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Abstract

Currently, there exists a need for simple, easily-
accessible methods with which individuals lacking
advanced technical training can expand and cus-
tomize their robot’s knowledge. This work presents
a means to satisfy that need, by abstracting the task
of training robots to learn about the world around
them as a vision- and dialogue-based game, I Spy.
In our implementation of I Spy, robots gradually
learn about objects and the concepts that describe
those objects through repeated gameplay. We show
that I Spy is an effective approach for teaching
robots how to model new concepts using represen-
tations comprised of visual attributes. The results
from 255 test games show that the system was able
to correctly determine which object the human had
in mind 67% of the time. Furthermore, a model
evaluation showed that the system correctly under-
stood the visual representations of its learned con-
cepts with an average of 65% accuracy. Human
accuracy against the same evaluation standard was
just 88% on average.

1

As technology advances, many people are welcoming inter-
active robots into their homes to assist with personal needs in
a diverse array of applications, including healthcare [Nielsen
et al., 2010] and assistive technologies [Galatas ef al., 2011].
Very few of these new robot owners possess the advanced
technical background traditionally required to train robots.
However, it is likely that such robot owners have objects in
their homes that are unique and that their robots should learn
about for conversational or task-related purposes. More-
over, these robot owners may need to fine-tune their robot’s
knowledge regarding other concepts—for instance, color-
blind owners may describe a red armchair to their robot quite
differently from the average person. For these reasons, among
others, non-technical robot owners should still be given the
ability to train their robots about their home environments,
but in a manner that is natural and intuitive.

One way to achieve this is through interactive gameplay.
In this work, we present a game, I Spy, that allows a robot
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to build visual models for concepts extracted from natural-
language object descriptions, and gradually improve those
models during gameplay. It does this by continuously up-
dating its knowledge to reflect information gathered from
newly-captured training images and positive and negative la-
bels learned from “yes” or “no” responses to questions about
objects during the game, as it attempts to determine which
object the human player has in mind. This paper is organized
as follows: we first provide an overview of prior related work,
followed by a technical discussion of the different techniques
used to develop the game. We then describe a study designed
to gauge the efficacy of the resulting system by tracking the
system’s game and model performance. Finally, we conclude
with an analysis of the results obtained during the study, and
outline some plans for future iterations of the game.

2 Background

Our implementation of I Spy learns concepts from human
descriptions and grounds those concepts in visual features
learned during gameplay, using positive and negative labels
also learned during gameplay interactions. Although no prior
work has done exactly that, some aspects of the approach
have been tackled in previous work. For example, an “I Spy”
or “20 Questions” format was previously explored as a means
of improving robot vision by [Vogel er al., 2010]. The system
in [Vogel er al., 2010] asked questions about hard-coded fea-
tures to improve vision-based category and attribute knowl-
edge. However, this implementation was tested with only one
type of attribute (color), and was tested using only two dif-
ferent colored blocks per game. We have tested our current
implementation using 17 objects per game, and as a result
of the object descriptions collected during our evaluation our
system learned many more concepts.

Some prior work has also explored using other types of
gameplay for grounded language learning in robots, such
as the object-naming game developed by [Steels, 1995] and
specifically applied to human-robot games in [Steels and Ka-
plan, 2002]. The object-naming game differs from I Spy in
that it creates a 1:1 mapping between an object and its name,
whereas I Spy creates many:many vision:language associa-
tions, recognizing multiple features common across multi-
ple objects (e.g., clock, basketball, and soccer-ball are round,
have black lines, etc.). Furthermore, human input in [Steels
and Kaplan, 2002] is scripted. In contrast, I Spy learns its



concepts from unscripted, natural-language descriptions that
often contain noise.

Other prior work with similar goals to this project includes
the recent work of [Liu and Chai, 2015], which utilizes con-
versational dialogue with a small, humanoid robot to ground
visual perceptions regarding hard-coded type, color, and po-
sition attributes. Another system that has integrated multiple
modalities for robot learning in a non-game context is Rip-
ley [Mavridis and Dong, 2012], a non-humanoid robotic sys-
tem that learns color, size, and weight attributes via a mix
of computer vision techniques, motor actions (for weighing
objects), and spoken dialogue interactions with users. Like
the other systems mentioned though, it was unable to dynam-
ically learn new attribute types, and was tested with a very
limited number of objects.

Rather than employing human-robot interaction, some
prior systems have focused on automatically learning visual
representations of concepts using a purely web-based ap-
proach. One example of this is the Never-Ending Image
Learner (NEIL), which automatically extracts visual knowl-
edge from internet data [Chen er al., 2013]. Although this
is useful for many applications, it does not allow for knowl-
edge acquisition based on unique concepts customized to an
individual robot owner’s home environment.

Finally, some other interesting applications designed to
connect language and visual perception include those of
[Mooney, 2008; Chen and Mooney, 2008], [Gupta ef al.,
2008], [Mitchell et al, 2012], and [Elliott and Keller,
2013]. In [Mooney, 2008; Chen and Mooney, 2008], a
system learned to sportscast RoboCup games by training
on commentaries of simulated games. Similarly, the work
by [Gupta et al., 2008] focused on developing image and
video classifiers by co-training on captioned images and
human-commentated videos. [Mitchell ez al., 2012; Elliott
and Keller, 2013] both worked toward generating natural-
sounding descriptions of images.

The work in I Spy is most similar in its implementation to
that of [Vogel er al., 2010]. However, it goes well beyond
color learning based on a pair of simple objects, by utilizing
concepts learned from players’ object descriptions rather than
by relying on pre-programmed attributes. It also incorporates
a larger quantity and greater diversity of objects in its games.
By building visual concept models that evolve during game-
play, our implementation of / Spy functions at its deepest level
as a multimodal interactive learning system.

3 Approach
3.1 Game Overview

I Spy follows a two-stage process: (1) an initial learning
phase, in which the robot populates its initial knowledge base
by capturing a sequence of images and pairing the extracted
visual feature vectors with keywords learned from object de-
scriptions provided by players, and (2) a gaming phase, in
which the actual game is played. Both of these stages are
further decomposed into sub-tasks requiring natural language
processing, computer vision, and machine learning methods.
The high-level flow diagrams for these stages are presented in
Figures 1 and 2. The robot platform is NAO V4, a humanoid
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Figure 1: The robot’s initial learning phase.
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Figure 2: The robot’s gaming phase.

robot created by Aldebaran Robotics (www.aldebaran.com),
running the NAOqi v1.14.5 operating system. The JNAOqi
SDK is used to integrate the robot with Java for motion con-
trol and image capture operations.

Initial Learning Phase.

In the initial learning phase, the robot begins with an empty
knowledge base. To learn about an object, the robot captures
a series of images of the object from different angles and dis-
tances. The captured images are segmented, and visual fea-
ture vectors are extracted from the image segments of the ob-
ject. In parallel, the player supplies a short description of the
object, and keywords are automatically extracted from the de-
scription. Finally, the extracted visual feature vectors are used
to train statistical concept models for each of the keywords.

Gaming Phase.

In the gaming phase, the robot is placed in front of a set of
objects. The robot captures images of the gamespace, and
these images are segmented to isolate each object. Visual
feature vectors are then extracted for each object, and clas-
sified against the concept models created in the initial learn-
ing phase. The robot uses the classification scores for each
object in the gamespace as input to its decision-making mod-
ule, along with information regarding the object descriptions
and prior gameplay interactions. In turn, the decision-making
module uses this information to decide what concept to ask
about in the next question. A question is generated based on
this concept, and the player responds to the question with a
“yes” or “no” answer. The robot then updates its belief prob-
abilities with regard to which object it thinks the player has
in mind, until it is confident enough to make a guess.

4 Methods

4.1 Natural Language Processing Methods

Natural language processing is used in / Spy primarily to ex-
tract keywords from users’ descriptions, and to automatically
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generate questions. A brief description of how these tasks are
achieved follows.

Keyword Extraction from Object Descriptions.

Keywords are automatically extracted from users’ object de-
scriptions using a filter to eliminate common stopwords,
prepositions, descriptors indicating relative direction, linking
verbs, verbs indicating composition, and quantifiers. Stop-
words are taken from the standard Apache Lucene (lucene.
apache.org) English stopword list. Prepositions and descrip-
tors indicating spatial proximity are removed due to inconsis-
tency with images acquired by the robot; for example, users
viewing a mug from one angle may describe it as having
a handle on its left, but if the robot views the mug from
its opposite side then the handle will appear on its right.
Words indicating composition (e.g., “made of,” “includes”)
are removed because they exist in nearly every description
and are not directly associated with a property of the ob-
jects. Quantifiers not providing any concrete information
(e.g., “it has some lines”) are removed because their defi-
nitions are too relative to individual objects to yield much
meaningful content. Thus, the remaining set of extracted
concepts from each object description is comprised of key-
words capable of providing discrete information. Common
keywords extracted from various participants’ object descrip-
tions include attribute words (e.g., “red,” “small”), action
words (e.g., “bounces,” “opens”), and words indicating activ-
ities one could perform with the object (e.g., “play,” “write”),
among others.

Natural Language Generation.

To generate natural-sounding questions during gameplay, the
question’s subject and verb components are selected accord-
ing to the chosen concept’s part-of-speech tag and, if appli-
cable, its subfunction within that particular part-of-speech.
Part-of-speech tags are acquired using the Stanford Part-Of-
Speech Tagger [Toutanova et al., 2003] and are assigned to
concepts based on the concept’s most frequent usage in in-
put object descriptions, to avoid generating confusing or am-
biguous questions (e.g., the system should generate “Does it
have a handle?” rather than “Can you handle it?” since most
users’ descriptions have used ‘“handle” as a noun). The words
included in function-based subcategories were manually se-
lected (partially from DBpedia (dbpedia.org) category lists),
in order to quickly increase the clarity of questions for this
work. Once a question’s subject and verb are selected, they
are paired with the concept, which serves as the object of the
question for most part-of-speech categories. The question is
then constructed using SimpleNLG [Gatt and Reiter, 2009],
although custom templates are used for a small number of
categories with which SimpleNLG’s realizer yields unnatural
results.

4.2 Computer Vision Methods

Computer vision is used in / Spy to segment images and ex-
tract visual feature vectors describing objects’ texture, shape,
and color, both during the initial learning phase and the
gaming phase. Image segmentation is performed using the
OpenCV [Bradski, 2000] Watershed Algorithm. Extracted
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visual features are used as training data for all concept mod-
els associated with an object, even though the meaning of
some of those concepts may not be expressed through tex-
ture, shape, or color, because the robot has no initial knowl-
edge regarding which concepts define visual attributes. Like-
wise, it has no inherent notion of what type of visual attribute
might be described by a visually-discernible concept (to a
naive robot, “red” is just as likely to describe a shape as it
is a color). Our visual feature extractors are described below.

Local Binary Patterns — Texture-based feature
extraction.

I Spy obtains texture information from images by extracting
local binary patterns (LBP) feature vectors, which have been
shown to be illumination invariant and efficient under differ-
ent environmental setups [Heikkila and Pietikainen, 2006].
LBP feature vectors are extracted by first dividing an image
segment into smaller disjoint regions. In these regions, each
pixel is labeled with a binary value according to whether its
original value is greater than or equal to that of the region’s
center pixel (1) or less than the central pixel’s value (0). The
result is a binary “word” describing all of the pixels in the re-
gion, and the feature vector is then created by concatenating
the words from all smaller regions.

Histograms of Oriented Gradients — Shape-based
feature extraction.

I Spy uses Histograms of Oriented Gradients (HOG) to find
the shape of objects. HOG features are created by first count-
ing occurrences of gradient orientation in localized portions
of an image segment. Then, the local object shape within an
image is described according to the distribution of intensity
gradients or edge directions.

RGB-S — Color-based feature extraction.

To extract color-based features, I Spy uses RGB and HSV his-
tograms. RGB is an additive color model based on the human
perception of colors, and is able to reproduce a broad array
of colors by combining red, green, and blue light. HSV is a
color model that describes the hue, saturation, and value of
colors in terms of their shading and brightness. I Spy extracts
an RGB histogram for each separate channel (red, green, and
blue), as well as a saturation histogram from the HSV color
space.

Finally, all of the extracted texture, shape, and color fea-
tures are concatenated to construct a single visual feature vec-
tor containing all of the essential information to describe a
given image segment.

4.3 Statistical Modeling

Gaussian Mixture Models (GMMs) are used to build con-
cept models from the extracted visual feature vectors. GMMs
are probabilistic models that assume that all data points are
generated from a mixture of Gaussian distributions with un-
known parameters. They have been used extensively as sta-
tistical models for image classification, including for clas-
sification and segmentation using color and texture features
[Permuter et al., 2006]. Models with tied covariances are
used to avoid data overfitting, and object images captured
during the initial learning phase are used as training data for



a concept model if at least half of the descriptions for that
object include the concept. Models are retrained following
every game, to reflect new information from “yes” and “no”
player responses and visual features extracted from game
photos. GMMs are constructed with two components, and
the Expectation-Maximization (EM) algorithm is used for pa-
rameter estimation (component weights, means, and covari-
ances). Model training is performed using the Python SciKit-
Learn [Pedregosa et al., 2011] library.

4.4 Decision-Making

Decision-making is critical to I Spy’s success, since the key-
words chosen for the robot’s questions impact the quality of
the player’s gaming experience, as well as the efficiency of
the robot’s underlying learning process. This subsection de-
scribes how the system chooses those keywords, based on
probabilities calculated using the robot’s vision and language
knowledge at the time of the game. The system calculates
probabilities using three different sources of information: its
concept models, answers collected during previous games,
and initial object descriptions.

For all of the system’s calculations, let O be the set of all
objects {01, ..., 0, } in the gamespace and C be the set of all
concepts {ci, ..., ¢, + in the Tobot’s current knowledge base.
PWY)(c;]0;) is the classification score output by the concept
model for ¢;, given the game image of object o;.

P@4)(a(c;) = yes|o;), shown in Equation 1, is the prob-
ability that the answer to a question about c; is “yes” given
that the game’s target object is 0;, based on answers to ques-
tions about this ¢;, 0; pairing in prior games. «(c;) is the
answer to a question about concept ¢;. ®(c;,0;, yes) is the
number of “yes” answers received to questions asked about
this ¢;, o; pairing during prior gameplay, and ®(c;, 0;) is the
total number of answers received regarding this pairing.

O (cj,05,yes) +1

P(QA)(O‘(CJ') = yes|0i) = (I)(C‘ O‘) +9
> Oi

ey

P@DP)(a(c;) = yes|o;), shown in Equation 2, is the prob-
ability that the answer to a question about c; is “yes” given
that the game’s target object is 0;, based on information from
all the objects, descriptions, and question responses in prior
gameplay. Let n be the number of descriptions for o; in which
c; occurs. Let Ay, be the set of all answers {ay,,, ..., an, } to
questions previously asked, for all concept-object pairs for
which the concept was included in n descriptions of that ob-
ject. Let o(ay, ) be 1 if an answer a,,, is “yes,” and O other-
wise.

1
|A

P@P)(a(c;) = yes|o,) =

Z U(ank)

Qny €EAR

@)

n|

PV, p@4) and P@D) are combined to calculate
P(a(c;) = yes|o;), the overall probability for the answer
to a question about c; being “yes.”

Finally, the system maintains belief probabilities for each
object throughout the course of the game. These are com-
puted using Equations 3 and 4. P(a(c;) = yes) is the overall
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probability that a concept ¢; elicits a “yes” answer indepen-
dent of the object. P(0;|a(c;) = yes) is the belief probability
for an object o; given that a question about ¢; elicits a “yes”
response. P(o;) is the probability that the player has o; in
mind, independent of any other factors (or 1/|O| before the
first question is asked).

P(a(c;) = yes) = Z P(a(c;) = yes|or) x P(or) (3)
0L, €0

P(a(cj) = yes|o;) x P(o;)
P(a(c;) = yes)

To choose the most informative question, P(o;|a(c;) =
yes) is calculated for all o; in O and all unasked ¢; in C.
Letting S; be the subset of objects with the highest belief
probabilities and So be the next highest-probability subset of
objects, with the subsets split at the point at which the dif-
ference between the belief probabilities in the two subsets is
greatest, the concept that maximizes the expected difference
between the average belief probabilities for objects in S; and
S, is selected. The goal in doing this is to reduce the set of
plausible objects that the player might have in mind with each
question asked.

P(oila(cj) = yes) = “4)

S Experiment

5.1 Experiment Overview

A preliminary user study evaluating I Spy’s appeal to in-
person players has shown that the game is fun and engag-
ing to people of a diverse range of age, gender, and educa-
tional demographics [Parde er al., 2015]. To evaluate our
current implementation’s gaming and concept model perfor-
mance, we simulated 255 games using real human responses
obtained via Amazon Mechanical Turk (AMT) (www.mturk.
com). Our experimental design and results are presented be-
low.

5.2 Data Collection

Initial Learning Phase.
To create initial concept models for the simulated games, the
initial learning phase was conducted for 17 objects of var-
ied size, color, shape, and texture, including: digital clock,
analog clock, red soccer ball, basketball, football, yellow
book, yellow flashlight, blue soccer ball, apple, black mug,
blue book, blue flashlight, cardboard box, pepper, green mug,
polka dot box, and scissors. Descriptions for these objects
were acquired via AMT. Participants provided demographic
information (age, gender, educational level, and native lan-
guage) to control for eligibility (native English speakers age
18 or over). The first six descriptions meeting eligibility
requirements were kept for each object. Forty-three AMT
workers (22 female) of various educational levels (4 had a
high school diploma, 15 had some college experience, 5 had
an associate’s degree, 12 had a bachelor’s degree, 3 had some
post-bachelor college experience, and 4 had a master’s de-
gree), provided descriptions for the objects.

To acquire visual information for the objects, each object
was placed on a white floor with a white background, and a



(b) Gaming phase in progress.

(a) Initial learning
phase in progress.

Figure 3: Initial learning phase and gaming phase.

NAO robot walked around the object, capturing photos from
different distances and angles (see Figure 3a for the initial
learning phase in progress). These images were segmented,
and since individual image components are not the focus of
this work, non-relevant segments were discarded manually.

Simulated Games.

To capture images for the simulated games, all 17 objects
were placed on the same white surface used for the initial
learning phase. The robot took photos of the game space from
three different locations, such that each object was included
in one of the images. The items were then rearranged so that
they were in different positions and orders, and the process
was repeated. This was done for 30 unique gamespace con-
figurations (see Figure 3b for the gaming phase in progress).

To obtain human responses for the simulated games, a list
was generated containing all 289 keywords extracted from
the user descriptions, and a question was automatically gen-
erated for each keyword in this list. AMT workers were pro-
vided one pre-captured gamespace configuration’s images,
and were asked to click “yes” or “no” for each possible ques-
tion for a specified object. Thirty sets of answers (one set per
gamespace configuration) were acquired for each of the 17
objects, leading to 510 sets of answers.

Once the answer sets were collected, they were screened
for spam. To do this, questions were first analyzed to deter-
mine whether they had a correct answer. Questions tagged as
nonsensical by a third-party annotator (8 of the 289 questions)
were ignored regardless. The remaining questions were deter-
mined to have a “gold standard” answer for a given object if
the number of their 30 responses having the majority answer
(either “yes” or “no”) exceeded chance (15) by two standard
deviations. Then, the subset of questions having correct an-
swers for a given object was used to determine the average
accuracy of all AMT workers for that object. A worker’s an-
swers were discarded if his or her accuracy over the full set of
concepts was two standard deviations below the average ac-
curacy of all workers. This resulted in replacing all of the re-
sponses for 38 workers. On seven occasions, the same worker
submitted more than one set of answers for the same object;
these duplicate sets were also replaced. The final collection
of 510 sets of answers was gathered from 432 AMT workers.
184 were male, 243 were female, and 5 declined to indicate a
gender. Once again, educational experience varied.

5.3 Simulation Design

To simulate the games, the 510 sets of answers were first di-
vided into two groups (training and testing). After complet-
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ing the initial learning phase for each object, the 15 training
sets of answers for each object and the image features ex-
tracted from 15 gameplay images of the object were given to
the system so that the simulated games could consider prior
gameplay knowledge. The remaining 15 test sets of answers
for each object were used for the actual simulations.

At the onset of a simulated game, its gameplay images
were imported to the system and visual features were ex-
tracted for each object in the gamespace. Then, answers to
each possible question for the game’s target object (taken
from one of the 15 sets of test answers for that object) were
loaded. Gameplay proceeded identically to live gameplay,
with the only difference being that the system simply checked
the answer that had been loaded for the question it asked,
rather than waiting for an in-person player to respond. An-
swers collected during the simulated gameplay were added to
the system’s knowledge as each game progressed. This pro-
cess was repeated until all test answer sets for all objects had
been played, for a total of 255 simulated games.

5.4 Simulation Results

The system was able to correctly determine the object that the
human player had in mind in 67% of the simulated games.
One object (the digital clock) was not guessed correctly in
any of the games in which it was the target object (although
in 80% of those games, the system guessed the other clock);
without this outlier, the system guessed correctly 72% of
the time. It was extremely accurate when guessing the pair
of scissors (100%), the yellow flashlight (93%), the apple
(93%), and the black mug (93%).

5.5 Concept Model Evaluation

To further analyze the performance of the system’s concept
models, test images for each object were classified against
each model in the system’s knowledge, and the averaged re-
sults were compared with the gold standard set of answers
for that object. Initial models were created using the same
initial learning stage as in the simulated games, and train-
ing images (from the same 15 training sets used in the sim-
ulated games) were added as additional positive instances to
the models for which their individual corresponding answer
sets gave “yes” answers. The concept models were then eval-
uated using the remaining 15 test sets per object. To do this,
a new test image was classified against each concept model
in the system’s knowledge, and the classification scores were
recorded. Following this, the image’s corresponding answer
set was loaded, and a game was simulated. At the end of the
game, the image and only the answers collected during the
game itself were added to the system’s knowledge.

After simulating all 255 test games, the classification re-
sults were averaged across all test images for a concept-object
pair, and the averages were compared with the gold standard
answer for that pair. Thresholds were set at greater than 75%
(“yes”) and less than 25% (“no”) to determine the system’s
answer. Concept models for which the average classification
scores for an object did not meet either threshold were ex-
cluded from the evaluation for that object, as were concept
models for which no gold standard answer existed for that
object. The average accuracy of the system’s concept models
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Figure 4: Agreement with the gold standard.

was then compared with the average accuracy of individual
human players against the gold standard.

5.6 Concept Model Evaluation Results

The results of the concept model evaluation are shown in
Figure 4. Overall, average system agreement with the gold
standard was 65% and average human agreement with the
gold standard was 88%. A sample of the correctly-identified
and incorrectly-identified concepts for two objects are dis-
played in Table 1 (concepts for which the system correctly
identified a “no” answer are in parentheses). The system
performed well with concepts having predominately visual
meanings, particularly if their models were trained using im-
ages of a variety of objects (e.g., “blue,” “brown,” “round”).
The incorrectly-identified concepts in Table 1 provide exam-
ples of models that perform poorly due to either a lack of vi-
sual salience, limited training data, or a combination of both
factors. For instance, the concept “signs” is fairly abstract and
existed only in the descriptions for a round green mug (cov-
ered in peace signs), which may have led the system to con-
flate the visual representation for “signs” with that of “round.”
Interestingly, the first object in Table 1 actually does have
tape on it; however, this was undetected by most human re-
sponders (hence the gold-standard “no” answer). Regardless,
it is likely that the system has just confused the visual rep-
resentation for “tape” with that of some other concept (such
as “rectangular”), rather than having a well-defined “tape”
model, due to the limited training data for that concept.

6 Discussion

The overall game performance and the results of the concept
model evaluation indicate that the system is reasonably capa-
ble of learning the visual representations of concepts over the
course of repeated gameplay. The system’s agreement with
the gold standard for each of the game objects was fairly close
in many cases to human agreement, with the overall average
agreement being lower than human agreement.

In addition to the game performance and concept model
evaluation, it is interesting to observe the average agreement
of human players with their own gold standard. From among
the 30 sets of responses per object used to create the gold
standard, individual responders only agreed with 88% of the
gold standard answers on average. This highlights the rela-
tively large number of perceptual differences among humans,
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Table 1: Model Output for Objects

Object | Correctly Identified Incorrectly Identified
(light), box, brown,
(flashlight), cardboard, | tape

(button), (blue), (switch)

ball, round, soccer, blue | metallic, signs

<
even regarding concepts that may seem “obvious” to many.
These perceptual differences are one of the motivators in de-
veloping this game, with the goal that through playing this

game a personal robot may perceive the world with a view
more closely aligned with its user.

7 Conclusion and Future Work

In conclusion, this paper has shown that / Spy is a feasible
approach for enabling robot owners who have not had exten-
sive technical training to teach their robots about the world
around them. In the study presented, the system was able to
determine which object a human player had in mind 67% of
the time out of 255 simulated games. Moreover, after only
the initial learning phase and 15 sets of training data, the sys-
tem’s concept models agreed with the gold standard on aver-
age 65% of the time over all objects. It should be noted that
the average human agreement with this same gold standard
was only 88%. The agreement between the system’s concept
model classifications and the gold standard is expected to in-
crease over time as a larger variety of descriptions and image
samples are added to its training datasets.

The potential avenues for future expansion with this project
are manifold. One area currently under development involves
the introduction of previously-unseen objects in gameplay, al-
lowing the robot to transfer its existing learned knowledge to
new objects. Other plans include supplementing the system’s
knowledge with images and descriptions retrieved from the
web, to expand the volume and diversity of training samples
based on information learned during gameplay. For instance,
the system could search the web for images similar to one
that the robot had captured locally, adding the most relevant
results to the same concept models to which the original, lo-
cal image had been added. Similarly, it could search text re-
sources for synonyms of the concepts extracted from descrip-
tions during the initial learning phase, saving the synonyms
as aliases for the original concept model.
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