, a scor-
ing function is defined to measure its plausibility. Then, the
representations of entities and relations (i.e. embeddings) are
learned by maximizing the total plausibility of existing facts.
For any missing fact, its plausibility can be predicted by using
the learned embeddings. By learning and operating on latent
representations, such embedding models are able to capture
some unobservable but intrinsic properties of entities and re-
lations [Jenatton et al., 2012].

The main drawback of KB embedding models is their
purely data-driven fashion. Most of the previous embedding
models make inferences based solely on existing facts, utiliz-
ing neither physical nor logical rules. Here, logical rules are
those involving logic and deduction (e.g., entities linked by
the relation HasWife should also be linked by the relation
HasSpouse); physical rules refer to those non-logical ones
enforcing physical restraints (e.g., both arguments of the re-
lation HasSpouse need to be Person entities). Rules have
been demonstrated to play a pivotal role in inference [Jiang
et al., 2012; Pujara et al., 2013], and hence are of critical
importance to KB completion.

In this paper, we propose a novel KB completion approach
that infers missing facts using both embeddings and rules.
The new approach formulates inference as a constrained max-
imization problem, or more specifically, an integer linear pro-
gramming (ILP) problem. The objective function is the ag-
gregated plausibility of all candidate facts, predicted by a
specific KB embedding model; and the constraints are trans-
lated from physical and logical rules. Solving the optimiza-
tion problem results in a set of facts which 1) have the highest
plausibility predicted by the embedding model, and 2) com-
ply with all the rules and hence are physically and logically
favourable. Figure 1 sketches the approach.

The advantages of our approach are three-fold: 1) The use
of rules greatly reduces the solution space and significantly
enhances inference accuracy; 2) It naturally preserves the
benefits of embedding models, capable of capturing intrin-
sic properties of data; 3) It is a general framework, applicable
to a wide variety of embedding models and rules.

Moreover, given that KBs (especially those constructed by
information extraction techniques) can be very noisy, we pro-
vide a simple, yet effective slacking technique to deal with
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Figure 1: Overview of our approach.

the noise. The key idea is to explicitly model the noise with
slack variables, allowing the observed triples to be false.

We evaluate our approach on publicly available data cre-
ated using NELL [Carlson et al., 2010]. Experimental results
show that by incorporating rules, our approach significantly
and consistently outperforms state-of-the-art KB embedding
models. Furthermore, the slacking technique is effective in
identifying erroneous facts and ambiguous entities, with a
precision higher than 90%.

2 Related Work
KB completion is to automatically infer missing facts based
on existing ones in a KB. The literature falls into three major
categories: 1) methods based on embedding strategies that
model connections in a KB as resulting from latent factors
(e.g. [Nickel et al., 2011; Bordes et al., 2013]); 2) methods
based on Markov random fields (MRFs) that make inferences
via first-order logic (e.g. [Jiang et al., 2012]) or probabilistic
soft logic (e.g. [Pujara et al., 2013]); 3) methods based on
path ranking algorithms that search entity connections using
random walks (e.g. [Lao et al., 2011; Dong et al., 2014]).
This paper focuses on the first category.

The key idea of embedding-based KB completion is to rep-
resent entities and relations in latent spaces and model candi-
date facts as resulting from latent factors. RESCAL [Nickel
et al., 2011] and TransE [Bordes et al., 2013] are two typ-
ical methods, learning latent representations by minimizing
a reconstruction loss or a margin-based ranking loss respec-
tively. Other approaches include [Bordes et al., 2011; 2014;
Socher et al., 2013; Wang et al., 2014; Lin et al., 2015;
Guo et al., 2015]. During learning and inference, these em-
bedding models only exploit existing facts, and do not make
use of rules. TRESCAL [Chang et al., 2014] tries to encode
rules into RESCAL. However, it focuses solely on a single
rule (i.e., arguments of a relation should be entities of certain
types). Rocktäschel et al. [2014] recently proposed to embed
first-order logic into low-dimensional vector spaces. But in
their work rules are not imposed directly for inference and
cannot explicitly reduce the solution space. Our work dif-
fers in that we provide a general framework oriented towards
inference, capable of incorporating various types of rules.

Rules, particularly logical rules, have been studied exten-
sively in MRF-based KB completion approaches, represented
in first-order logic [Richardson and Domingos, 2006] or prob-
abilistic soft logic [Bröcheler et al., 2010]. This paper in-
corporates rules into embedding models, represented as con-
straints of a maximization problem. Moreover, besides logi-
cal rules, physical rules are also investigated in our approach.

Integer linear programming (ILP) refers to constrained op-
timization where both the objective and the constraints are
linear equations with integer variables. It has been widely
applied in many different areas, e.g., AI planning [Vossen et
al., 1999; Do et al., 2007], natural language processing [Roth
and Yih, 2004; Riedel and Clarke, 2006], and computational
biology [Dittrich et al., 2008; Wang and Xu, 2013]. This pa-
per employs ILP to integrate embedding models and rules in
a unified framework for KB completion.

3 Our Approach
As illustrated in Figure 1, our approach consists of three key
components: 1) We employ KB embedding models to pre-
dict the plausibility of each candidate fact; 2) We introduce
physical and logical rules to impose restraints on candidate
facts; 3) We integrate the first two components by ILP, with
the objective function generated from the embedding models
and the constraints translated from the rules. Facts inferred
in this way will have the highest plausibility predicted by KB
embedding, and at the same time comply with all the rules.

3.1 Embedding Knowledge Bases
Suppose we are given a KB consisting of n entities and m
relations. The facts observed are stored as a set of triples
O = {(ei, rk, ej)}. A triple (ei, rk, ej) indicates that entity
ei and entity ej are connected by relation rk. KB embed-
ding aims to 1) embed the entities and relations into a latent
space, and 2) model and predict the plausibility of each can-
didate fact in that space. We employ three KB embedding
models: RESCAL [Nickel et al., 2011], TRESCAL [Chang et
al., 2014], and TransE [Bordes et al., 2013].

RESCAL represents each entity ei as a vector ei ∈ Rd and
each relation rk as a matrix Rk ∈ Rd×d in the latent space.
Given a triple (ei, rk, ej), a bilinear scoring function

f (ei, rk, ej) = eTi Rkej

is used to model the plausibility of the triple. {ei} and {Rk}
are learned by minimizing a reconstruction loss, i.e.,

min
{ei},{Rk}

∑
k

∑
i

∑
j

(
y
(k)
ij − f (ei, rk, ej)

)2
+ λR,

where y(k)ij equals one if the triple (ei, rk, ej) ∈ O and zero
otherwise, and R =

∑
i ‖ei‖

2
2 +

∑
k ‖Rk‖2F is a regulariza-

tion term. An alternating least squares algorithm is adopted
to solve the optimization problem.

TRESCAL is an extension of RESCAL, requiring the argu-
ments of a relation to be entities of certain types. Given a re-
lation rk, letHk and Tk be the sets of entities with compatible
types (e.g., for the relation CityLocatedInCountry,Hk

contains City entities and Tk Country entities). Learning
is then conducted by reconstructing legitimate triples, i.e.,

min
{ei},{Rk}

∑
k

∑
i∈Hk

∑
j∈Tk

(
y
(k)
ij − f (ei, rk, ej)

)2
+ λR,

solved again by an alternating least squares algorithm.1

1Both RESCAL and TRESCAL are originally presented in matrix
forms.
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TransE represents both entities and relations as vectors in
the latent space. Given a triple (ei, rk, ej) and the associated
embeddings ei, ej , rk ∈ Rd, TransE uses the following scor-
ing function to measure the plausibility of the triple:

f (ei, rk, ej) = ‖ei + rk − ej‖1 .

{ei} and {rk} are learned by minimizing a margin-based
ranking loss, enforcing positive (i.e. observed) triples to have
higher plausibility than negative ones, i.e.,

min
{ei},{rk}

∑
t+∈O

∑
t−∈Nt+

[
γ − f (ei, rk, ej) + f

(
e′i, rk, e

′
j

)]
+
,

where t+ = (ei, rk, ej) is a positive triple; Nt+ contains
negative triples constructed by replacing the entities in t+;
t− =

(
e′i, rk, e

′
j

)
∈ Nt+ ; and γ > 0 is a margin separating

positive and negative triples.2 Stochastic gradient descent is
adopted to solve the optimization problem.

After we obtain the embeddings, for any missing triple, its
plausibility can be predicted by using the scoring functions.
Triples with higher plausibility are more likely to be true.

3.2 Imposing Physical & Logical Rules
We introduce three physical rules (Rule 1, 2, and 3) and a
logical rule (Rule 4) to impose restraints on candidate facts.
Rule 1 (noisy observation). Facts that already exist are very
likely, but not necessarily to be true. KBs, especially those
constructed by information extraction techniques, can be very
noisy. This rule is crucial in handling noisy KBs.
Rule 2 (argument type expectation). Arguments of a rela-
tion should be entities of certain types. For example, both
arguments of the relation HasSpouse need to be Person
entities. This rule is the same as considered in TRESCAL.
Rule 3 (at-most-one restraint). For 1-To-Many/Many-To-1
relations, the first/second argument can take at most one en-
tity; for 1-To-1 relations, both arguments can take at most
one entity. For example, CityLocatedInCountry is a
Many-To-1 relation. Given any City entity, there exists at
most one Country entity for which the resultant triple is
true (i.e., a city locates in at most one country in the KB).
Rule 4 (simple implication). Suppose relation r1 implicates
relation r2, denoted as r1 7→ r2. Then, any two entities linked
by r1 should also be linked by r2. For example, HasWife 7→
HasSpouse.

These rules contain rich prior knowledge, and can greatly
reduce the solution space during inference.

3.3 Integrating by Integer Linear Programming
We aggregate the above two components and formulate infer-
ence as an ILP problem. For each candidate fact (ei, rk, ej),
we use w(k)

ij = f (ei, rk, ej) to represent the plausibility pre-
dicted by an embedding model, and introduce a Boolean deci-
sion variable x(k)ij to indicate whether the fact is true or false.

2Bordes et al. [2013] referred to the scoring function as an energy
function, and required positive triples to have lower energies. The
two formulations are equivalent.

max{
x
(k)
ij ,ε

(k)
ij

} ∑
k

∑
i

∑
j

w
(k)
ij x

(k)
ij −

∑
t+∈O

ε
(k)
ij ,

s.t. R1. x(k)ij + ε
(k)
ij = 1, ∀t+ ∈ O,

R2. x(k)ij = 0, ∀k, ∀i /∈ Hk, ∀j /∈ Tk,

R3.
∑
ix

(k)
ij ≤ 1, ∀k ∈ R1−M , ∀j,

R3.
∑
jx

(k)
ij ≤ 1, ∀k ∈ RM−1, ∀i,

R3.
∑
ix

(k)
ij ≤ 1,

∑
jx

(k)
ij ≤ 1, ∀k ∈ R1−1, ∀i, ∀j,

R4. x(k1)ij ≤ x(k2)ij , ∀rk1 7→ rk2 , ∀i, ∀j,

where x
(k)
ij ∈ {0, 1}, ∀k, i, j; ε

(k)
ij ∈ {0, 1}, ∀t

+ ∈ O.

Figure 2: The associated ILP problem.

Our aim is then to find the best assignment to the decision
variables, maximizing the overall plausibility and complying
with all the rules. The ILP problem is given in Figure 2.3
Here, t+ is a fact already observed; R1−M /RM−1/R1−1
refers to the set of 1-To-Many/Many-To-1/1-To-1 relations;
and the ID before each constraint indicates the corresponding
rule (e.g., constraint R1 is translated from Rule 1).

The most notable constraint is the first one, i.e., the noisy
observation rule. We introduce a Boolean slack variable ε for
each observed fact to explicitly model the noise: if ε = 1, the
observed fact ought to be false (x = 0). And we penalize the
objective function with the noise, encouraging the observed
facts to be true (but not necessarily).

Our approach has the following advantages: 1) By incorpo-
rating rules, it significantly improves the inference accuracy
of existing KB embedding models; 2) The noisy observation
rule (more specifically the slack variables) can automatically
identify noise in KBs; 3) It is a general framework, applica-
ble to a wide variety of embedding models, and capable of
incorporating various types of rules.

4 Experiments
We conduct experiments to test the performance of our ap-
proach in 1) retrieving head/tail entities and 2) predicting new
facts. We further investigate the effectiveness of the slack
variables in 3) automatic noise detection.

4.1 Data Sets
We create two data sets Location and Sport using NELL, both
containing five relations (listed in Table 1) and the associated
triples. On the Sport data set, for the last two relations, only
those triples related to “sport” are included. On both data sets,
entities appearing only once are further removed, resulting in
195 entities and 231 triples on Location, and 477 entities and
710 triples on Sport. In NELL, the entity type information
is encoded in a specific relation called Generalization.
From this information, we obtain the argument type expecta-
tion for each relation, as suggested in [Chang et al., 2014].

3Constraint R4 might also be written as x(k1)ij ≤ x(k2)ji .
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Relation/Argument Type/Relation Type Simple Implication Rules
L

oc
at

io
n CityCapitalOfCountry City/Country 1-To-1

CityCapitalOfCountry 7→ CityLocatedInCountry
StateHasCapital 7→ CityLocatedInState

CityLocatedInCountry City/Country M.-To-1
CityLocatedInState City/State M.-To-1
StateHasCapital State/City 1-To-1
StateLocatedInCountry State/Country M.-To-1

Sp
or

t

AthleteLedSportsTeam Person/Sportteam M.-To-1 AthleteLedSportsTeam 7→ AthletePlaysForTeam
AthletePlaysForTeam Person/Sportteam M.-To-1 AthletePlaysForTeam 7→ PersonBelongsToOrganization
CoachesTeam Person/Sportteam M.-To-1 CoachesTeam 7→ PersonBelongsToOrganization
OrganizationHiredPerson Sportteam/Person 1-To-M. OrganizationHiredPerson 7→ PersonBelongsToOrganization
PersonBelongsToOrganization Person/Sportteam M.-To-1 PersonBelongsToOrganization 7→ OrganizationHiredPerson

Table 1: Argument types, relation types, and simple implication rules on Location and Sport data sets.

To identify the relation type (i.e., 1-To-Many, Many-To-1, or
1-To-1), we follow the strategy proposed in [Bordes et al.,
2013]. For each relation, we compute the averaged number
of heads ei (tails ej) appearing in the data set, given a tail ej
(head ei). If the averaged number is smaller than 1.2, we label
the argument as “1” and “Many” otherwise. We further create
several simple implication rules on each data set. The argu-
ment types, relation types, and implication rules are given in
Table 1. We will release the data upon request.

4.2 Retrieving Head/Tail Entities
This task is to complete a triple (ei, rk, ej) with ei or ej miss-
ing, i.e., predict ei given (rk, ej) or ej given (ei, rk). It is
called link prediction in previous work [Bordes et al., 2011;
2013]. We test RESCAL, TRESCAL, and TransE in this task,
before and after incorporating rules. A model with rules in-
corporated is denoted as r-RESCAL for example.

Evaluation protocol. To evaluate, for each data set, we
split the triples into a training set and a test set, with the ratio
of 4:1. The former is used for model training, and the latter
for evaluation.4 For each test triple, we replace the head/tail
entity by each of the entities with compatible types, and rank
the resultant corrupted triples in descending order, according
to the plausibility (before incorporating rules) or the decision
variables (after incorporating rules). Then we check whether
the original correct triple ranks first. We corrupt head enti-
ties for 1-To-Many relations, tail entities for Many-To-1 re-
lations, and both entities for 1-To-1 relations. Since these
corrupted arguments are supposed to have only one correct
answer, our protocol actually evaluates whether that answer
could be retrieved. Aggregating all the test triples, we report
the overall Hits@1, i.e., the proportion of cases in which the
correct answer ranks first. The relation-specific Hits@1 is
also reported, aggregated over the test triples with a specific
relation.

The protocol is slightly different with that used in previous
work [Bordes et al., 2011; 2013]. First, instead of iterating
through all the entities, we corrupt a test triple using only
those entities with compatible types. Chang et al. [2014] have
demonstrated that removing triples with incompatible types
during test time leads to better results. Second, we choose

4Since we only have a small number of triples, it is difficult to
hold out a validation set with meaningful size.

to report Hits@1 rather than Hits@10 (i.e. the proportion of
correct answers ranked in the top ten). Since in our case each
corrupted argument has only one correct answer, we believe
it is more substantive to evaluate whether that answer ranks
first, as opposed to just in the top ten.

Implementation details. We implement RESCAL and
TRESCAL in Java, and use the code released by Bordes et
al. [2013] for TransE5. In RESCAL and TRESCAL, we fix
the regularization parameter λ to 0.1, and the maximal num-
ber of iterations to 10, as suggested by Chang et al. [2014].
In TransE, we fix the margin to 1, the learning rate to 10,
the batch number to 5, and the maximal number of iterations
again to 10, which we found empirically to be enough to give
the best performance. For each of the three models, we tune
the the latent dimension d in the range of {10, 20, 30, 40, 50}
and select the optimal parameter setting.

We then incorporate rules into the three models with opti-
mal parameter settings using ILP. To generate the objective,
plausibility predicted by RESCAL or TRESCAL is normalized
by w′ij = wij/MAX, and plausibility predicted by TransE is
normalized by w′ij = (wij − AVG) / (MAX − AVG). The
ILP problems on Location data finally get 21,540 variables
and 18,192 constraints, and the ILP problems on Sport data
241,268 variables and 194,788 constraints. We use the
lp solve package6 to solve the ILP problems. It takes about 1
minute on Location data and 2 hours on Sport data.

We repeat all experiments 10 times by drawing new train-
ing/test splits in each round. We report Hits@1 values aver-
aged over the 10 rounds.

Quantitative results. Table 2 and Table 3 report the re-
sults on the test sets of the two data sets, where “H”/“T” indi-
cates predicting head/tail entities for a relation. On Location
data, the relation StateHasCapital gets a Hits@1 value
of zero for all the methods, no matter predicting heads or tails.
We remove that relation from Table 2. From the results, we
can see that 1) The incorporation of rules significantly im-
proves the performance of all the three embedding models on
both data sets, with the Hits@1 values drastically enhanced.
This observation demonstrates the superiority and general-
ity of our approach. 2) RESCAL and TRESCAL perform
better than TransE after incorporating rules, indicating that

5https://github.com/glorotxa/SME
6http://lpsolve.sourceforge.net/5.5/
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Relation RESCAL r-RESCAL TRESCAL r-TRESCAL TransE r-TransE

CityCapitalOfCountry (H) 1.83 92.91 0.67 83.17 18.98 59.38
CityCapitalOfCountry (T) 6.26 92.91 1.67 83.17 28.48 59.38
CityLocatedInCountry (T) 9.11 86.80 6.53 85.62 25.30 82.02
CityLocatedInState (T) 7.54 0.00 8.81 1.43 4.66 1.67
StateLocatedInCountry (T) 57.43 57.43 56.88 56.88 3.64 3.64

Overall 14.11 67.27 12.71 62.68 16.55 43.73

Table 2: Overall and relation-specific Hits@1 (%) on Location data set.

Relation RESCAL r-RESCAL TRESCAL r-TRESCAL TransE r-TransE

AthleteLedSportsTeam (T) 42.03 81.98 42.16 81.16 10.43 52.94
AthletePlaysForTeam (T) 41.09 78.88 39.76 78.31 8.56 54.50
CoachesTeam (T) 2.53 78.68 2.62 74.99 14.43 60.98
OrganizationHiredPerson (H) 3.00 68.65 3.11 69.78 16.97 51.43
PersonBelongsToOrganization (T) 30.80 72.82 23.80 73.57 8.93 54.23

Overall 30.49 78.17 29.72 77.26 11.20 54.58

Table 3: Overall and relation-specific Hits@1 (%) on Sport data set.

Figure 3: Case study on Location data set.

compared to margin-based ranking losses, embedding mod-
els based on reconstruction errors might be more preferred
by the ILP framework. 3) The performance of TRESCAL is
just comparable with that of RESCAL, showing that impos-
ing the argument type expectation rule alone is not enough to
bring better results. We need multiple rules, and our approach
is definitely a proper choice for incorporating various rules.

Qualitative analysis. Figure 3 further provides a case
study on the Location data set, to show how the rules can help
an embedding model (i.e. RESCAL) in the entity retrieval
task. Consider the test triple (City:Andorra La Vella,
CityCapitalOfCountry,Country:Andorra) with
the head corrupted. Without incorporating rules, RESCAL
ranks the correct answer sixth, and the Hits@1 value associ-
ated with this case is zero. However, our training data tells
that the answers ranked in the top five are capitals of other
countries. By imposing the at-most-one restraint (i.e. a city
can be the capital of at most one country), r-RESCAL rules
out the top five answers and ranks the correct answer first.
The Hits@1 value hence increases to one. This example indi-
cates that rules are extremely useful in reducing the solution
space during inference, and thus can greatly improve the per-
formance of embedding models.

Consider this example again. Given the same test triple
with the head corrupted, using the rules listed in Table 1 alone
is not enough to retrieve the correct answer. Actually, based
on the rules and the training data, only 75 among the total 94
cities which locate in or are capitals of other countries can be
ruled out. The other 19 cities are all accepted by the rules.
However, if we further consider the plausibility predicted by
RESCAL, the correct answer will be promoted to the first.
This example demonstrates the benefits of embedding mod-
els, resulted from learning and operating on latent variables.
Our approach naturally preserves such benefits by integrating
embedding models into the objective function.

4.3 Predicting New Facts
This task is to predict entire triples, rather than just heads or
tails. We test RESCAL and TRESCAL in this task, before and
after incorporating rules.7

On each data set, we use all the observed triples for model
training, and ask human annotators to judge the correctness
of the top N triples predicted by each of the methods. For
RESCAL and TRESCAL, we rank all candidate triples (i.e.
unobserved ones with compatible entity types) in descending
order according to their plausibility, and return those ranked
in the top N . For r-RESCAL and r-TRESCAL, we use an
additional constraint

∑
k,i,j x

(k)
ij ≤ N ′ to conduct prediction.

In all the methods, parameters are set to the optimal settings
determined in Section 4.2. Note that in our data a same entity
name can refer to different real-world entities (will be detailed
in Section 4.4). Given a triple with an ambiguous entity name,
we label it true as long as it holds for one real-world entity
associated with the name. We report precision at the positions
of 10, 20, 30, and 50.

Figure 4 reports the results on Location data. The re-
sults show that 1) r-RESCAL/r-TRESCAL consistently out-

7We have also tested TransE, but it does not perform well on this
task, particularly before incorporating rules.
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Figure 4: Precision (%) at position N on Location data set.

performs RESCAL/TRESCAL at all the positions. 2) The im-
provements are particularly significant for the topmost pre-
dictions. These observations again demonstrate the advan-
tages of incorporating rules. We have conducted the same
experiments on Sport data and observed similar phenomena.

4.4 Automatic Noise Detection
This task is to automatically detect noise in KBs. We test r-
RESCAL and r-TRESCAL in this task on Location data, with
the optimal parameter settings determined in Section 4.2. In
both methods, all the observed triples are used for model
training, and those getting ε = 1 after solving the ILP prob-
lem are returned as noise. We then ask human annotators to
judge the precision of the detection.

r-RESCAL identifies 22 suspicious triples, among which
21 are confirmed to be noise, with a detection precision higher
than 95%. Table 4 lists the 21 triples, roughly categorized
into three groups: factual errors, polysemy errors, and syn-
onym errors. Factual errors refer to triples that are essen-
tially false, e.g., the one stating that City:Los Angeles
locates in State:Nevada.8 Polysemy errors are caused by
the phenomenon that a same entity name can refer to differ-
ent real-world entities. City:Austin is such an ambigu-
ous entity. We observe two triples related to it, stating that
it locates in State:Colorado and State:Texas. And
as a matter of fact, there do exist two different cities named
Austin, located in the two states respectively. Synonym errors
are caused by the phenomenon that a same real-world entity
may have different names. For instance, State:Illinois
and State:IL refer to the same entity, with the latter be-
ing an abbreviation of the former. Ambiguous entities are
marked by stars in Table 4. r-TRESCAL performs similarly
to r-RESCAL, with 22 suspicious triples identified and 20 of
them confirmed to be noise, getting a precision higher than
90%. The results demonstrate the effectiveness of the slack
variables in detecting erroneous facts and ambiguous entities.

4.5 Discussions
Although powerful in the tasks described above, our approach
gets two limitations. First, it can only cope with 1-To-Many,
Many-To-1, or 1-To-1 relations, but cannot handle Many-To-
Many relations. The reason is that without introducing the at-
most-one constraints, the ILP problem given in Figure 2 tends
to predict all triples with positive plausibility (w(k)

ij > 0) to be

8Los Angeles is actually a city located in California.

Head Relation Tail
City:Los Angeles CityLocatedInState State:Nevada
City:Houston CityLocatedInState State:Utah
City:San Antonio CityLocatedInState State:Utah
State:Pennsylvania StateHasCapital City:Philadelphia
State:Arkansas StateHasCapital City:Jonesboro
State:Florida StateHasCapital City:Miami
State:Florida StateLocatedInCountry Country:Tanzania

City:Austin ∗ CityLocatedInState State:Colorado
City:Charleston ∗ CityLocatedInState State:South Carolina
City:Jackson ∗ CityLocatedInState State:Mississippi
City:San Marcos ∗ CityLocatedInState State:California
State:Alabama StateHasCapital City:Montgomery ∗
State:Maryland StateHasCapital City:Annapolis ∗
State:Nebraska StateHasCapital City:Lincoln ∗
State:Nova Scotia StateHasCapital City:Halifax ∗
State:Oregon StateHasCapital City:Salem ∗
State:Wyoming StateHasCapital City:Cheyenne ∗

City:Rockford CityLocatedInState State:IL ∗
City:Fort Lauderdale CityLocatedInState State:FL ∗
City:Fresno CityLocatedInState State:CA ∗
City:Orlando CityLocatedInState State:FL ∗

Table 4: Noise detected on Location data set.

true, leading to poor inference accuracy. Statistics show that
in some KBs, only a small faction (lower than 25%) of the
relations are Many-To-Many relations [Bordes et al., 2013],
making our approach still appealing for most cases.

Second, solving the ILP problem given in Figure 2 is time-
consuming, which limits the efficiency and scalability of our
approach. A possible solution is to decompose the ILP prob-
lem into multiple small-scale sub-problems for large KBs.
Specifically, given that the objective function, the constraints
R1, R2, and R3 are decomposable by different relations, we
can simply decompose the ILP problem according to con-
straint R4. That is, two relations are assigned to a same group
if one implicates the other. In this way, each of the resultant
sub-problems corresponds to a small number of relations that
implicate each other. Such a divide-and-conquer strategy is
almost always practical for different KBs, and to some extent
addresses the scalability issue.

5 Conclusion and Future Work
In this paper, we propose a novel KB completion approach
which integrates embedding models and rules in a unified
framework. It formulates inference as solving an ILP prob-
lem, where the objective function is generated from embed-
ding models and the constraints are translated from rules.
Facts inferred in this way are the most preferred by the em-
bedding models, and at the same time comply with all the
rules. The incorporation of rules significantly reduces the so-
lution space and enhances the inference accuracy. To han-
dle noise in KBs, a slacking technique is further proposed.
We empirically evaluate our approach in entity retrieval and
new fact prediction. Experimental results show significant
and consistent improvements over state-of-the-art embedding
models. Moreover, the slacking technique is demonstrated to
be effective in automatic noise detection.

As future work, we plan to 1) Make our approach more
efficient by acceleration or approximation, so as to handle
larger KBs and more complicated rules such as r1(ei, ej) ∧
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r2(ei, ej) ⇒ r3(ei, ej). 2) Investigate the possibility of in-
corporating rules during embedding rather than after embed-
ding. It might result in more accurate embeddings, and bene-
fit various tasks besides KB completion, e.g., relation extrac-
tion and entity resolution.
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