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Abstract
We describe an exact inference-based algorithm
for the MinSAT problem. Given a multiset of
clauses φ, the algorithm derives as many empty
clauses as the maximum number of clauses that can
be falsified in φ by applying finitely many times an
inference rule, and returns an optimal assignment.
We prove the correctness of the algorithm, describe
how it can be extended to deal with weighted Min-
SAT and weighted partial MinSAT instances, ana-
lyze the differences between the MaxSAT and Min-
SAT inference schemes, and define and empirically
evaluate the MinSAT Pure Literal Rule.

1 Introduction
MinSAT is the problem of finding an assignment that maxi-
mizes the number of falsified clauses (or equivalently, mini-
mizes the number of satisfied clauses) in a multiset of clauses,
and MaxSAT is the problem of finding an assignment that
minimizes the number of falsified clauses (or equivalently,
maximizes the number of satisfied clauses). When weights
are added to clauses, we refer to these problems as weighted
MaxSAT/MinSAT. When there are clauses considered to be
hard and clauses considered to be soft, we refer to them as
(weighted) partial MaxSAT/MinSAT.

The development of MaxSAT solvers incorporating novel
and powerful solving techniques [Li and Manyà, 2009], as
well as the annual celebration of an evaluation of MaxSAT
solvers [Argelich et al., 2008], have been decisive to consol-
idate MaxSAT-based problem solving as a competitive alter-
native to solve challenging combinatorial optimization prob-
lems [Argelich et al., 2011; Morgado et al., 2013].

Given the success of MaxSAT, a number of researchers
have started to look into MinSAT in the last five years. At
first sight, one could think that the solving techniques and
encodings to be used in MinSAT are very similar to the
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ones used in MaxSAT and, therefore, that there is no need
of investigating MinSAT from a problem solving perspec-
tive. However, most of the research conducted so far indi-
cates that they may be quite different, as well as that the
performance profile of MaxSAT and MinSAT is also differ-
ent for several optimization problems represented into these
formalisms [Argelich et al., 2014; Ignatiev et al., 2014;
Li et al., 2012]. All these findings suggest that it is worth
to investigate MinSAT, and find out whether it can be used
as a generic problem solving approach for optimization prob-
lems either separately or in combination with MaxSAT. It is
also worth mentioning that solving MinSAT is meaningful for
both satisfiable and unsatisfiable instances, whereas solving
MaxSAT is only meaningful for unsatisfiable instances.

Let us mention two examples that illustrate some differ-
ences between MaxSAT and MinSAT. The first example is
about solvers: In branch-and-bound MinSAT solvers one has
to compute, at every node of the search tree, an upper bound
on the maximum number of clauses that can be falsified,
and in branch-and-bound MaxSAT solvers one has to com-
pute a lower bound on the minimum number of clauses that
can be falsified. While the upper bound is computed us-
ing graph-based techniques, the lower bound is computed
by applying unit propagation. As a result, for example
in [Li et al., 2012], we have that MinSAT greatly outper-
forms MaxSAT on combinatorial auctions and MaxClique
instances using solvers sharing many implementation details
like MinSatz [Li et al., 2012] and MaxSatz [Li et al., 2007;
2010a], despite of the fact that the encodings of such prob-
lems are almost identical.

The second example is about encodings: Given a Con-
straint Satisfaction Problem (CSP), one can represent the
problem of determining the maximum number of constraints
that can be satisfied with both MaxSAT and MinSAT encod-
ings. Using the MaxSAT direct encoding [Argelich et al.,
2012], we must add one clause for every no-good, while us-
ing the MinSAT direct encoding [Argelich et al., 2013], we
must instead add one clause for every good. This implies,
for instance, that for representing the constraint X = Y , we
need a number of clauses linear in the domain size in Min-
SAT, and a quadratic number of clauses in MaxSAT. We are
in the opposite situation if we want to represent the constraint
X 6= Y , So, it seems that MaxSAT and MinSAT could be
complementary in some scenarios [Argelich et al., 2013].
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In this paper we focus on inference schemes for MaxSAT
and MinSAT, and present original contributions to MinSAT.
There exists a MaxSAT resolution rule (c.f. Section 4) that
can also be applied to MinSAT because it preserves the num-
ber of falsified clauses when the premises of the rule are re-
placed by its conclusions. Besides, there exists also an exact
inference algorithm for MaxSAT [Bonet et al., 2007] that de-
rives, by applying the MaxSAT resolution rule a finite number
of times following a certain strategy, as many empty clauses
as the minimum number of clauses that can be falsified in a
multiset of clauses. Nevertheless, it is an open problem to
figure out how an inference rule may be used to compute a
MinSAT solution; i.e., to derive as many empty clauses as the
maximum number of clauses that can be falsified.

The main objective of this work is to solve that open prob-
lem by devising an exact inference algorithm for MinSAT
that relies on the existing inference algorithm for MaxSAT
but contains significant differences despite of the fact that
both algorithms apply the MaxSAT resolution rule. In par-
ticular, we describe the algorithm and prove its correctness,
show how it can be extended to deal with weighted MinSAT
and weighted partial MinSAT instances, analyze the differ-
ences between the MaxSAT and MinSAT inference schemes,
and define and empirically evaluate the MinSAT Pure Literal
Rule.

The paper is organized as follows: Section 2 gives basic
definitions. Section 3 summarizes the related work. Section 4
presents the existing inference scheme for MaxSAT. Section 5
describes the inference algorithm for MinSAT, and proves its
correctness. Section 6 compares the MaxSAT and MinSAT
inference schemes, and presents new insights into MinSAT.
Finally, Section 7 contains the concluding remarks.

2 Preliminaries
A literal is a propositional variable or a negated proposi-
tional variable. A clause is a disjunction of literals. A
weighted clause is a pair (c, w), where c is a is a dis-
junction of literals and w, its weight, is a natural num-
ber or infinity. A clause is hard if its weight is in-
finity; otherwise it is soft. A weighted partial MinSAT
(MaxSAT) instance is a multiset of weighted clauses φ =
{(h1,∞), . . . , (hk,∞), (c1, w1), . . . , (cm, wm)}, where the
first k clauses are hard and the last m clauses are soft. For
simplicity, in what follows, we omit infinity weights, and
write φ = {h1, . . . , hk, (c1, w1), . . . , (cm, wm)}. Notice
that a soft clause (c, w) is equivalent to having w copies of
the clause (c, 1), and that {(c, w1), (c, w2)} is equivalent to
(c, w1 + w2). A truth assignment assigns to each proposi-
tional variable either 0 or 1.

Weighted Partial MinSAT (MaxSAT), or WPMinSAT
(WPMaxSAT), for an instance φ is the problem of finding
an assignment in which the sum of the weights of the sat-
isfied (falsified) soft clauses is minimal, and all the hard
clauses are satisfied. The Weighted MinSAT (MaxSAT) prob-
lem, or WMinSAT (WMaxSAT), is the WPMinSAT (WP-
MaxSAT) problem when there are no hard clauses. The Par-
tial MinSAT (MaxSAT) problem, or PMinSAT (PMaxSAT),
is the WPMinSAT (WPMaxSAT) problem when all the soft

clauses have the same weight. The (Unweighted) MinSAT
(MaxSAT) problem is the Partial MinSAT (MaxSAT) prob-
lem when there are no hard clauses.

3 Related Work
The work on MinSAT can be traced back to the mid-90s
in the area of approximation algorithms [Kohli et al., 1994;
Marathe and Ravi, 1996], but it was not until 2010 that Min-
SAT started to be studied from a problem solving perspective.
The main results of this recent work on MinSAT may be suc-
cinctly summarized as follows:

I) Definition of transformation between MinSAT and
MaxSAT: Reductions from MinSAT to PMaxSAT were
defined in [Li et al., 2010b], but they do not generalize
to WPMinSAT. This drawback was overcome with the
definition of the natural encoding [Kügel, 2012], which was
improved in [Zhu et al., 2012]. Reductions of WPMinSAT to
Group MaxSAT were evaluated in [Heras et al., 2012].

II) Development of branch-and-bound solvers: The only ex-
isting WPMinSAT solver, MinSatz [Li et al., 2011; 2012], is
based on MaxSatz [Li et al., 2007], and implements upper
bounds that exploit clique partition algorithms and MaxSAT
technology.

III) Development of SAT-based solvers: There exist two
WPMinSAT solvers of this class [Ansótegui et al., 2012;
Heras et al., 2012]. The main difference with SAT-based
MaxSAT solvers lies in the way of relaxing soft clauses.

IV) Definition and evaluation of genuine MinSAT encodings
of relevant problems such as weighted MaxCSP [Argelich et
al., 2013; 2014], and graph problems [Ignatiev et al., 2014;
2013].

4 Inference in MaxSAT
The classical resolution rule x∨A, x∨B ` A∨B (where x is a
variable, and A and B are disjunctions of literals) is unsound
for MaxSAT. It works by adding the conclusion of the rule
to the premises, and this may increase the number of falsified
clauses in the derived instance. In contrast, the MaxSAT reso-
lution rule works by replacing the premises by its conclusions
in such a way that the number of falsified clauses is preserved
for every assignment.

The MaxSAT resolution rule is defined as follows [Bonet
et al., 2007; Larrosa et al., 2008]:

x ∨ a1 ∨ . . . ∨ as
x ∨ b1 ∨ . . . ∨ bt
a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt
x ∨ a1 ∨ . . . ∨ as ∨ b1
x ∨ a1 ∨ . . . ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt−1 ∨ bt
x ∨ b1 ∨ . . . ∨ bt ∨ a1
x ∨ b1 ∨ . . . ∨ bt ∨ a1 ∨ a2
· · ·
x ∨ b1 ∨ . . . ∨ bt ∨ a1 ∨ . . . ∨ as−1 ∨ as
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input: C
C0 := C
for i := 1 to n

C := saturation(Ci−1, xi)
〈Ci, Di〉 := partition(C, xi)

endfor
m := |Cn|
I := ∅
for i := n downto 1

I := I ∪ [xi 7→ max extension(xi, I,Di)]
output: m, I

Figure 1: An exact inference algorithm for MaxSAT

The tautologies concluded are removed, and repeated lit-
erals in a clause are collapsed into one. We say that the rule
cuts the variable x.

[Bonet et al., 2006; 2007] proved that the MaxSAT resolu-
tion rule is sound and complete. It is sound because the num-
ber of clauses that every assignment falsifies in the premises
is the same as the number of clauses that it falsifies in the
conclusions. It is complete because, for every multiset of
clauses C whose minimum number of falsified clauses is m,
the application of the rule (finitely many times) following a
strategy explained below derives a multiset formed by exactly
m empty clauses.

Before describing the exact inference algorithm for
MaxSAT of [Bonet et al., 2007], we need two definitions:

Definition 1 We write C ` D when the multiset of clauses D
can be obtained from the multiset C by applying the MaxSAT
resolution rule a finite number of times. We write C `x D
when this sequence of applications only cuts the variable x.

Definition 2 A multiset of clauses C is said to be saturated
w.r.t. the variable x if, for every pair of clauses c1 = x ∨ A
and c2 = x ∨ B of C, after applying the MaxSAT resolution
rule, there is a literal l such that l is in A and l is in B.
A multiset of clauses C′ is a saturation of C w.r.t. x if C′ is
saturated w.r.t. x and C `x C′; i.e., C′ can be obtained from C
by applying the inference rule cutting x finitely many times.

Trivially, by the previous definition, a multiset of clauses C
is saturated w.r.t. x iff every possible application of the infer-
ence rule cutting x only introduces clauses containing x due
to the fact that the first clause in the conclusions is a tautology
and, therefore, is eliminated.

Although every multiset of clauses is saturable, its satu-
ration is not unique. For instance, the multiset {x1, x1 ∨
x2, x1 ∨ x3} has two possibles saturations w.r.t. variable x1:
the multiset {x2, x2∨x3, x1∨x2∨x3, x1∨x2∨x3}, and the
multiset {x3, x2∨x3, x1∨x2∨x3, x1∨x2∨x3}. Neverthe-
less, the algorithm described below is correct independently
of the saturation selected.

Figure 1 gives the pseudo-code of the exact inference al-
gorithm for MaxSAT. Given an input multiset of clauses C
with n different variables, the algorithm returns the minimum
numberm of clauses ofC that can be falsified, and an optimal
MaxSAT assignment I .

Function saturation(C, x) computes a saturation of C
w.r.t. x. The order in which the algorithm computes the satu-
ration of the variables can be freely chosen; i.e., the sequence
x1, . . . xn can be any enumeration of the variables.

Function partition(C, xi) computes a partition of C into
the multiset Ci of clauses without occurrences of the vari-
able xi, and the multisetDi of clauses with occurrences of xi.

Function max extension(xi, I,Di) computes a truth as-
signment for xi as follows: if I satisfies all the clauses in Di,
including the case in which Di = {}, then the function re-
turns false (xi is set to false); otherwise, either all the clauses
of the form xi ∨ A are satisfied or all the clauses of the form
xi ∨ B are satisfied. In this case, xi is set in such a way that
all the clauses in Di become satisfied.

The algorithm has two parts. In the first part, the algorithm
successively saturates w.r.t. all the variables occurring in the
input multiset. Once the current multiset is saturated w.r.t.
the variable under consideration, say xi, it partitions the re-
sulting multiset into two multisets: Ci and Di. Ci contains
the clauses without occurrences of xi, and Di contains the
clauses with occurrences of xi. The algorithm continues sat-
urating Ci w.r.t. one of the remaining variables, and ignores
Di. This process continues until all the variables are elimi-
nated. At the end, Cn contains no variables, and the number
of empty clauses in Cn is the returned minimum number of
falsified clauses. In the second part, the algorithm builds an
optimal assignment taking into account the information inDi.
Every optimal assignment must satisfy all the derived Di’s.

Example 1 Let φ = {x1, x1∨x2, x1∨x3, x3}. Resolving the
first two clauses, we get {x2, x1∨x2, x1∨x3, x3}. Resolving
the second and third clause, we get a saturation of φ w.r.t. x1:
{x2, x2 ∨ x3, x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3, x3}. Hence, C1 =
{x2, x2 ∨ x3, x3}, and D1 = {x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3}.

Resolving the first two clauses of C1, we get {x3, x2 ∨
x3, x3}, which is a saturation of C1 w.r.t. x2. Hence, C2 =
{x3, x3}, and D2 = {x2 ∨ x3}.

Resolving {x3, x3}, we get the empty clause. Hence, C3 =
{�}, and D3 = {}. So, the minimum number of falsified
clauses is 1, and x3 7→ false, x2 7→ false, x1 7→ true is an
optimal assignment.

5 Inference in MinSAT
The goal of an exact MinSAT algorithm is to compute an as-
signment that falsifies the maximum number of clauses in a
MinSAT instance.

In this section we define an algorithm that derives, by ap-
plying the MaxSAT resolution rule, as many empty clauses
as the maximum number of clauses that can be falsified. First
of all, we should note that the MaxSAT resolution rule is also
a sound inference rule for MinSAT because its application
preserves the number of falsified clauses. Nevertheless, to
get completeness we need a different strategy of applying the
rule, and a new way of deriving an optimal assignment.

In our approach, given a variable xi occurring in the Min-
SAT instance φ under consideration, we start by computing a
saturation w.r.t. xi. By the soundness of resolution, the num-
ber of clauses that an assignment falsifies in φ and in the com-
puted saturation is the same. We then partition the saturation
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into two multisets as in MaxSAT: the multiset Ci of clauses
without occurrences of the variable xi, and the multiset Di of
clauses with occurrences of xi. In the next step, in contrast to
MaxSAT where a saturation of Ci w.r.t. xi+1 is computed, we
now compute a saturation of the MinSAT instance φ′ formed
by both Ci and the multiset of clauses, say Fi, resulting of
eliminating all the occurrences of the literals xi and xi in Di;
i.e., Fi := {A |xi ∨ A ∈ Di} ∪ {B |xi ∨ B ∈ Di}. As we
show in the following lemma, the MinSAT problem for φ can
be reduced to the MinSAT problem for φ′ = Ci ∪ Fi.

Lemma 1 Let φ be a MinSAT instance, and let φ′ be a Min-
SAT instance derived from φ by first computing a saturation
Ci ∪ Di of φ w.r.t. a variable xi occurring in φ, and then
removing from Di all the occurrences of both xi and xi. We
write φ′ = Ci∪Fi = Ci∪{A |xi∨A ∈ Di}∪{B |xi∨B ∈
Di}. If I is an optimal assignment of φ, then I is also an opti-
mal assignment of φ′ and falsifies the same number of clauses
in φ and φ′.

Proof Since every assignment falsifies the same number of
clauses in φ and Ci ∪Di due to the soundness of resolution,
we will prove that an optimal assignment I of Ci ∪Di is an
optimal assignment of φ′ and falsifies the same number of
clauses in Ci ∪ Di and φ′. We first prove that I falsifies the
same number of clauses in both multisets: it suffices to prove
that I falsifies a clause of the form xi ∨ A ∈ Di (xi ∨ B ∈
Di) iff I falsifies A (B), because the rest of clauses in Fi are
identical in Di.

Assume that I sets xi to true. Then, we have three cases:
i) If I falsifies x̄i ∨ B, then I falsifies B because it is a sub-
clause of x̄i ∨B.
ii) If I fasifies B, then I falsifies x̄i∨B because we assumed
that I sets xi to true.
iii) I does not falsify neither xi ∨ A nor A. I does not fal-
sify xi ∨ A because I sets xi to true. If I falsifies A, then
I satisfies all the clauses in Di: it satisfies every clause of
the form x̄i ∨ B because, by the definition of saturation, B
contains a literal whose negation appears in A; and it satisfies
every clause of the form xi∨A because I sets xi to true. This
is in contradiction with I being optimal because the assign-
ment obtained from I by setting x to false falsifies at least one
additional clause (x ∨A in Di). So, I satisfies A.

The argument above works similarly if we assume that I
sets xi to false.
I is also an optimal assignment of φ′ because there exists

no assignment I ′ of φ′ that falsifies more clauses of φ′ than
I does. If so, I ′ could be easily extended to an optimal as-
signment of φ by setting adequately the truth value of xi due
to the fact that no interpretation can falsify simultaneously a
clause of the form A and a clause of the form B. �

Figure 2 gives the pseudo-code of the new exact inference
algorithm for MinSAT proposed in this paper. Given an input
multiset of clausesC with n different variables, the algorithm
returns the maximum number m of clauses of C that can be
falsified, and an optimal MinSAT assignment I .

Functions saturation(C, x) and partition(C, xi)
are defined as in the MaxSAT case. Function
min extension(xi, I,Di) computes a truth assignment
for xi as follows: if I falsifies a clause of Di by setting xi

input: C
for i := 1 to n

C := saturation(C, xi)
〈Ci, Di〉 := partition(C, xi)
Fi := {A |x ∨A ∈ Di} ∪ {B |x ∨B ∈ Di}
C := Ci ∪ Fi

endfor
m := |C|
I := ∅
for i := n downto 1

I := I ∪ [xi 7→ min extension(xi, I,Di)]
output: m, I

Figure 2: An exact inference algorithm for MinSAT

to false, then the function returns false; otherwise it returns
true.

There are two crucial differences with the exact MaxSAT
algorithm of Section 4: The first one is that, after saturating
w.r.t. the variable under consideration, the algorithm contin-
ues saturating using the multiset Ci ∪ Fi instead of the mul-
tiset Ci. The second one is the way of computing an optimal
assignment.

Theorem 1 Given an input multiset of clauses C with n dif-
ferent variables, the inference algorithm for MinSAT returns
the maximum number m of clauses of C that can be falsified,
and an optimal assignment I .

Proof The algorithm constructs a finite sequence of multisets
of clauses φ1 = C1 ∪ F1, . . . , φn = Cn ∪ Fn from the input
multiset C. By Lemma 1, the maximum number of clauses
that can be falsified in each multiset φ1, . . . , φn is the same as
in the input multiset C. Since φk contains one less variable
than φk−1, for k = 2, . . . , n, we have that φn contains no
variables; actually, it only contains empty clauses unless the
input multiset is the empty multiset. So, the number of empty
clauses in φn is the maximum number of clauses that can be
falsified in φn, and also in φ1, . . . , φn−1 and C.

For deriving an optimal assignment we derive a sequence
of assignments I1, . . . , In in such a way that (i) Ik is an as-
signment of the variables xn, xn−1, . . . , xn−k+1; and (ii) Ik
is derived from Ik−1 by setting Ik(xj) = Ik−1(xj) for
j = n, . . . , n − k + 2, and Ik(xn−k+1) = false if this
setting leads Ik to falsify a clause of Dn−k+1; otherwise,
Ik(xn−k+1) = true. We will prove, by induction on k,
that Ik is an optimal assignment of Cn−k+1 ∪ Dn−k+1 for
k = 1, . . . , n, and in particular that In is an optimal assign-
ment of C1 ∪D1 and, therefore, of the input multiset C.

When k = 1, we have that Cn is empty or only contains
empty clauses, and Dn is empty or contains unit clauses ei-
ther of the form xn or of the form xn, but it cannot contain
occurrences of both xn and xn. By setting xn in such a way
that the clauses in Dn are falsified, we get an assignment that
falsifies the maximum number of clauses in Cn ∪Dn. If Dn

is empty, the value of xn is not relevant, and we set xn to true.
So, I1 is an optimal assignment of Cn ∪Dn and φn.

Assume that Ik is an optimal assignment of Cn−k+1 ∪
Dn−k+1. We must prove that Ik+1 is an optimal assign-
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ment of Cn−k ∪ Dn−k. Since Cn−k+1 ∪ Dn−k+1 is a sat-
uration of φn−k w.r.t. the variable xn−k+1 and the resolution
rule is sound, Ik is also an optimal assignment of φn−k =
Cn−k ∪ Fn−k. Since φn−k is obtained from Cn−k ∪ Dn−k
by removing the literals containing xn−k in Dn−k, an as-
signment cannot falsify more clauses in Cn−k ∪ Dn−k than
in φn−k. Recall that an assignment cannot simultaneously
falsify in Fn−k clauses of the form A and B, where A (B)
is a clause obtained from a clause of the form xn−k ∨ A
(xn−k ∨ B) of Dn−k. By forcing Ik+1 to set xn−k in
such a way that the number of clauses falsified in Dn−k is
maximized, we have that the number of falsified clauses in
Cn−k ∪Dn−k and φn−k is the same. So, Ik+1 is an optimal
assignment of Cn−k ∪Dn−k.

�

Example 2 Let φ = {x1, x1 ∨ x2, x1 ∨ x3, x3} as in Ex-
ample 1. Resolving the first two clauses, we get {x2, x1 ∨
x2, x1 ∨ x3, x3}. Resolving the second and third clause,
we get a saturation of φ w.r.t. x1: {x2, x2 ∨ x3, x1 ∨ x2 ∨
x3, x1 ∨x2 ∨x3, x3}. Hence, C1 = {x2, x2 ∨x3, x3}, D1 =
{x1∨x2∨x3, x1∨x2∨x3}, and F1 = {x2∨x3, x2∨x3}. So,
the problem reduces to find the maximum number of falsified
clauses in C1 ∪ F1 = {x2, x2 ∨ x3, x2 ∨ x3, x2 ∨ x3, x3}.

We now resolve the second and fourth clause, and get
{x2, x3, x2 ∨ x3, x3}. We resolve the first and third clause,
and get a saturation ofC1∪F1 w.r.t. x2: {x3, x2∨x3, x3, x3}.
Hence, C2 = {x3, x3, x3}, D2 = {x2 ∨ x3}, and F2 = {x3}
So, the problem reduces to find the maximum number of fal-
sified clauses in C2 ∪ F2 = {x3, x3, x3, x3}.

Resolving the two first and the two last clauses of
{x3, x3, x3, x3}, we get two empty clauses. Hence, C3 =
{�,�}, D3 = {}, and F3 = {}. So, the maximum number of
falsified clauses is 2, and x3 7→ true, x2 7→ true, x1 7→ true
is an optimal assignment.

6 Comparing the Inference Schemes for
MaxSAT and MinSAT

A key component of the previous MaxSAT and MinSAT algo-
rithms is the concept of saturation, and an essential difference
between the two algorithms lies in the way of exploiting its
properties. Saturation divides the clauses with occurrences of
a variable xi into a group of clauses of the form xi ∨ A and
another group of clauses of the form xi ∨ B, ensuring that
every assignment satisfies at least all the subclauses A or all
the subclauses B due to the fact that, for every pair of clauses
(A,B), there is a literal l in A such that l is in B.

In the algorithm for MaxSAT, by successively computing
a saturation w.r.t. all the variables and due to the soundness
of the MaxSAT resolution rule, we have that the number
of clauses that an assignment falsifies in the input multiset
C is the same as the number of clauses that it falsifies in
Cn ∪

⋃n
i=1Di, where Cn is either the empty multiset or only

contains empty clauses because when Cn is derived all the
variables have been eliminated. Since

⋃n
i=1Di is satisfiable,

it turns out that Cn contains as many empty clauses as the
minimum number of clauses that can be falsified in C, and
every assignment satisfying

⋃n
i=1Di is an optimal MaxSAT

assignment. Observe that, for finding a satisfying assignment

of
⋃n

i=1Di, we just need to set every xi to true (false) if some
subclause A (B) is falsified, because the other group is sat-
isfied independently of the value of xi. So, we force the al-
gorithm to satisfy the group of falsified subclauses to get an
optimal MaxSAT assignment. We refer the reader to [Bonet
et al., 2007] for a formal proof of the previous results.

In the algorithm for MinSAT, we exploit the set Di ob-
tained after computing a saturation w.r.t. the variable xi in a
different way. Since at most one of the groups of subclauses
A and B is falsified, and Ci contains no occurrences of xi,
the MinSAT problem for Ci∪Di can be safely reduced to the
MinSAT problem for Ci ∪ Fi. By setting xi to false (true) if
there is a subclause A (B) falsified, we have that every op-
timal MinSAT assignment of Ci ∪ Fi can be extended to an
optimal MinSAT assignment ofCi∪Di. So, we now force the
algorithm to falsify, instead of satisfy, the group of falsified
subclauses to get an optimal MinSAT assignment.

Observe that reducing a multiset C to Ci ∪Di is stronger
than reducing C to Ci ∪ Fi because C and Ci ∪Di have the
same number of falsified clauses for each assignment, while
C andCi∪Fi only preserve the maximum number of falsified
clauses. It can happen, for instance, that C is satisfiable and
Ci ∪ Fi is unsatisfiable as the following example shows: Let
C be the satisfiable multiset {x1 ∨ x2, x1 ∨ x2, x2 ∨ x3}. If
we saturate C w.r.t. the variable x1, we have that C1 ∪ F1 is
the unsatisfiable multiset {x2, x2, x2 ∨ x3}.

The SAT Pure Literal Rule (PLR) and MaxSAT PLR are
identical: If all the occurrences of a propositional variable
xi in a multiset have the same polarity, then all the clauses
containing the variable xi can be removed. Nevertheless, this
rule is not valid in MinSAT as the following counterexample
shows: LetC be again the multiset {x1∨x2, x1∨x2, x2∨x3},
which has a maximum of two falsified clauses by assigning
x1, x2 and x3 to false. By applying the previous PLR w.r.t.
the variable x1, we derive the multiset {x2 ∨ x3}, and by
applying the PLR w.r.t. the variable x2, we derive the empty
multiset that has no falsified clauses.

Lemma 2 Let C be a MinSAT instance where all the occur-
rences of the propositional variable xi have the same polar-
ity, and letC ′ be the MinSAT instance resulting of eliminating
all the occurrences of the variable xi in C. Then, C and C ′
have the same maximum number of falsified clauses.

Proof Since xi occurs only with one polarity, saturating C
w.r.t. the variable xi, we get Ci ∪ Di = C because in this
case Di is formed by all the clauses of C with occurrences
of xi, and Ci is formed by the rest of clauses. So, by remov-
ing all the occurrences of xi in Di, we get Ci ∪ Fi = C ′.
By Lemma 1, C and C ′ have the same maximum number of
falsified clauses. �

Therefore, the MINSAT PLR states that if all the occur-
rences of a propositional variable xi in a MinSAT instance
have the same polarity, then all the occurrences of the vari-
able xi can be removed.

Figure 3 compares the mean time, in seconds, needed by
MinSatz to solve random Min-2SAT instances for different
values of the ratio of the number of clauses to the number of
variables (r) with a version of MinSatz that applies the Min-
SAT PLR (W), and a version of MinSatz that does not ap-
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Figure 3: Impact on time of the MinSAT PLR

Figure 4: Number of applications of the MinSAT PLR

ply the MinSAT PLR (W/O). A total of 100 instances were
solved at each point of the plots. Figure 4 shows the mean
number of application of the MinSAT PLR when solving the
instances of Figure 3. Figure 5 compares the mean number of
nodes (y-axis) of the proof trees derived by MinSatz with and
without the application of the MinSAT PLR. In all the figures
the x-axis represents the number of variables.

We observe that the application of the MinSAT PLR pro-
duces significant speed-ups and reductions of the proof tree
size on the tested instances, as well as that rule is applied a
remarkable number of times. Interestingly, the speed-ups are
negligible when the same instances are solved with MaxSatz.

Even though the worst-case complexity of the exact algo-
rithms for MinSAT and MaxSAT coincides, in practice Min-
SAT may require more inference steps than MaxSAT because
the number of empty clauses to be derived for a multiset C
in MinSAT is always greater than or equal to the number of
empty clauses to be derived in MaxSAT for C. Moreover,
the MinSAT algorithm has to derive resolvents from Ci ∪ Fi

at each step of the algorithm whereas the MaxSAT algorithm

Figure 5: Impact on proof tree size of the MinSAT PLR

only has to derive resolvents from Ci, ignoring Di in the next
step. However, this may be an advantage in some cases be-
cause the clauses of Di are shortened, and the availability of
unit and binary clauses may produce shorter refutations.

Many practical optimization problems admit more com-
pact and natural MaxSAT and MinSAT encodings if they are
encoded using weighted clauses instead of unweighted ones,
as well as considering hard and soft clauses. To keep the de-
scription as simple as possible, we have presented our results
for unweighted MinSAT, but the proposed inference scheme
can be extended to both WMinSAT and WPMinSAT.

In the case of WMinSAT, we just need to use the weighted
version of the resolution rule [Bonet et al., 2007; Larrosa
et al., 2008]. From a conceptual point of view, a weighted
clause (c, w) is equivalent to havew copies of the unweighted
clause c, and the application of the weighted MaxSAT resolu-
tion rule to two clauses (x ∨D1, w1), (x ∨D2, w2) is equiv-
alent to apply the resolution rule min(w1, w2) times to the
unweighted clauses x ∨D1, x ∨D2. So, using the weighted
MaxSAT resolution rule, φn will be a multiset of weighted
empty clauses {(�, w1), . . . , (�, wk)}, and w1 + · · · + wk

will be the optimal cost of the input multiset.
In the case of WPMinSAT, we must first derive an equiv-

alent WMinSAT instance as explained below, and then solve
the derived instance with the weighted version of our algo-
rithm. We will assume that there is an assignment that satis-
fies all the hard clauses, since otherwise no solution exists.

Given a WPMinSAT instance φ whose number of hard
clauses is #hard and whose sum of the weights of all its soft
clauses is w, we derive a WMinSAT instance φ′ by adding
(i) all the soft clauses in φ, and (ii) the soft clauses (l1, w+1),
(l1 ∨ l2, w+ 1), . . . , (l1 ∨ l2 ∨ · · · ∨ lk, w+ 1) for each hard
clause hi = l1 ∨ l2 ∨ · · · ∨ lk in φ. These clauses are obtained
by negating hi and adding the weight w + 1 to each clause.

Observe that an assignment I satisfies hi iff I falsifies ex-
actly one clause among l1, l1 ∨ l2, . . . , l1 ∨ l2 ∨ · · · ∨ lk; or
equivalently, I falsifies hi iff I satisfies the clauses l1, l1 ∨
l2, . . . , l1 ∨ l2 ∨ · · · ∨ lk. Since the clauses derived from hard
clauses have weight w + 1 and we assumed the hard part of
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φ is satisfiable, every optimal solution of φ′ falsifies exactly
one clause derived from a hard clause, and is also an optimal
solution of φ. Besides, if the maximum sum of the weights of
the falsified clauses in φ′ is m, then the maximum sum of the
weights of the falsified clauses in φ is m−#hard× (w+ 1).
Notice that the way of dealing with hard clauses in MinSAT is
different than in MaxSAT, where hard clauses are not negated.

7 Conclusions
We described an exact inference algorithm for MinSAT and
proved its correctness, extended it to WMinSAT and WPMin-
SAT, analyzed the differences between the MaxSAT and Min-
SAT inference schemes, and defined and empirically evalu-
ated the MinSAT PLR. All these results are, to the best of
our knowledge, the first contributions to the study of infer-
ence schemes for MinSAT, and provide further evidence that
the solving techniques applicable to MaxSAT and MinSAT
are often different. Hence, we believe that it is important to
continue investigating on MinSAT.

As future work we plan to empirically compare the infer-
ence algorithms for MaxSAT and MinSAT, extend them to
finite-domain variables [Ansótegui et al., 2013], and iden-
tify optimization problem instances that are particularly well-
suited for MaxSAT and MinSAT inference-based methods.

References
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Zhu Zhu. Exact MinSAT solving. In Proc. of SAT-2010,
pages 363–368, 2010.

[Li et al., 2011] Chu Min Li, Zhu Zhu, Felip Manyà, and
Laurent Simon. Minimum satisfiability and its applica-
tions. In Proc. of IJCAI-2011, pages 605–610, 2011.

[Li et al., 2012] Chu Min Li, Zhu Zhu, Felip Manyà, and
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