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Abstract

Given an over-constrained system, a Maximal Sat-
isfiable Subset (MSS) denotes a maximal set of
constraints that are consistent. A Minimal Correc-
tion Subset (MCS, or co-MSS) is the complement
of an MSS. MSSes/MCSes find a growing range of
practical applications, including optimization, con-
figuration and diagnosis. A number of MCS ex-
traction algorithms have been proposed in recent
years, enabling very significant performance gains.
This paper builds on earlier work and proposes
a finer-grained view of the MCS extraction prob-
lem, one that reasons in terms of literals instead of
clauses. This view is inspired by the relationship
between MCSes and backbones of propositional
formulas, which is further investigated, and allows
for devising a novel algorithm. Also, the paper
develops a number of techniques to approximate
(weighted partial) MaxSAT by a selective enumer-
ation of MCSes. Empirical results show substantial
improvements over the state of the art in MCS ex-
traction and indicate that MCS-based MaxSAT ap-
proximation is very effective in practice.

1

For over-constrained systems [Jampel ez al., 1996], i.e. sets
of inconsistent constraints, a Maximal Satisfiable Subset
(MSS) denotes a maximal set of constraints that are con-
sistent. A Minimal Correction Subset (MCS, or co-MSS)
is the complement of an MSS, i.e. it is a set-wise min-
imal set of constraints whose removal renders the system
consistent. MSSes/MCSes find an ever increasing num-
ber of practical applications, representing an essential tool
in the analysis of over-constrained systems [Junker, 2004;
Felfernig et al., 2012]. One concrete example is Maximum
Satisfiability (MaxSAT), since a maximum set of satisfiable
constraints is the largest MSS (and so corresponds to the
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smallest MCS). MCSes are also related with Minimal Un-
satisfiable Subsets (MUSes), by a well-known minimal hit-
ting set duality property [Reiter, 1987]. Thus, enumera-
tion of MCSes often serves for computing the MUSes of an
over-constrained system. Additional application domains in-
clude the computation of minimal models [Ben-Eliyahu and
Dechter, 1996] and interactive constraint satisfaction and con-
figuration [O’Callaghan er al., 2005], among many others.

A number of MCS extraction and enumeration algorithms
have been proposed in recent years [O’Callaghan er al., 2005;
Bailey and Stuckey, 2005; Liffiton and Sakallah, 2008;
Felfernig et al., 2012; Nohrer et al., 2012; Marques-Silva et
al., 2013a; Grégoire et al., 2014; Bacchus et al., 2014], result-
ing in ever more efficient algorithms, capable of solving in-
creasingly more challenging problem instances. The number
and significance of applications of MCS extraction and enu-
meration motivates investigating more efficient algorithms.

This paper builds on recent work in the domain of Boolean
satisfiability [Marques-Silva et al., 2013a; Grégoire et al.,
2014; Bacchus et al., 2014], and proposes a finer-grained
view of the MCS extraction problem, by reasoning in terms of
literals instead of clauses. This alternative view, inspired by a
fundamental relationship between MCSes and backbones of
propositional formulas, enables for developing a novel MCS
extraction algorithm, whose query complexity can be charac-
terized in terms of the number of variables in the formula.

Moreover, recent work has shown that restricted enumer-
ation of MCSes is effective at approximating MaxSAT. This
paper extends this earlier work, by developing a set of new
techniques which enable far better approximation quality.

Experimental results, obtained on representative problem
instances, demonstrate that the new MCS extraction algo-
rithm consistently outperforms the approaches that currently
represent the state of the art. In addition, the results confirm
that MaxSAT approximation by restricted MCS enumeration
can provide high-quality solutions within short run times.

The paper is organized as follows. Section 2 introduces
the notation and the definitions used in the paper. Section 3
provides a brief account of earlier work. The novel MCS ex-
traction algorithm is detailed in Section 4, and the new tech-
niques for approximating MaxSAT are described in Section
5. Section 6 is devoted to the experimental study. Section 7
concludes the paper, and identifies research directions.



2 Background

We assume familiarity with propositional logic [Biere et al.,
2009] and consider propositional Boolean formulas in Con-
junctive Normal Form (CNF). A CNF formula F is defined
over a set of Boolean variables X = {x1,...,z,} as a con-
junction of clauses (¢ A ... A¢y,). A clause ¢; is a disjunction
of literals (I;; V ... V l;,) and a literal [ is either a variable
x or its negation —z. We refer to the set of literals appearing
in F as L(F). Formulas can be alternatively represented as
sets of clauses, and clauses as sets of literals. Occasionally,
expressions of the form V. will be used to indicate a clause
made of the literals in a set L.

A truth assignment, or interpretation, is a mapping p :
X — {0,1}. If all the variables in X are assigned a truth
value, p is referred to as a complete assignment. Interpre-
tations can be also seen as conjunctions or sets of literals.
Truth valuations are lifted to clauses and formulas as follows:
w satisfies a clause c if it contains at least one of its literals,
whereas p falsifies c if it contains the complements of all its
literals. Given a formula F, p satisfies F (written p = F) if it
satisfies all its clauses, being p referred to as a model of F.

Given two formulas F and G, F entails G (written F F G)
iff all the models of F are also models of G. F and G are
equivalent (written 7 = G) iff FF G and GF F.

A formula F is satisfiable (F £ 1) if there exists a model
for it. Otherwise it is unsatisfiable (F E L). SAT is the de-
cision problem of determining the satisfiability of a proposi-
tional formula. This problem is NP-complete [Cook, 1971].

An important function problem is computing the backbone
of F [Monasson e al., 1999; Kilby et al., 2005], defined as
the set of literals appearing in all its models.

Definition 1 The backbone B(F) C L(F) of F is the set of
all literals | such that F E 1.

A number of algorithms have been proposed for computing
backbones [Janota et al., 2015].

Given an unsatisfiable formula F, the following subsets
represent different notions regarding (set-wise) minimal un-
satisfiability and maximal satisfiability [Liffiton and Sakallah,
2008; Marques-Silva et al., 2013al:

Definition 2 M C F is a Minimally Unsatisfiable Subset
(MUS) of F iff M is unsatisfiable and ¥c € M, M\ {c} is
satisfiable.

Definition 3 C C F is a Minimal Correction Subset (MCS)
iff F\C is satisfiable and V¢ € C, F\(C\{c}) is unsatisfiable.

Definition 4 S C F is a Maximal Satisfiable Subset (MSS)
iff S is satisfiable and Ve € F\ S, S U {c} is unsatisfiable.

Note that an MSS is the complement of an MCS. MUSes
and MCSes are closely related by the well-known hitting set
duality [Reiter, 1987; Bailey and Stuckey, 2005; Birnbaum
and Lozinskii, 2003; Slaney, 2014]: Every MCS (MUS) is
an irreducible hitting set of all MUSes (MCSes) of the for-
mula. In the worst case, there can be an exponential num-
ber of MUSes and MCSes [Liffiton and Sakallah, 2008;
O’Sullivan et al., 2007]. Besides, MCSes are related to the
MaxSAT problem, which consists in finding an assignment
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satisfying as many clauses as possible. The smallest MCS
(largest MSS) represents an optimal solution to MaxSAT.
Formulas may be partitioned into sets of hard and soft
clauses, i.e., F = {Fu, Fs}. Hard clauses must be satis-
fied, while soft clauses can be relaxed if necessary. Thus, an
MCS will be a subset of Fg. Clauses may also have (positive
integer) weights. These elements define different versions of
the MaxSAT problem. It is said partial if Fg # () (otherwise
it is plain), and weighted if there are weights different from
1. MaxSAT is then the problem of computing an assignment
minimizing the weighted sum of the soft clauses it falsifies.

3 Related Work

Stemming from the influential work of [Reiter, 1987], com-
puting MCSes has been the subject of a considerable body
of research in the fields of model-based diagnosis, constraint
satisfaction and Boolean satisfiability.

Most modern methods rely on iteratively making calls to a
complete solver to check the satisfiability of different sub-
formulas. In general, these algorithms handle a partition
{8,U,C} of F, where S is a satisfiable subformula, C con-
tains clauses proved to be inconsistent with S (i.e. Ve € C,
SU{c}E L), and U consists of the remaining clauses of F.
Usually, a first call to the solver computes a complete assign-
ment p satisfying Fpg. This serves to initialize the partition
with S (resp. ) containing the clauses satisfied (resp. falsi-
fied) by p, and C as the empty set. Note F; C S. Eventually,
S (C) will be an MSS (MCS) of F and U will become empty.

The simplest algorithm, LINEAR SEARCH [Bailey and
Stuckey, 2005], removes one clause ¢ from I/ at a time and
calls the solver on S U {c}. If it is satisfiable ¢ is added
to §. Otherwise, it is added to C. Other approaches in-
clude DicHOoTOMIC SEARCH ([O’Callaghan et al., 2005;
Li et al., 2013]), FASTDIAG ([Felfernig et al., 2012]), which
mimics the divide-and-conquer QUICKXPLAIN algorithm for
MUS extraction [Junker, 2004], or PROGRESSION ([Mencia
and Marques-Silva, 2014; Marques-Silva et al., 2013b]).

These algorithms can be enhanced with optimizations,
such as exploiting models of satisfiable subformulas ((N6hrer
et al., 2012]), which consists in moving from U to S all
the clauses satisfied by the model obtained after a satisfiable
call. Other optimizations are the use of backbone literals and
disjoint unsatisfiable cores ([Marques-Silva et al., 2013al).
Some of these techniques are also used by the three best per-
forming algorithms, described below.

Motivated by the work of [Birnbaum and Lozinskii, 2003],
the CLAUSED algorithm (CLD) [Marques-Silva et al., 2013a]
works differently from the previous methods. It checks
whether S can be extended with some clause in U, calling
the solver on S U {D}, where D = V) is a clause ex-
pressing the disjunction of the clauses in ¢/. If it is satisfiable,
CLD updates S and U from the computed model and repeats
the process until it gets an unsatisfiable call, indicating that
the clauses still in ¢/ constitute an MCS.

CMP (Computational Method for Partitioning) [Grégoire
et al., 2014] is a recent algorithm that exploits the fact that
an MCS is a minimal hitting set of all MUSes. It itera-
tively searches for transition clauses, those that belong to all



Table 1: Complexity of MCS extractors: m = |Fg| and k (p)
is the size of the largest (smallest) MCS of F.

Algorithm Query complexity
Linear Search O(m)
Dichotomic Search ~ O(klog(m))
FastDiag  O(k + klog(7))
Progression  O(klog(1+ 7))
Clause D  O(m —p)
CMP  O(km)

MUSes of a given subformula, adding them to the MCS. CMP
works with an auxiliary set X C U such that SU X F L is
known. Initially & = U and, repeatedly until ¢/ becomes
empty, it selects a clause ¢ € X and calls the solver on
S U (X \ {c}). If it is satisfiable, S and I/ are updated ex-
ploiting the computed model, ¢ is moved to the MCS C and
X is reset to U in order to look for the next transition clause.
Otherwise, c is removed from &". Despite its quadratic worst-
case complexity, CMP was shown very effective in practice.
As other algorithms, CMP is enhanced with optimizations,
including some new ones. One of them consists in making a
call, in a way similar to CLD, at the beginning of each itera-
tion. This is done by a procedure termed extendSatPart,
which checks the satisfiability of S U {Vx)}. If it is satis-
fiable, S is extended with the satisfied clauses and X and U/
are filtered accordingly. Otherwise, all the clauses in X" are
moved to C and X is set to U. So, regardless of the outcome
of the solver, the extendSatPart procedure removes at
least one clause from U/. One in every two calls CMP makes
to the solver is made inside this procedure, so it requires at
most 2 x m calls. This yields the following new result:

Proposition 1 CMP using the extendSatPart procedure
has a query complexity of O(m), with m = |Fg|.

Finally, building on previous work on SAT with prefer-
ences [Rosa et al., 2010], Relaxation Search (RS) [Bacchus
et al., 2014] is a new general algorithm to handle optional
clauses that can be used to extract MCSes. It consists in using
a modified SAT solver so that preferences in the variable se-
lection heuristic can be expressed. An MCS is computed by
making a single call on an alternative satisfiability problem
consisting of (i) the hard clauses together with (ii) for each
soft clause ¢;, the clauses resulting from —c; <> b;, where b;
is a fresh Boolean variable. The solver is set to first branch on
the b; variables preferring to set them to false, i.e., activating
the associated soft clauses. If the set of hard clauses is satis-
fiable, it will always return a model, an MCS being the soft
clauses ¢; such that its associated variable b; was set to true.

Except for RS, the algorithms presented herein make a
worst-case number of calls depending on the number of soft
clauses in F, as summarized in Table 1. In contrast, RS re-
quires a dedicated solver, which is called once.

4 Literal-Based MCS Extraction

This section first investigates the relationship between MCSes
and backbones, which enables a novel viewpoint of the MCS
extraction problem. Then, it introduces a new algorithm that
exploits these results.

1975

4.1 MCSes, MSSes and Backbones

In [Marques-Silva et al., 2013al, the authors introduced a
technique termed backbone literals. This technique was de-
rived from the observation that, whenever a clause c is proven
to belong to the MCS being extracted, i.e. SU {c}F L, the
complements of its literals are backbone literals of all the
MSSes containing S. Backbone literals can then be added
to the working formula as unit clauses, so that each future
call to the SAT solver is expected to be easier.

A deeper analysis reveals a closer relationship between the
backbone of an MSS and its corresponding MCS. This is il-
lustrated in the following result.

Proposition2 Let S C F be an MSS of 7, C = F\ S an
MCS and ¢ € F. Then, ¢ € C if and only if B(S) falsifies c.

Proof. Both parts are proved by contradiction.

(If). Suppose ¢ ¢ C. Thenc € Sandso S = SU {c}. As
B(S) falsifies ¢, VI € ¢, =l € B(S), soVl € ¢, SE-I, and
thus S U {c} F L, contradicting the satisfiability of S.

(Only if). Suppose ¢ € C is not falsified by B(S). Then there
exists a literal [ € ¢ such that -l ¢ B(S), that is, S ¥ .
So, there exists an assignment p such that uFS U {i},
so #FES U {c} holds, contradicting the maximality (resp.
minimality) of S (resp. C). O

Proposition 2 suggests the possibility to compute an MCS
by identifying the subset of the backbone literals of the MSS
that falsifies the MCS. The next results will be useful to com-
pute these backbone literals and the MSS at the same time.

Proposition 3 Let S’ C S, where S is an MSS of F. Then
B(S') C B(S).
Proof. Letl € B(S'), ie. S'Fl. As S8 C S, due to

monotonicity of logical entailment, SES’El. Sol € B(S).
0O

Proposition4 Ler B C B(S'), with 8’ C S and § an MSS
of F. If c € F\ &' is falsified by B, then c belongs to the
MCSC=F\S.

Proof.  Firstly, by Proposition 3, B C B(S).
falsifies ¢, B(S) falsifies ¢, so by Proposition 2, ¢ € C.

Then as B
O

4.2 LBX: A New MCS Extraction Algorithm

The results above allow us to devise a new MCS extraction
algorithm that iterates over the literals of F searching for
backbone literals of subsequent satisfiable subformulas. This
method, termed Literal-Based eXtractor (LBX), is depicted
in Algorithm 1. Besides the sets of clauses S and U, it works
with two sets of literals: £, containing candidates to be tested,
and B, with those known to belong to B(S).

Similarly to previous approaches, LBX first initializes the
partition {S,U} from a complete assignment. As the MCS
will not contain any clause in S, it suffices to test the literals
in U, and so L is initialized with L({/). Then, LBX enters a
loop where a literal [ is selected and removed from £ at a time
and the solver is called on S U B U {l}. Note that adding B



does not alter the outcome, but has the potential of easing the
SAT problem. If it is satisfiable, S and I/ are updated from
the computed model and all the literals that are no longer in
U are filtered out from L. Otherwise, —[ is added to BB as a
backbone literal. LBX terminates when £ becomes empty,
returning the MCS F \ S.

LBX can exploit the structure of the formula by selecting
the literal [ € £ having most occurrences in U, so that, if
the call is satisfiable, more clauses could be expected to be
removed from U/, reducing £ to a greater extent. Regardless
of this choice, LBX is guaranteed to return an MCS within a
number of calls bounded by the number of variables.

Proposition 5 LBX always returns an MCS of F and has a
query complexity given by O(| X|).

Proof. (Sketch)

(Termination and Complexity). As, initially, F is split from
a complete assignment, |£| < |X|. Then, at each iteration,
at least one literal is removed from £. Hence, LBX always
terminates making no more than | X | 4 1 satisfiability tests.
(Correctness). We show that, upon termination, S constitutes
an MSS of F. To this aim, it suffices to note that at the
beginning of every iteration the following invariant holds:
S is a satisfiable subformula, U F\ S and for all
l e LU)\ L, -l € B. Eventually, £L = () and so, for all
Il € L(U), -l € B. Therefore, B C B(S) falsifies every
¢ € U. Thus, by Proposition 4, I{ is contained in all the
MCSes not containing any clause in S. Since U = F \ S, it
is minimal and constitutes an MCS, and so S an MSS of . O

LBX admits some further refinements. First, as F is un-
satisfiable, there are situations where some backbone literals
can be detected without making a call to the SAT solver. This
happens at any step of the algorithm where B does not falsify
yet any clause in F and there exists a literal / that is included
in all the clauses of /. Then, we can add —[ to 3. This is a
direct consequence of the following more general property.

Proposition 6 Let S C F be a satisfiable subformula, and
X C F\ S such that S UX E L. If there exists | € L(X) s.t.
l €cforallc € X, then -l € B(S).

Proof.  Suppose =l ¢ B(S). Then S U ¥ L and, since
I belongs to all the clauses in X', SUX ¥ L, a contradiction. O

On the other hand, LBX can also incorporate an opti-
mization similar to the extendSatPart procedure used in
CMP. This consists in issuing, at the beginning of each itera-
tion, a call on SUBU{V ¢ }. If it is satisfiable, S, U and L are
updated exploiting the model as before. Otherwise, it means
that the complements of all the literals in £ are backbone liter-
als of S, thus £ becomes empty, leading LBX to termination.
It can be easily proved that this call changes neither the cor-
rectness, not the query complexity result from Proposition 5,
as every call results in at least one literal being removed from
L . Furthermore, a similar reasoning that led to Proposition
1, reveals that using this technique introduces an independent
new upper bound on the number of calls LBX would need
to perform, which allows us to conclude that it has a query
complexity of O(min{m, |X|}), with m = | Fg|.
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Function LBX (F)
(S,U) < InitialAssignment(F)
(2. B) — (L), 0)
while £ # 0 do
l < RemovelLiteral(L)
(st,u) = SAT(SUBU{l})

if st then
(8,U) + UpdatesatClauses(u,S,U)
L+ LNLMY)
else
B+ BU{~l}
return 7 \ S // MCS of F

Algorithm 1: Literal-Based eXtractor (LBX)

Finally, it is worth mentioning that LBX presents an impor-
tant advantage from a technical point of view. Literals can be
tested using assumptions, so an incremental SAT solver can
be interfaced without the need of creating fresh Boolean vari-
ables as clause selectors. This may result in a more effective
use of propagation and clause learning.

S MaxSAT Approximation

Enumerating MCSes represents a promising way of approxi-
mating MaxSAT [Marques-Silva ef al., 2013a]. Arguably, an
MCS constitutes a form of local optimal solution, as it is not
possible to satisfy any of its clauses without falsifying at least
one contained in the respective MSS. So, the average quality
of the solutions associated to MCSes can be expected to be
higher than that of just random assignments satisfying Fp;.
MCS enumeration is done by iteratively running an MCS ex-
traction algorithm over F, which is augmented with the hard
clause Vpc) after computing the MCS C. This way, C is
blocked, preventing the algorithm from finding it again. The
process is repeated until Fz F 1, meaning that all the MC-
Ses have been enumerated, and the best solution found, cor-
responding to a cost-min MCS, represents a proven optimum.

This section presents three techniques for improving MCS-
based MaxSAT approximation. These introduce a heuristic
component for making a selective enumeration of MCSes and
avoid the computation of some MCSes that cannot improve
the current best solution. Here, w(c) denotes the weight of
the clause ¢, w(X) the sum of the weights of the clauses in X
and UB the cost of the best solution found so far.

Literal Selection Heuristic

LBX makes a series of non-deterministic choices regard-
ing the literal in L it selects at each iteration. The first
technique defines a selection policy aimed at biasing the
process towards MCSes with small costs. For this pur-
pose, it selects the literal resulting from the expression
argmax{} e, w(c);l € L}, ie. for each literal it
computes an aggregated weight as the sum of the weights of
the clauses in I/ it appears in, selecting that with the maxi-
mum value. Ties are broken arbitrarily. Note that in the case
of unweighted formulas, the selected literal would be the one
with most occurrences in /. This technique contributes mod-
erately to guiding the search, as LBX exploits models adding
the satisfied clauses to the MSS under construction. However,
deactivating this feature would deteriorate its performance,



and so its ability to enumerate a large number of MCSes in
a short time. The next technique aims to achieve a proper
balance to this respect.

Stratified MCS Extraction

The second technique exploits the fact that MCSes can be
computed in a recursive manner by initially splitting the set of
soft clauses as Fs = {Fs,, ..., Fs, }. Then, C = Ugi—1. 1)Ci
is an MCS of F, where C; is an MCS of Fy U Fg, and, for
i = 2..k, C; is an MCS of Fg U U(j:l..i—l) (.7:5]. \Cj) U ]:Si'
This result can be exploited to establish preferences regarding
the kind of MCSes to be computed first. Motivated by the
work of [Ansétegui et al., 2012], we define the partition so
that clauses with the same weight are included in the same
subset, and subsets with largest weights are processed first in
the MCS extraction process. This way, the MCS extractor is
forced to try to first satisfy clauses with larger weights, as no
clause in a subset is considered until all the preceding subsets
have been completely processed.

Search Space Pruning

The third technique stems from the observation that we can
avoid the enumeration of some MCSes without losing the
possibility of finding an optimal solution to MaxSAT. This
is a direct consequence of the following result:

Proposition 7 Let C be an MCS of F and C' C C a subset s.1.
w(C") > UB. Adding to Fy the clause V¢ (blocking C')
does not prevent an MCS enumerator from finding any MCS
whose cost is less than UB.

Proof. Adding V) to Fy guarantees that from then on,
all the computed MSSes will contain at least one clause from
C’. Also, every MCS improving UB cannot contain C’. O

This can be exploited in two ways: First, it allows us to
stop the computation of an MCS whenever its cost exceeds
UB. Second, we can always block a subset, avoiding the com-
putation of all the MCSes containing it, which cannot lead to
improving UB. After computing an MCS C, or part of it ex-
ceeding UB, we compute its cost-minimum subset C' C C
such that w(C") > U B and add the hard clause V(¢ to F.

6 Experimental Study

This experimental study evaluates the proposed Literal-Based
eXtractor algorithm (LBX) with respect to the state of the art.
It consists of two parts; the first one devoted to computing one
MCS and the second one to MaxSAT approximation. LBX
includes the refinements described at the end of Section 4.2.
The experiments were run on a Linux cluster (2 GHz, 64-
bits), with a memory limit of 4 GB. LBX' was implemented
in C++ interfacing Minisat 2.2 [Eén and Sorensson, 2003].

6.1 MCS Extraction

Regarding MCS extraction, we compare LBX with CLD,
which was the best-performing algorithm in [Marques-Silva
et al., 2013al, RS [Bacchus et al., 2014] and CMP (with all
its optimizations) [Grégoire et al., 2014]. In all cases, the

! Available at http:/logos.ucd.ie/wiki/doku.php?id=Ibx
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Table 2: MCS extraction. Instances solved by 30 min.

ijcail 3-bench | mus-bench | maxsat-bench
# Inst. 866 295 179
CLD 812 271 70
RS 826 258 75
CMP 844 292 103
LBX 846 293 138
VBS 848 294 145

original binaries provided by the authors were run according
to their instructions. The time limit was set to 1800 seconds.

We considered three sets of unsatisfiable instances: The
first one, ijcail3-bench, contains 866 instances taken from
[Marques-Silva et al., 2013al, both plain and partial formulas.
The second one, proposed in [Grégoire er al., 2014], includes
295 plain instances from the 2011 MUS competition. Finally,
as most of these instances were solved swiftly by all the algo-
rithms we propose a new set of hard instances. It contains all
the instances from the 2014 MaxSAT evaluation” as well as
from other sources® such that either CMP or LBX took more
than 90s to solve, filtering out those where none of these al-
gorithms was able to complete a single call to the SAT solver.
The resulting set, maxsat-bench, contains 179 instances.

Table 2 reports, for each algorithm and benchmark set, the
number of instances solved by the time limit. Figures 1 and
2 show, respectively, the running times of the methods on
the combination of ijcail3-bench and mus-bench and on the
maxsat-bench sets of instances. VBS (Virtual Best Solver)
emulates a parallel portfolio including all the algorithms.

In the first two sets, LBX is the best method, closely fol-
lowed by CMP, which is clearly better than RS and CLD.
LBX is able to solve 3 more instances than CMP, and many
more than both RS and CLD. Also, Fig. 1 shows clear differ-
ences in the running times in favor of LBX over CMP.

The results from the third benchmark show more important
differences. As we can observe in Figure 2, LBX performs
significantly better than any other algorithm. Remarkably,
LBX is able to solve 35, 63 and 68 more instances than CMP,
RS and CLD respectively.

Finally, VBS, to which LBX contributes substantially, con-
firms the conclusion of previous works that a portfolio can
lead to improvements. It results in a reduction of the running
times and in the ability to solve some more instances.

6.2 MaxSAT Approximation

The second series of experiments compare LBX, using the
techniques presented in Section 5, with three state-of-the-art
MaxSAT approximation methods: CLD (in approximation
mode), which was shown to outperform IROTS [Tompkins
and Hoos, 2004] and SAT4J [Le Berre and Parrain, 20101,
Dist [Cai et al., 2014], which ranked first in the (weighted)
partial crafted incomplete tracks in the 2014 MaxSAT eval-
vation and wpm2014.in (WPM), which ranked first in the
(weighted) partial industrial tracks.

Zhttp://www.maxsat.udl.cat/14/index.htm]

3 Additionally it includes a few partial MaxSAT instances created
for over-approximating the backbone of satisfiable formulas (taken
from [Janota et al., 2015]).



Table 3: MaxSAT approximation. Comparison with state-of-the-art methods.

£

1400

CLD WPM Dist BC # WINS

Set #Inst. | L D w L D w L D W L D W | CLD WPM Dist LBX
ms-ind 14 2 1 11 4 0 10 2 0 12 3 0 11 2 3 0 9
pms-ind 55 19 9 27 6 4 45 13 2 40 19 5 31 19 8 12 28
wpms-ind 47 12 3 32 19 3 25 10 4 33 8 4 35 12 20 8 15
pms-crafted 36 6 13 17 3 8 25 19 0 17 2 0 34 8 6 19 15
wpms-crafted 71 8 2 61 20 7 4 | 20 3 48 2 2 67 2 22 22 37
weighted 118 20 5 93 39 10 69 30 7 81 10 6 102 14 42 30 52
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Note that the plot is zoomed into the range [1050, 1150]

The comparison takes place on instances that may be very
hard for exact solvers. So, for each crafted and industrial
sets of benchmarks of the 2014 MaxSAT evaluation, we con-
sidered the instances such that the winner of the respective
complete track took more than 500 seconds (or aborted in 30
min.). These exact solvers are Eva [Narodytska and Bacchus,
2014], ISAC+ [Ansétegui et al., 2014] and Open-WBO [Mar-
tins et al., 2014]. In these experiments, the approximation
algorithms were given a time limit of 60 seconds.

Table 3 reports, for each benchmark set, a comparison of
LBX with the three mentioned algorithms. L, D and W (for
Lose, Draw and Win) show, respectively, the number of in-
stances where LBX returned a worse, equal or better solution
than the method it is compared to by the time limit. We in-
clude BC (for Best Complete), that comprises the best upper
bound returned by the winner of the respective complete track
by a time limit of 30 min. The last columns (# WINS) show
the number of instances each method reached the best solu-
tion found by all the algorithms (excluding BC).

The results reveal that LBX is very effective at approximat-
ing MaxSAT. It reaches better solutions for more instances
than any other method in most sets, in many cases by far. The
only exception is the pms-crafted set, where LBX shows a
slightly worse behavior than Dist. Moreover, according to #
WINS, LBX ranks first in three sets and second in the remain-
ing two. Also, regardless of the instances being weighted or
unweighted, LBX outperforms any other method, so it is quite
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Figure 2: Running times from maxsat instances.

stable. Overall, the ratio W/L ranges between 2.3 (for Dist)
to 5.2 (for BC), which indicates that, compared to any other
method, LBX returns better solutions many more times than
worse solutions. Finally, it sums 2.42, 1.76 and 1.7 times
more # WINS than CLD, WPM and Dist respectively.

7 Conclusions

MCS extraction is a fundamental step in the analysis of over-
constrained systems, finding many applications in Al. This
paper develops a novel algorithm (LBX) that exploits the tight
relationship between MCSes and backbones of propositional
formulas. Moreover, the paper develops novel insights on
how to approximate MaxSAT with restricted MCS enumer-
ation. The experimental results demonstrate that the novel
MCS extraction algorithm outperforms what are currently the
best performing approaches. In addition, they confirm that
restricted MCS enumeration represents an effective approach
for MaxSAT approximation, yielding for most (hard) problem
instances, high-quality solutions within a small run time.

One natural research direction is to deploy the novel LBX
algorithm in the growing range of applications of MCSes.
Also, new literal-based algorithms could be devised by build-
ing on different strategies (e.g. dichotomic search). Finally,
the results motivate further research on additional techniques
for MCS-based MaxSAT approximation.
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