Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

Reactive Integrated Motion Planning and Execution

Andreas Hofmann, Enrique Fernandez, Justin Helbert, Scott Smith, Brian Williams
Massachusetts Institute of Technology
77 Massachusetts Ave.
Cambridge, MA 02140

Abstract

Current motion planners, such as the ones available
in ROS Movelt, can solve difficult motion plan-
ning problems. However, these planners are not
practical in unstructured, rapidly-changing envi-
ronments. First, they assume that the environment
is well-known, and static during planning and exe-
cution. Second, they do not support temporal con-
straints, which are often important for synchroniza-
tion between a robot and other actors. Third, be-
cause many popular planners generate completely
new trajectories for each planning problem, they
do not allow for representing persistent control pol-
icy information associated with a trajectory across
planning problems.

We present Chekhov, a reactive, integrated motion
planning and execution system that addresses these
problems. Chekhov uses a Tube-based Roadmap
in which the edges of the roadmap graph are fami-
lies of trajectories called flow tubes, rather than the
single trajectories commonly used in roadmap sys-
tems. Flow tubes contain control policy informa-
tion about how to move through the tube, and also
represent the dynamic limits of the system, which
imply temporal constraints. This, combined with
an incremental APSP algorithm for quickly find-
ing paths in the roadmap graph, allows Chekhov to
operate in rapidly changing environments. Testing
in simulation, and with a robot testbed has shown
improvement in planning speed and motion pre-
dictability over current motion planners.

1 Introduction

The problem of moving a robot safely and effectively in un-
certain environments is a challenging one. First, there is sig-
nificant complexity due to the geometry of the robot and the
environment, and these geometric relations can change in un-
expected ways. Second, there are actuation limits and dynam-
ics associated with a robot that limit speed and acceleration,
and hence, may limit its ability to satisfy temporal constraints
on tasks. Third, the actual task requirements may have signif-
icant complexity, and also, flexibility, which should be con-
sidered. Current motion planning and execution systems do

1881

not adequately address these requirements: they assume the
environment is static, or at least, predictable; they do not sup-
port temporal constraints; and they do not adequately repre-
sent the true goals and constraints of a task.

In this paper, we describe Chekhov, a reactive motion ex-
ecution system that addresses these requirements. Key inno-
vations of Chekhov include: 1) representation of actual task
requirements, including temporal and state constraints that
capture available flexibility; 2) a representation of the control
policy based on a roadmap graph [Boor et al., 1999] where
the edges of the graph are families of trajectories called flow
tubes; and 3) an incremental All Pairs Shortest Path planning
capability that can quickly provide path solutions from the
graph, even when the environment changes. Chekhov ob-
serves temporal constraints and actuation limits, but utilizes
task flexibility to achieve goals optimally, despite these lim-
its. Chekhov supports the association of sophisticated control
policies with trajectories to achieve this capability.

We endeavor to achieve a fast, reactive capability, and
therefore use an approach inspired by grid-based incremen-
tal techniques [Cohen et al., 2010]. In particular, we use a
Tube-based Roadmap (TRM) representation that implements
a two-layer control policy. The upper layer is implemented
by a roadmap graph, combined with an incremental APSP
algorithm that rapidly computes shortest paths through the
graph. The lower level is implemented through Flow Tubes
corresponding to each edge of the graph. Flow tubes con-
tain control policy information about how to move through
the tube, and also represent the dynamic limits of the system,
which imply temporal constraints. Both upper and lower level
control policies are continuously updated using incremental
algorithms, as obstacles move through the environment.

The approach used in [Cohen et al., 2010] uses a graph
with regularly spaced nodes, edges representing single tra-
jectories, and the D* lite algorithm for planning through the
graph. In contrast, Chekhov uses a roadmap graph with irreg-
ular placement of nodes, edges representing Flow Tubes, and
an incremental APSP based planner, developed previously
in the operations research community [Demetrescu and Ital-
iano, 2004], allowing for much faster replanning in many cir-
cumstances. Additionally, we consider temporal constraints,
building on previous work in flexible discrete task execution
systems [Morris et al., 2001; Conrad and Williams, 2011] and
hybrid task execution systems that compute feasible trajec-

tory sets (Flow Tubes) to provide robust, high-performance
control of dynamic systems [Hofmann and Williams, 2006;
Hofmann, 2006; Tedrake, 2009; Hofmann and Williams,
2015].

2 Problem statement

The problem solved by Chekhov is to plan and execute robot
motions that accomplish a task specified by a set of temporal
and spatial constraints. The resulting motions must be opti-
mal, or near-optimal, according to a specified objective func-
tion. The objective function can be used to optimize energy
efficiency, robustness, speed, smoothness, and a variety of
other objectives. The system should react, effectively, instan-
taneously to disturbances; it should act as if it always, “in-
stantly” knows what to do, for any combination of goals and
circumstances. This fast reaction is key to providing robots
the capability to operate effectively in unstructured, uncer-
tain, fast-changing environments. The capabilities of humans
and other animals in this regard provide a good reference for
the desired behavior we hope to achieve. This is in contrast
to current systems that spend a lengthy period planning a mo-
tion, and then trying to execute it, assuming that nothing will
change.

The inputs to Chekhov are: 1) an environment containing
obstacles; 2) a plant model representing the actuation limits
of the robot; 3) the current state of the robot; 4) a set of spatial
and temporal constraints that represent goals to be achieved;
and 5) an objective function for optimization. The outputs
of Chekhov are control commands to the robot such that all
constraints are observed, including achievement of goal re-
gions and avoidance of obstacles, and such that its behavior
is optimal according to the objective function. This can be
expressed as

minimize c¢(q,q, q,u, 1)
such that = (qN C(E))

Amin < 4 < Qmaz; qmzn < q < Qmam
fmin (q7 Qa U.) < q < fmaa: (Q» q7 u)
Omin (qa ('17 t) < [qa Q]T < Omaz (qa (.17 t)
Emin ((L éb t) < [qa él]T < Smazx (q7 élv t)

min < d< dmaac

6]

where c is the cost function, q is the robot joint pose vector,
u is the robot actuation vector, C(E) is the collision space
of the environment, q;,;, and q,,4, are the robot joint pose
limits, Qi and Q. are the velocity limits, fr,, and fiae
are functions that express acceleration limits, 0y, and 0,4,
are functions that express operating constraints on robot state,
Emin and g4, are functions that express goal constraints on
robot state, d is the task duration, and d,,;,, and d,,., are
bounds on this duration.

The inputs to Chekhov can change quickly and unexpect-
edly with time while the motion is being executed. For prac-
tical applications, changes fall into three categories: 1) the
current state of the robot changes; 2) the goals to be achieved
change; and 3) an environment obstacle moves in a way that
affects the robot. Thus, we define a disturbance as such an
unexpected change to task goals, environment, or robot state.
Note that such a disturbance may be due to an actual physical

1882

change, or a change in the estimated state of the environment
or robot (possibly because sensor data improves as the robot
moves). The system’s outputs must adapt to these changes in
real time, so that the goals are still achieved, if possible.

We make a number of key assumptions. Although these
assumptions may seem restrictive, we believe that they are
consistent with a large class of practical robotic manipulation
problems. First, we assume that the manipulation workspace
is characterized by a limited set of pre-grasp poses. Second,
we assume that the pre-grasp to grasp motion is short, and is
best handled by visual and force servoing loops, rather than
open-loop planners. Third, we assume that the collision envi-
ronments are not overly complex. We are not trying to solve
“piano mover” problems like reaching into tunnels or through
a maze of obstacles. Instead, we assume that there is a small
set of potential obstacles, such as a workpiece, a table, an-
other robot, or a human, but that some of these may move
(see Figure 1). The emphasis here is on achieving fast perfor-
mance in typical, practical situations.

Figure 1: The collision space in this testbed is relatively sim-
ple, involving other robots, humans, and workpieces.

3 Implementation

Chekhov addresses the challenges of planning complexity in
high-dimensional state spaces by using an integrated planning
and execution architecture in which, the motion planner and
executive cooperate closely, passing information back and
forth. This blurs the sharp distinction between planning and
control used in traditional systems. The planner component
uses an incremental APSP algorithm to quickly find solution
paths in a roadmap graph. Because the roadmap graph edges
are flow tubes, rather than single trajectories, the Chekhov
motion planner does not generate single reference trajecto-
ries, as standard motion planners do, but rather, generates
a Qualitative Control Plan (QCP) [Hofmann and Williams,
2006; 2015]. A QCP represents families of feasible trajecto-
ries and associated control policies. In effect, this is a sophis-
ticated control policy that observes the actuation limits of the
robot specified in the plant model, and observes the specified
temporal and spatial goal constraints, but also takes advantage
of any flexibility implied by these constraints. Chekhov uses
the control policy to respond to some, bounded disturbances,
eliminating the need to call the motion planner in these cases.

This represents a first line of defense in reactive capability.
Because such control policies are computationally expensive
to compute, they are computed offline and then saved and
re-used. This is a key distinguishing feature of the Chekhov
system.

Figure 2 shows the main components of the Chekhov ar-
chitecture. Chekhov appears, from the outside, as a black
box that provides a comprehensive control policy; it out-
puts commands to the robot based on three inputs: a set of
goals and constraints (see 1), a plant model representing the
dynamics and actuation limits of the robot, and sensor data
from the robot that is used to estimate robot and environment
state. The control policy attempts to satisfy the goals and con-
straints, even when there are state and temporal disturbances.

A key component is a compiler that generates intermediate
data structures to support fast, reactive behavior. These data
structures are used by both the Motion Planner and the Mo-
tion Executive. The Executive contains State Estimator and
Execution Monitor components, a Scheduler that decides the
temporal duration of movement segments, and a Controller
that implements the control policy.

Chekhov Reactive
Motion Control System

\2

Goals,
constraints,

v v

Model Compiled Flow Tubes | KD Tree |
APSP Graph
A Y l
Reactive Executive
Motion Planner
A i
Scheduler Execluhon
Monitor
New Plan
Request
4 Controller StaFe
Estimator
Commands Sensor
Data

‘ Robot ‘

Figure 2: Architecture for Chekhov reactive motion control
system.

3.1 Reactive Motion Planner

A key component of the Reactive Motion Planner is an in-
cremental All-Pairs Shortest Path (APSP) algorithm [Deme-
trescu and Italiano, 2004], previously developed in the Oper-
ations Research community. An important feature of this al-
gorithm, as applied to robot motion planning, is its ability to
quickly replan when the robot goal state, current state, or the
environment changes. A key disadvantage of the algorithm
is its reliance on a discretization of the state space, result-
ing in computational tractability problems due to the curse of
dimensionality. We address this dimensionality problem uti-

1883

lizing our first assumption: that the manipulation workspace
is characterized by a limited set of pre-grasp poses. This
assumption allows us to use search graphs with a relatively
coarse discretization of poses (nodes). Some nodes in the
graph represent the pre-graph poses, and other nodes repre-
sent random poses interspersed about the workspace to pro-
vide flexibility in avoiding obstacles. The edges in the graph
represent families of trajectories (flow tubes) between the
poses. The result is a comprehensive control policy for the
entire manipulator workspace of interest.

This approach can be thought of as a compromise be-
tween industrial robot systems that simply play back a sin-
gle trajectory, and algorithms like RRT* [Karaman and Fraz-
zoli, 2011] that can, theoretically, cover all poses in a
workspace. Chekhov covers only a small percentage of poses
in a workspace, but it covers all the poses in the workspace of
interest, given our assumptions.

Graph Representation of Search Space

The discretized states form the vertices of an APSP graph,
defined as follows.

Definition 1 (APSP graph): A graph G (V, E,w), where V'
is the set of vertices representing states, F is the set of edges
representing movement of the arm from one state to a neigh-
boring state, and w is a set of non-negative real edge weights.
If an edge is blocked by an obstacle, then this edge weight
is infinity. The discretization of states in the graph does not
have to be regular; randomized arrangements can be used. We
denote by w,, the weight of edge (u,v), by 75, a path from
vertex X to y, and by w (w5,), the sum of the weights of edges
in Ty

We augment the edges with flow tube information [Hof-
mann and Williams, 2006; 2015], which represents the re-
lationship between the dynamic limits of the robot, and the
feasible range of temporal durations for transitioning along
the edge. The flow tubes associated with edges represent
families of feasible trajectories and associated control poli-
cies. This explicit representation of multiple feasible paths
provides a flexibility that is essential for motion execution
in uncertain environments [Hofmann and Williams, 2006;
2015].

A description of the detailed implementation of flow tubes
is beyond the scope of this paper; the reader is referred to
[Hofmann and Williams, 20061, [Hofmann, 2006], and [Hof-
mann and Williams, 2015] for these details. Conceptually, a
flow tube is defined as follows.

Definition 2 (Flow Tube): A flow tube, F' (R;, R, D) is a set
of trajectories x(t) such that Vz(t) € F (R;, Ry, D), z(0) €
R;, I(tf) € Ry,andty € D.

Thus, R; is a set of feasible initial states, IR, is the goal state
set, and D is a set of controllable durations. The flow tube
represents the fact that a trajectory exists that will go from
anywhere in R; to somewhere in ;. Furthermore, the du-
ration of the trajectory is controllable within the set D. The
planner uses this information to ensure that plans that are
generated satisfy all dynamic state constraints, obstacle con-
straints, and temporal constraints (that all constraints in 1 are
satisfied). The executive uses the flow tube information to
implement a comprehensive control policy that is capable of

compensating for limited disturbances without requiring re-
planning. In particular, the executive may adjust the sched-
uled duration of edge segments to compensate for temporal
disturbances such as delays, so that the temporal constraints
on the overall motion are satisfied.

A valid motion plan, output by the planner, is defined as

follows.
Definition 3 (Valid Motion Plan): A valid motion plan from
vertex x to y is a tuple (g, F'), where 7, is a path as de-
fined above, where w (7,) is the minimum possible while
satisfying the constraints specified in 1, and where each edge
E; = (u,v) in 7, has an associated flow tube F;. Each F)
has an associated duration set, D;. The duration sets must be
consistent with the temporal constraints specified in 1.

In order to simplify planning, we require that the goal re-
gions of incoming edges of a vertex be subsets of the initial
regions of outgoing edges. Let E;,, (V) and E,,; (V) be the
incoming and outgoing edges of vertex V. Then

VVVE; = Exn(V)VE, = E,t (V) | Rg(E;) C Ri(E,)
@)
This ensures that in any plan generated by the planner, the
goal region of a flow tube is always a subset of (fits inside)
the initial region of its successor flow tube. If the planner is
unable to find a plan that satisfies all the constraints, it returns
failure.

Compilation

In order to support fast reactive operation, Chekhov performs
two important compilations. These compilations are based on
the APSP graph, and thus, are independent of particular goals
or plans. They do take into account plant model information,
including actuation limits of the robot.

First, Chekhov generates flow tubes corresponding to each
edge of the APSP graph, as described above. Second,
Chekhov generates a dynamic version of the APSP graph,
which augments the graph with supporting information to al-
low for fast, incremental update when edge weights change
(due to obstacles). Detailed explanation of the first compila-
tion step is beyond the scope of this paper; we will focus on
the second.

The key to the incremental APSP algorithm is that it main-
tains, for each pair of vertices in the graph, a priority queue
of potentially uniform paths [Demetrescu and Italiano, 2004].
A path, 7., is uniform if every proper subpath is a short-
est path. Note that this includes the case where 7, is, it-
self, a shortest path. A path is potentially uniform if ev-
ery proper subpath is a shortest path, or, if it was previ-
ously a shortest path, and none of its edges have been up-
dated. Each potentially uniform path in the priority queue,
P,y = {may 1 myyispotentiallyuni forminGY}, has priority
w (7gy). Thus, the first element in this queue is always the
shortest path between = and y. This allows for extremely fast
path queries.

During compilation, the priority queue is set up for each
vertex pair, based on an environment that is free of mov-
ing obstacles. Initially, the priority queues just contain uni-
form paths. After compilation, as changes are made to edge
weights due to the introduction or removal of obstacles, the

1884

priority queues are updated and potentially uniform paths
may be introduced.

Fast Re-planning and Update of Dynamic APSP Graph

If a disturbance is severe enough that it cannot be handled by
the Executive alone, then re-planning is required. If the dis-
turbance is a change in goal state or current robot state, then
re-planning is a simple lookup to retrieve the shortest path
plan from the dynamic APSP data structure. When the en-
vironment changes due to obstacle introduction, removal, or
movement, the dynamic APSP graph must be updated. Note
that the flow tubes do not change.

Update of the dynamic APSP graph involves updating the
priority queue of potentially uniform paths, for any vertex
pair whose edge weight has changed due to an obstacle. Up-
date for an edge (u, v) with a new weight w proceeds in two
steps: cleanup and fixup [Demetrescu and Italiano, 2004]. In
the cleanup step, all paths containing (u, v) are removed from
the priority queue. In the fixup step, edge (u, v), with its new
weight, is added to the priority queue P,,. A new priority
queue, containing only the minimum weight paths from the
priority queues for each vertex pair is then generated. The al-
gorithm then iteratively processes this queue, computing new
potentially uniform paths taking into account the new edge.
The overall update process is O(n2), and when it is finished,
new path queries can be made.

3.2 Motion Executive

The Motion Executive executes the motion plan produced by
the planner. Besides the motion plan, it accepts as inputs sen-
sor data, and the plant model. The sensor data, combined
with the model, is used by the State Estimator component of
the Executive (see Figure 2) to generate optimal estimates of
the robot and environment state. The motion plan, combined
with the robot (plant) model are used to implement a control
policy; the Executive applies the control policy to the state
estimate to generate actuation commands for the robot.

Two components of the Executive implement the control
policy. First, the scheduler decides on target execution times
for each segment, j of the motion plan. This results in a
schedule, S, consisting of a set of target execution times,
t7(j) such that t7(j) € D, (see Definition 3). Thus, the
scheduler generates a schedule that is consistent with the ex-
ecution duration windows specified in the plan, and there-
fore, is consistent with all the temporal constraints. Second,
the controller component attempts to execute each segment
such that the motion segment completes at the target execu-
tion time. Thus, for a motion plan segment, j, the controller
uses the flow tube, F;, combined with the plant model, and
taking into account state estimates, to generate a sequence of
commands such that the trajectory reaches R, (F;) at time
t¢(j). Under conditions of no disturbances, this is guaran-
teed to succeed, since the flow tube guarantees controllability
for any time in D, and t;(j) € D;.

The state estimate is also used by the Execution Monitor
component of the Motion Executive to determine the current
and also, the likely future status of plan execution. Thus, the
Execution Monitor checks not only whether the current sta-
tus of plan execution is satisfactory, but it also runs a pre-

diction using the plant model to determine the likely future
trajectory and status. Thus, the Execution Monitor contin-
ually checks for disturbances that jeapordize plan execution
success. Note that disturbances include disturbances to the
robot state, changes to the goal state, and changes to the en-
vironment state. Note, further, that a disturbance to the robot
state can be an actual physical disturbance to the state (due
to an unexpected collision, for example), or it can be a “vir-
tual” disturbance due to an unexpected shift in the robot state
estimate.

If a disturbance occurs, the Executive will first attempt to
deal with it locally. First, the Executive determines whether
the disturbance can be handled without changing the sched-
ule. It applies the control policy expressed by the motion plan
flow tubes, combined with the plant model to a forward simu-
lation to predict whether the trajectory can still meet the goal
at the scheduled time. If this is not the case, then the Exec-
utive attempts to find a new schedule, consistent with the al-
lowed durations in the motion plan. If this fails as well, then
the Executive requests a new plan [Hofmann and Williams,
2015].

4 Results

In order to test the Chekhov algorithms, we have integrated
Chekhov into the OpenRAVE environment, and have im-
ported a model of the Barrett WAM manipulator. Test-
ing was performed in a simulated environment, in order to
simplify the state estimation aspect of the problem. We
also integrated Chekhov with the Open Motion Planning Li-
brary (OMPL), and through this, with ROS Movelt!. The
Chekhov motion planning component was implemented as
a new planner OMPL, allowing for use in Movelt!. Unfor-
tunately, Movelt!’s standard integration with OMPL assumes
that planners start from scratch to solve each plan request,
and therefore creates a new planner for each planning prob-
lem. This is a problem for Chekhov, as it would delete the
compiled data structures that Chekhov relies upon. For this
reason, we modified Movelt! sourcecode so that planner in-
stances are kept alive between planning requests.

Figure 3 shows execution of an example motion plan gen-
erated by the Motion Planner in the OpenRAVE environment.
The arm moves from its initial pose to the final pose without
hitting the table, or the block on the table. Generation of this
initial trajectory was a simple lookup of the dynamic APSP
structure, and so was, effectively, instantaneous. Fig. 4 shows
the addition of an obstacle, and the plan generated by incre-
mental replanning being executed.

(a) (b) (c) (@)

Figure 3: Execution of initial motion plan.

In order to test the performance of the incremental up-
date of the APSP structure (and therefore, of incremental

() (b)

(d)

Figure 4: Execution of adjusted motion plan, side view.

re-planning), we repeated the obstacle test, 300 times, with
cube-shaped boxes, ranging from 0.2 to 0.6 meters (edge
length), placed at random points in the workspace. Table 1
shows results in terms of the number of edges affected by
introduction of the obstacle, and the runtime for the update
operation. As expected, the number of edges affected, and
the runtime for update increase, on average, as box size in-
creases.

box sizes 0.2 0.3 0.4 0.5 0.6
avg. num | 217 372 450 498 742
updated
edges
min. num | 0 5 81 198 448
updated
edges
max. num
updated
edges
avg. run-
time
min. run-
time
max. run- | 9.54 | 7.56 | 8.06 | 9.3 5.21
time

1056 | 1040 | 931 1031 | 947

0.977 | 1.37 1.976 | 1.497 | 2.57

0.000 | 0.020 | 0.170 | 0.340 | 1.200

Table 1: Number of updated edges, and runtime for update,
for randomly placed boxes (cubes) of edge length 0.2, 0.3,
0.4, 0.5, and 0.6 meters.

Figure 5 shows histograms of number of affected edges,
and update runtimes for box size 0.2. Figures 6 shows cor-
responding histograms for box size 0.6. As expected, for the
smaller box size, the histogram is weighted towards smaller
numbers of edges, and shorter runtimes.

Num. updated edges, box size = 0.20 Update runtime, box size = 0.20
20

15, 30

10, 20

5] 10

% 200 400 600 800 1000 1200 % 2 4 6 8 10

(@) (b)

Figure 5: Histogram of number of edges requiring update (a),
and update runtime (b), in seconds, for box size 0.2.

These tests were performed using a Macbook Pro, with a

Num. updated edges, box size = 0.60 Update runtime, box size = 0.60

0
400 500 600 700 800 900 1000

(a) (b)

Figure 6: Histogram of number of edges requiring update,
and update runtime, for box size 0.6.

2.3GHz Intel Core i7 (4 cores), running a Linux virtual ma-
chine.

In order to compare performance with other planning algo-
rithms, we performed 200 tests using random start and goal
poses, and a randomly generated obstacle. Table 2 shows
timing performance of the Chekhov algorithm versus RRT
[LaValle and Kuffner Jr, 2000], RRTconnect [Kuffner and
LaValle, 2000], and Probabilistic Roadmap (PRM).

alg. mean std min max
Chekhov 0.0425 | 0.0213 | 0.0191 | 0.138
RRT 0.188 | 0.12 0.01 5
RRTconnect 0.042 | 0.04 0.014 | 045
PRM 0.12 0.08 0.07 0.2

Table 2: Timing performance of Chekhov vs. RRT and RRT-
connect.

5 Discussion

Chekhov represents a domain-specific control policy, relevant
to a particular type of workspace environment in the form of
a Tube-based Roadmap (TRM). The roadmap graph includes
nodes corresponding to pre-grasp poses required in the envi-
ronment, as well as additional random poses to support ob-
stacle avoidance. The edges of the graph correspond to Flow
Tubes rather than the single trajectories common to standard
roadmap approaches. The Flow Tubes contain control pol-
icy information, as well as dynamic information that relates
state to temporal duration limits. Due to their complexity,
the Flow Tubes must be generated offline. This persistency
requirement rules out the use of many common planning al-
gorithms that generate new trajectories from scratch for each
new planning problem. However, use of a persistent roadmap
graph requires updating when edges of the graph become oc-
cluded by obstacles. To address this, we incorporate an incre-
mental APSP algorithm that provides fast path queries even
when graph edge weights change.

Flow Tubes are especially useful for controlling under-
actuated systems, such as quadcopters or bipedal robots.
However, if the goal is fast, safe, reactive motion, where ac-
tuation limits are pushed, even a manipulator becomes un-
deractuated, requiring the use of sophisticated control poli-
cies, rather than simple trajectory following. Flow tubes also
give information that relates the dynamic limits of a system

1886

to implied temporal constraints. Such constraints may come
in conflict with user-imposed constraints.

As can be seen from Table 2, Chekhov significantly out-
performs RRT and PRM in terms of average and worst-
case times. The RRTconnect algorithm is comparable with
Chekhov for average time, but is not as good for worst-case
time. Besides these performance advantages, it is impor-
tant to remember that unlike RRT and similar algorithms,
Chekhov supports temporal constraints and association of
saved control policies with trajectories. Because such control
policies serve as a first line of defense against disturbances,
they reduce the need for replanning when disturbances occur.

Upon further testing and investigation, we found that
Movelt! uses a goal pose initialization thread, that runs in
parallel with planning, and blocks the start of planning until
it is finished. Unfortunately, this thread uses a sampling ap-
proach that takes on the order of several 10s of milliseconds
or more, which means that some of the results in Table 2 are
likely dominated by this thread, rather than the actual plan-
ning. For example, further testing revealed that the actual
APSP look-up to find the path was about 3 orders of magni-
tude faster than the results shown in the table. Further test-
ing is needed to determine the actual planning times of the
other planning algorithms, and to determine a better test for
comparison. Ultimately, the initialization thread should be
replaced with something more efficient.

As can be seen from the results in Table 1, performance is
better when the number of affected edges is minimized. How-
ever, depending on where an obstacle occurs, the number of
affected edges can become large. In particular, an obstacle
placed near the manipulator base can greatly restrict motion
of the manipulator’s proximal link, thus eliminating a signifi-
cant portion of nodes and edges, because the distal link poses
for the restricted proximal link poses are all infeasible. It may
be best to treat this situation as a special case, and switch to a
different planning algorithm when this occurs.

An additional consideration is the fact that in a real testbed,
obstacles don’t appear out of thin air as they did in our sim-
ulated test; they move across the workspace. It is worth in-
vestigating whether the number of edges affected by obstacle
movement greatly reduces the number of edges that have to
be updated, as long as the update can be performed frequently
enough.

We are currently testing Chekhov in a testbed (Figure 1),
using actual, rather than simulated robots. This includes
testing of faster movements, where the manipulator’s actua-
tion limits become important, and Flow Tube control policies
must be used. Preliminary results, in an application involving
human-robot interaction for cooperative assembly, show a no-
ticeable improvement in planning speed and predictability of
robot motions over existing planners. Both types of improve-
ment are extremely beneficial for this type of application.

An important challenge, when using our approach, is de-
ciding the nodes in the roadmap graph, particularly the ones
corresponding to pre-grasp poses. While we have developed
tools to help automate this process, it still currently requires
human intervention to validate pre-grasp poses. This is anal-
ogous to the type of work needed to program single repeti-
tive paths for industrial robots. Further research is needed to

better automate this aspect of installation. Our system does
automatically generate the additional nodes needed to sup-
port planning around obstacles, using a sampling approach.
Once the graph nodes are determined, computation of the
Flow Tubes corresponding to the graph edges is fully auto-
mated.

A second challenge, when using our approach, is the fact
that the roadmap typically provides coverage of only a small
fraction of the configuration space. For practical cases, where
our assumptions hold, this is not a problem. However, we are
investigating integration of trajectory optimization techniques
that support adjustment of goals from poses in the graph, to
neighboring poses outside the graph. Recent advances in
trajectory optimization [Schulman er al., 2014] make this a
promising avenue of research.

In future work, we will investigate anytime, sub-optimal
versions of the incremental APSP algorithm. In particular, the
Potentially Uniform Paths queue could be leveraged for such
a capability, in that it contains valid, but sub-optimal paths.
This may allow for a very fast, but sub-optimal update con-
sisting only of the cleanup part of the algorithm, after which,
a path query can be made. The fixup part of the algorithm
could then be run in background.

We believe that ultimately, parallel architectures show
great promise for dramatically improving the capabilities of
robotic planning and execution systems. We are currently in-
vestigating deployment of Chekhov, including the incremen-
tal APSP algorithm on parallel architectures, in order to speed
up obstacle detection and dynamic update of the APSP graph.

Acknowledgments

This work was supported, in part, by Boeing Corp., under
contract MIT-BA-GTA-1.

References

[Boor et al., 1999] Valérie Boor, Mark H Overmars, and
A Frank van der Stappen. The gaussian sampling strategy
for probabilistic roadmap planners. In Robotics and au-
tomation, 1999. proceedings. 1999 ieee international con-
ference on, volume 2, pages 1018-1023. IEEE, 1999.

[Cohen et al., 2010] Benjamin J Cohen, Sachin Chitta, and
Maxim Likhachev. Search-based planning for manipula-
tion with motion primitives. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages
2902-2908. IEEE, 2010.

[Conrad and Williams, 2011] Patrick R Conrad and Brian C
Williams. Drake: An efficient executive for temporal plans
with choice. J. Artif. Intell. Res.(JAIR), 42:607-659, 2011.

[Demetrescu and Italiano, 2004] Camil
Giuseppe F Italiano.
pairs shortest paths.
51(6):968-992, 2004.

[Hofmann and Williams, 2006] A.G. Hofmann and B.C.
Williams. Exploiting Spatial and Temporal Flexibility for

Plan Execution of Hybrid, Under-actuated Systems. In
AAAI 2006, 2006.

Demetrescu and
A new approach to dynamic all
Journal of the ACM (JACM),

1887

[Hofmann and Williams, 2015] Andreas Hofmann and Brian
Williams. Temporally and spatially flexible plan execution
for dynamic hybrid systems (to appear). Artificial Intelli-
gence Journal, special issue on Al and robotics, 2015.

[Hofmann, 2006] Andreas Hofmann. Robust execution of
bipedal walking tasks from biomechanical principles. PhD
thesis, Massachusetts Institute of Technology, 2006.

[Karaman and Frazzoli, 2011] Sertac Karaman and Emilio
Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research,
30(7):846-894, 2011.

[Kuffner and LaValle, 2000] James J Kuffner and Steven M
LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on,
volume 2, pages 995-1001. IEEE, 2000.

[LaValle and Kuffner Jr, 2000] Steven M LaValle and
James J Kuffner Jr. Rapidly-exploring random trees:
Progress and prospects. In Proceedings Workshop on the
Algorithmic Foundations of Robotics. Citeseer, 2000.

[Morris et al., 2001] Paul Morris, Nicola Muscettola,
Thierry Vidal, et al. Dynamic control of plans with
temporal uncertainty. In ZJCAI, volume 1, pages 494-502.
Citeseer, 2001.

[Schulman et al., 2014] John Schulman, Yan Duan, Jonathan
Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Jia Pan,
Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion
planning with sequential convex optimization and convex
collision checking. The International Journal of Robotics
Research, 33(9):1251-1270, 2014.

[Tedrake, 2009] Russ Tedrake. Lqr-trees: Feedback motion
planning on sparse randomized trees. 2009.

