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Abstract
One prominent way to deal with conflicting view-
points among agents is to conduct an argumenta-
tive debate: by exchanging arguments, agents can
seek to persuade each other. In this paper we in-
vestigate the problem, for an agent, of optimizing
a sequence of moves to be put forward in a debate,
against an opponent assumed to behave stochasti-
cally, and equipped with an unknown initial belief
state. Despite the prohibitive number of states in-
duced by a naive mapping to Markov models, we
show that exploiting several features of such in-
teraction settings allows for optimal resolution in
practice, in particular: (1) as debates take place in a
public space (or common ground), they can readily
be modelled as Mixed Observability Markov De-
cision Processes, (2) as argumentation problems
are highly structured, one can design optimization
techniques to prune the initial instance. We report
on the experimental evaluation of these techniques.

1 Introduction
Argumentation is by essence a dialectical process, which in-
volves different parties exchanging pieces of information. In
a persuasion dialogue, agents have conflicting goals and try to
convince each other, but more generally, agents can have var-
ious goals when engaged in an argumentative interaction. Di-
alectics have been investigated in formal argumentation, but
mostly as a mean to provide a proof-theoretical counterpart
to argumentation semantics [Modgil and Caminada, 2009],
leaving no room for proper strategies. When autonomous
agents do interact, however, they will typically fail to have
winning strategies or act fully rationally, sometimes hide ar-
guments that they know to be true, etc.

In a recent survey, Thimm [2014] provide an overview of
the state-of-the-art about strategic argumentation in multia-

gent systems. A key problem is designing for an agent strate-
gies of argumentation (i.e., which arguments to put forward
in the course of the dialogue).

As described in Thimm and Garcia’s classification [2010],
a key element to consider is the awareness of agents. Two ex-
tremes of the spectrum are when agents are fully ignorant, i.e.,
they just know their own arguments; or omniscient, i.e., they
know arguments (and strategies) that opponents have at their
disposal. In the former case the agent will typically have to
rely on heuristic approaches (e.g., [Kontarinis et al., 2014]).
While this may prove efficient in practice, it is in general very
difficult to offer any guarantee on the outcome. In the case of
omniscient agents, one can use game-theoretic approaches,
like backward induction. However, the strong required as-
sumptions are problematic.

Of course, one can opt for an arguably more realistic, in-
termediate, modelling. In Rienstra et al.’s work [2013] for
instance, a setting with an uncertain opponent model is pro-
posed. In Hadjinikolis et al.’s work [2013], the opponent
modelling is updated through the information exchanged dur-
ing the dialogue. In this paper we also take such an interme-
diate approach. We follow Hunter’s recent proposition [2014]
and suppose that the behaviour of agents is stochastic. Specif-
ically, we assume that, given a certain state of the debate,
it is known, probabilistically, how the opponent may react.
These probabilities may have been obtained by expert knowl-
edge, or by observation of previous interactions with the same
agent (or at least, type of agent), e.g., a vendor may be able to
predict from past interactions the possible counter-arguments
that could be put forward by a skeptical consumer.

In particular, our approach does not assume that the op-
ponent will play optimally, and does not in general suppose
knowledge of the initial state of the opponent. This stands in
sharp constrast with approaches optimizing against a suppos-
edly optimal agent, which can rely on backward induction or
similar techniques. We will see that it is possible to obtain op-
timal policies in such a setting, despite this uncertainty which
induces a huge potential state space. Our objective is to ex-
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plore to what extent optimal resolution is feasible.
The remainder of this paper is organized as follows. Sec-

tions 2 and 3 provide the necessary background on argumen-
tation problems with probabilistic strategies (APS). Section
4 presents different ways to account for APS with Markov
models, concluding on a mapping from APS to mixed ob-
servability MDPs. Section 5 investigates different optimiza-
tion techniques, which as observed in Section 6, may have
dramatic effects on the practical efficiency of resolution.

2 Dialogical argumentation problem
A dialogical argumentation problem is a turn-based game be-
tween two agents. Dialogue games have been largely studied
to characterize argumentation systems [Prakken, 2006]. A
dialogical argumentation problem is defined by a set A of ar-
guments and a set of attacks E = {e(x, y) s.t. (x, y) ∈ A2}
where e(x, y) means x attacks y. During her turn, an agent
can fire a rule to add arguments to the debate, to attack present
arguments or to revise her knowledge.

We use a state-based model to represent the execution state
of the model [Black and Hunter, 2012] and a logic-based for-
mulation of states. For convenience, for a predicate p and
a set X ⊆ A, p(X) denotes the conjunction of this predi-
cate applied on each element of the set if the result is unam-
biguous, e.g., p(X) =

∧
x∈X p(x), and p{X} represents the

set {p(x)|x ∈ X}. Thus, 2p{X} is the set of all subsets of
{p(x)|x ∈ X}.

A public state in space P = 2a{A} × 2E gathers used ar-
guments and attacks, where a(x) means argument x has been
put forward by some agent. The public state can be observed
by both agents. Each agent i also maintains an internal private
state in space Si = 2hi{A} representing the arguments she
knows, where hi(x) means argument x is (privately) known
by agent i. This internal state is only observable by the agent
herself and may evolve through the debate if the agent revises
her knowledge.

We define an accepted argument following Dung’s dialec-
tical semantics in its grounded form [Dung, 1995], i.e., an
accepted argument is either not attacked or defended. Note
that other semantics can be applied to define the acceptance
of an argument [Dung, 1995].

The possible moves an agent i can make are defined by
a set of rules rj’s of the form rj : premj ⇒ actj . Premise
premj is a conjunction of a, hi and e predicates (or their nega-
tions) applied on one or more arguments. A rule can only be
fired by an agent i if its premise is fulfilled. Act actj is a set
of modifications on predicates of the public space and private
state of agent i. The possible modifications are denoted:
�(p)/�(p) to add/remove p to/from the public space, where

p is either a(x) or e(x, y) for (x, y) ∈ A2}.
⊕(hi(x))/	 (hi(x)) to add/remove predicate hi(x) to/from

the private state, for x ∈ A and agent i.
Note that the agents are focused, i.e., they cannot decide

not to play if at least one rule can be fired. The rules can be
seen as a protocol for the agent, defining her possible behav-
ior in each state of the problem.

3 Probabilistic modelling of a dialogue
In order to improve the modelling of the opponent behavior
in dialogical argumentation, Hunter [2014] has recently pro-
posed to introduce probabilities while representing argumen-
tation moves in a framework which we called Argumentation
Problems with Probabilistic Strategies (APS).

For a set X , Pr(X) denotes the set of probability distribu-
tions over X and Π = [π1/x1, π2/x2, . . . , πn/xn] denotes
an element of Pr(X), where the probability for Π of getting
xj ∈ X is πj . A probabilistic rule r in an APS is then de-
fined as: r : prem ⇒ Pr(Acts) where Acts denotes the set of
all possible acts. Distinct acts, i.e., set of modifications, are
then possible when applying a probabilistic rule. We denote
rij the j-th rule of agent i and rij,k is the k-th act of rule rij ,
i.e., rij,k =actk if rij = [π1/act1, π2/act2, . . . , πn/actn]. For
a given rule r, we denote prem(r) (resp. acts(r)) the premise
(resp. the set of acts of positive probability) of r.

This representation allows for specifying probabilistic ar-
gumentation protocols. While this framework is descriptive,
it does not tackle the issue of optimizing the sequence of
moves of the agents. In this paper, we propose to optimize
the argumentation strategy of one agent facing a probabilistic
opponent playing by the probabilistic rules of the APS.

To characterize the possible desired argumentation out-
comes, each agent i has a goal state gi which is a conjunc-
tion of g(x) or g(¬x) where each x is an argument and g(x)
(resp. g(¬x)) means that x is (resp. is not) accepted in the
public state. Although the agents are considered as selfish,
individual goals might not be antagonistic. Indeed, in some
cases, the public state may satisfy both goals. In those situa-
tions, both agents are then considered as winners. In order to
model realistic argumentation games, the goal of an agent is
assumed to be private information and cannot be observed by
the other agent. An agent that optimizes her moves does so
with this limited knowledge about the opponent.

An APS is characterized by the tuple 〈A, E , S1, S2, g1, g2,
P ,R1,R2〉 with:
• A, E and P , as previously defined,
• Si the internal states of agent i,
• gi the goal of agent i,
• Ri = {r : prem ⇒ Pr(Acts)} ∪ {∅ ⇒ ∅}, the set of

probabilistic rules.
The empty rule ∅ ⇒ ∅ permits to skip the turn of an agent
having no rule that can be fired this turn. This rule is fired if
and only if no other rule can be. Note there are |Si| = 2|A|

possible private states, and 3|A| possible goal states.

Example 1. Consider a concrete dialogical argumentation
problem. A famous debate in the gamer community is whether
e-sport is a sport. The arguments are as follows: (a) e-sport
is a sport, (b) e-sport requires focusing and generates tired-
ness, (c) not all sports are physical, (d) sports not referenced
by IOC exist, (e) chess is a sport, (f) e-sport is not a physi-
cal activity, (g) e-sport is not referenced by IOC, (h) working
requires focusing and generates tiredness but is not a sport.

Assume that agent 1 wants to persuade that e-sport is a
sport. This example can be formalized by an APS as follows:
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• A = {a, b, c, d, e, f, g, h}
• E = { e(f, a), e(g, a), e(b, f), e(c, f), e(h, b), e(g, c),

e(d, g), e(e, g)}
• g1 = g(a)

Assume the following rules formalize the agents’ behaviors:

• R1 = {h1(a)⇒ �a(a),

h1(b) ∧ a(f) ∧ h1(c) ∧ e(b, f) ∧ e(c, f)⇒
0.5/� a(b) ∧�e(b, f) ∨ 0.5/� a(c) ∧�e(c, f),

h1(d) ∧ a(g) ∧ h1(e) ∧ e(d, g) ∧ e(e, g)⇒
0.8/� a(e) ∧�e(e, g) ∨ 0.2/� a(d) ∧�e(d, g)}

• R2 = {h2(h) ∧ a(b) ∧ e(h, b)⇒ �a(h) ∧�e(h, b),

h2(g) ∧ a(c) ∧ e(g, c)⇒ �a(g) ∧�e(g, c),

a(a) ∧ h2(f) ∧ h2(g) ∧ e(f, a)⇒
0.8/� a(f) ∧�e(f, a) ∨ 0.2/� a(g) ∧�e(g, a)}

g2 is unknown to agent 1. There are 3|A| = 6561 possible
goal states. The sizes of the state spaces are: |S1| = |S2| =
256, |P| = 65536.
The initial state (s1, p, s2) ∈ S1 × P × S2 of this problem is
assumed to be: ({h1(a, b, c, d, e)}, {}, {h2(f, g,h)}).

From Example 1, we can build the graph of arguments and
attacks of Figure 1. Each argument is represented by a vertex
and each edge formalizes an attack. Bold face arguments are
used by agent 1 while the others are used by the opponent.

All the possible sequences of states can be represented as
a Probabilistic Finite State Machine (PFSM) [Hunter, 2014].
For instance, starting from the initial state given in Exam-
ple 1, the sequence of rules (r11,1, r23,2, r13,1), alternatively
for agent 1 and agent 2, leads the environment to the state
{a(a), a(g), e(g, a), a(e), e(e, g)}. This is a winning state for
agent 1 as a(a) is true, is attacked but also defended. a(a) is
therefore accepted.

In order to compute an optimal policy for agent 1, one can
use dynamic programming methods on the PFSM in order to
backtrack the policy from the winning state, but this requires
to know the internal state of the opponent. Indeed, in order to
know which rules the opponent is able to fire we need to either
know the internal state or build a PFSM for each possible
internal state. In order to leverage this assumption we propose
to use Markov models to represent and solve the problem.

4 From APS to MOMDPs
An APS allows for describing the argumentation protocols
and the probabilistic behavior of an opponent. In this sec-
tion, we show that the problem of optimizing the sequence of

a

g f

c bde

h

Figure 1: Graph of arguments of Example 1

moves for one agent (against an opponent assumed to behave
stochastically, and equipped with an unknown initial belief
state) can be formalized as a Mixed Observable Markov De-
cision Process (MOMDP) defined from the APS.

4.1 Markov Models
Markov Decision Processes (MDP) provide a general math-
ematical framework to model sequential decision making
problems under uncertainty [Bellman, 1957]. An MDP is
characterized by the tuple 〈S,A, T,R〉 with:

• S and A, the sets of states and actions,

• T : S × A → Pr(S) the transition function specifying
the probability of transitioning to a state s′ while execut-
ing an action a from s,

• R : S × A → R the reward function formalizing the
preferences on the states and actions.

When the states are no longer observable but the decision-
maker has partial information about the state of the system,
one can rely on the Partially Observable Markov Decision
Process (POMDP) model [Puterman, 1994]. In this model,
after each action, instead of receiving the new state of the
problem, the agent receives an observation about this state. A
POMDP is characterized by the tuple 〈S,A, T,R,O,Ω〉 with
O and Ω being respectively the set of observations and the
observation function S ×A→ Pr(O).

The strategy of a POMDP can be represented compactly
as a policy graph, which is a deterministic finite automaton
to follow depending on the observation received after each
decision step. An optimal policy maximizes the expected dis-
counted sum of rewards.

Although POMDPs describe a powerful mathematical
framework, they suffer from a high computational complex-
ity [Papadimitriou and Tsitsiklis, 1987]. In various settings,
some components of the state are fully observable while the
rest of the state is partially observable. Mixed Observabil-
ity Markov Decision Processes (MOMDP) [Ong et al., 2010]
have been proposed to account for such problems. MOMDPs
exploit the mixed-observability property thus leading to a
higher computational efficiency.

An MOMDP, characterized by the tuple 〈Sv, Sh, A,
Ov, Oh, T,Ω, R〉 is a structured POMDP 〈S,A, T,R,O,Ω〉
where S = Sv × Sh and O = Ov ×Oh.

4.2 Conversion of an APS to an MOMDP
In this paper, we argue that the decision problem of an agent
in an APS can be formalized as an MOMDP. We adopt the
point of view of agent 1 in the argumentation problem. At
each decision step, the agent must decide for the best argu-
mentation move while anticipating the opponent moves and
the possible future states of the debate. The next state of
the debate is uncertain since the opponent’s behavior is non-
deterministic. Moreover, the agent observes her own private
state and the public state but does not observe the opponent’s
private state. This setting complies with the definition of
states and observations in MOMDPs.

In order to optimize the argumentation strategy of agent
1, we transform the APS into an MOMDP. As the purpose
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of this work is to optimize agent 1’s decisions, it is obvious
that she has to choose which alternative of a rule to apply
instead of being guided by a probability distribution. The
possible (deterministic) actions of agent 1 are then defined by
splitting each alternative of the rules of agent 1 defined in the
original APS, into separate deterministic rules (or actions).
The resulting MOMDP is defined as follows:

• Sv = S1 × P , Sh = S2,

• A = {prem(r) ⇒ m|r ∈ R1 and m ∈ acts(r)}. This
set is obtained by decomposing each act m of positive
probability of each probabilistic rule r inR1.

• Ω(〈sv, sh〉, a, 〈s′v〉) = 1 if sv = s′v , otherwise 0,

• T,Ov, Oh and R are defined as below.

To specify the transition function on states, we first need to
introduce the notion of application set.

Definition 1. Let Cs(Ri) be the set of rules of Ri that can
be fired in state s. The application set Fr(m, s) is the set of
predicates resulting from the application of act m of a rule r
on s. If r cannot be fired in s, Fr(m, s) = s.

In the following, we add a subscript to the hidden part of
the state to distinguish between hidden information of agent
1 and hidden information of agent 2.

Example 2. (Example 1 continued) Let s = {a(b), h2(h),
h2(g)}, therefore, Cs(R2) = {r21} with r21 being the first
rule of R2. Let m1 and m2 be respectively the modifica-
tions of r21 and r22 (with r21 and r22 ∈ R2). Fr21

(m1, s) =

{a(b), a(h), e(h, b), h2(h), h2(g)} as r21 ∈ Cs(R2) and
Fr22

(m2, s) = s as r22 /∈ Cs(R2).

Let r : p ⇒ m be a rule/action in A, s′ = Fr(m, s)
the state resulting from the application of m on state s,
r′ ∈ Cs′(R2) a rule in the set of rules of agent 2 that can
be fired in s′ such that r′ : p′ ⇒ [π1/m1, . . . , πn/mn] and
Fr′(mi, s

′) = s′′i . The function T can then be defined as
T (s, r, s′′i ) = πi.

Note that the rule fired by agent 2 at each step is merged
into the transition function. In fact, we focus on the first
agent’s strategy and the probabilistic behavior of the second
agent is formalized by the transition probabilities.

In the MOMDP formalization of an APS, Ov and Oh can
be omitted. Indeed, there is no observation on the hidden
part that is not already in the visible part of the state. Hence
Ov = Sv and Oh = ∅.

The reward function is defined as follows: each action that
does not reach a goal state needs to have a strictly negative
value (i.e., a positive cost). If the goal is reached, the reward
needs to be positive. That way, the policy favors shorter ar-
gument sequences reaching the goal. The notion of goal can
be extended to account for partially reached goals. For in-
stance, if the goal of the agent is to have g(a) and g(b) but,
only g(a) is reached, a part of the reward could be obtained.
More generally, if using another semantic for the acceptance
of the arguments, the reward can be modulated depending on
the value of the accepted arguments in the goal.

After conversion, Example 1 yields an MOMDP whose
sets have the following sizes: |Sv| = 256 ∗ 65536 =

16 777 216 = |Ov|, |Sh| = 256, |A| = 5. In the correspond-
ing POMDP, the size of the set of states is |S| = |Sv|×|Sh| =
4 294 967 296. This fully justifies the use of MOMDPs over
POMDPs when the problem fits the MOMDP framework as it
drastically increases solving performances [Ong et al., 2010].

5 Optimizing the APS
In order to improve the scalability of argumentation prob-
lems that can be formalized and solved, we propose sev-
eral optimization schemes reducing the size of the generated
MOMDP. A subtlety occurs because these optimizations may
depend upon each other, and it may be useful to apply them
several times.

We say that we reach a minimal model when no further re-
duction of the model is possible by application of these tech-
niques. Now this raises an obvious question: as optimiza-
tions may influence each other, we may well reach different
minimal models, depending on the sequence of application
chosen.

In this section we provide several guarantees in this re-
spect: (i) we show uniqueness of the minimal model under
the iterated application of three schemes, (ii) we show that
for the last scheme, uniqueness of the model requires some
mild conditions to hold. As a corollary, the optimal policy
is preserved throughout these optimizations. In any case, the
returned solutions are robust (i.e., they can only improve if
the context turns out to be more favorable).

[Irr.] Pruning irrelevant arguments. The first optimiza-
tion consists in removing the arguments of each agent that
are neither modified and never used as premises (“Irrelevant
arguments”). This optimization is applied separately on the
public and private states. An argument can thus be irrelevant
in the description of the private state but can be relevant in the
public state. We refer to an internal (resp. public) argument
to denote the argument in the private (resp. public) state.

Example 3. In Example 1, we can, for instance, remove the
internal argument f from the private state of agent 1. Ap-
plying this optimization on the example removes 3 arguments
from the private state of agent 1.

Note that, if part of the goal turns out to be an irrelevant ar-
gument, this optimization could modify the goal. But this is a
degenerate case: when the irrelevant argument is not compat-
ible with the goal state, the outcome of the debate is known
a priori (the agent loses the debate anyway), thus we do not
consider these cases. Otherwise, the argument is removed
from the goal state.

[Enth.] Inferring attacks. The second optimization con-
siders the set of attacks. Let y be a public argument (a(y)), if
e(x, y) exists and �e(x, y) ⇒ �a(x) (i.e., each time e(x, y)
is added, a(x) also is), as the set of attacks is fully observable,
we can infer attacks from the sequence of arguments put for-
ward in the public space and thus remove the attacks from the
rules and the states. In fact e(x, y) is no longer used and the
semantic of �a(x) becomes “add argument a and attack y if
it is present”.
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Example 4. In Example 1, this optimization removes the 8
attacks from the problem definition.

[Irr(s0).] Pruning arguments wrt. initial state. For this
optimization, we exploit the knowledge about the initial state
s0. As a result, this optimization requires to regenerate the
MOMDP if the initial state changes. This optimization con-
sists of two steps: 1) for each predicate p ∈ s0 that is not
later modified, update the set of rules by removing all the
rules that are not compatible with p and then remove p from
the premises of the remaining rules 2) remove all rules of the
opponent that can never be fired after an action of agent 1:

1. ∀i,∀p ∈ s0 s.t. ∃r ∈ Ri s.t. p ∈ prem(r) and @r′ ∈ Ri

s.t. p ∈ acts(r′):

(a) Ri ← {r ∈ Ri|¬p 6∈ prem(r)}
(b) ∀r ∈ Ri, prem(r)← prem(r)\p

2. Let S′ be the set of states resulting from the execution
of an action of agent 1, i.e., states s′ = Fr(m, s), ∀s ∈
S1 ×P ×S2, ∀r ∈ Cs(R1), ∀m ∈ acts(r). ∀r′ ∈ R2 if
r′ /∈ Cs′(R2) ∀s′ ∈ S′ then,R2 ← R2 \ {r′}

Note that this optimization is an extension of the optimization
on irrelevant arguments. Indeed, after being replaced by their
initial value in premises, the arguments become unused and
are thus removed.

Example 5. In Example 1, this removes the 5 internal argu-
ments of agent 1.

Note that, this optimization cannot be done for the oppo-
nent since her initial internal state is unknown.

Proposition 1. Applying Irr, Enth, and Irr(s0) does not af-
fect the optimal policy and (a) the optimized model is unique,
minimal for those three optimization schemes and indepen-
dent of the order in which they are applied (as long as they
are applied until reaching a stable model).

Proof. (Irr.) If an internal or public argument is never used
in premises, no rule depends on this argument and no argu-
ment can attack it. Moreover, an argument is never modified
if and only if it never appears in an act of a rule. Such an argu-
ment thus keeps its initial value. We deduce that an Irrelevant
argument does not influence action choices and it cannot be
added or removed to the state of the debate. This argument is
then not relevant to the decision problem and it can be safely
removed from the description of the APS (and thus also in the
MOMDP).

(Enth.) Under this assumption, representing the attacks
does not give more information about the current state and
can then be removed.

(Irr(s0).) For the first part of the optimization, the proof
is the same as the one of Irr. after replacing the predicate by
their value. For the second part of the optimization, a rule is
removed if and only if it can never be fired. It will thus never
correspond to a possible argumentation action and removing
the rule does not modify computed strategies.

(a) Enth. is the only optimization on attacks, it thus does
not conflict with others and can be placed anywhere in the se-
quence of optimizations. The optimal sequence for the other

two is (Irr(s0), Irr)+. Indeed, the other way around, Irr(s0)
may remove rules making some arguments suitable for Irr
and involve making another cycle. The order-independency
application of the optimization schemes implies the unicity
and minimalism of the model.

[Dom.] Pruning dominated arguments. Optimizations
can be pushed further by using the graph of attacks. Note
that unattacked arguments are leaves of the graph. We start
by defining the notion of dominance.

Definition 2. If an argument is attacked by any unattacked
argument, it is dominated.

Since dominated arguments cannot belong to an optimal
strategy, the optimization scheme consists in pruning domi-
nated arguments.

Example 6. In our example, we can see that argument b is
dominated by argument h.

This optimization scheme assumes that agent 2 will neces-
sarily fire a rule consisting in adding an argument defeating
the dominated argument. Note that this is irrespective of the
opponent being an optimal player or not. However, this would
not hold if (i) the opponent does not know all her rules, (ii)
the debate length is limited (in which case it may make sense
to put forward an argument because the attacking argument
may lie outside of the debate) and (iii) the opponent cannot
play all her arguments.

Proposition 2. If (a) the opponent knows all her rules, (b)
can play all her arguments and (c) the debate length is infinite
then, applying Dom. does not affect the optimal policy.

Proof. If the argument is truly dominated, the action adding a
dominated argument can be in the optimal policy if and only
if no attacking argument can be played. Otherwise, it adds
an extraneous step and thus minimizes the reward as we want
the shortest sequence. If the argument is falsely dominated
(i.e. this argument is finally not attacked and thus may be
in the optimal policy), it means the opponent cannot put the
attacking arguments forward and thus that assumptions (a),
(b) and/or (c) do not hold.

Nonetheless, applying Irr or Irr(s0) may modify the graph
of attacks: some unattacked arguments of the opponent can
be removed and dominated arguments may appear to be non-
dominated. In Example 1, if the opponent cannot play argu-
ment h, b is no longer dominated and it must not be pruned.

Proposition 3. If all dominated arguments always remain
dominated after applying Irr or Irr(s0), the optimized model
is unique, minimal and independent of the order in which the
optimization schemes are applied (as long as they are applied
until reaching a stable model).

Proof. In such a case, it means Dom. can be anywhere in the
sequence of application. As it does not interfere with either
Irr. or Irr(s0), Proposition 1 still holds.

Otherwise, Irr and Irr(s0) must be applied before Dom in
order to keep only dominated arguments.
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Figure 2: Policy graph for Example 1

6 Experiments
Even if the transformation of an argumentation problem to
an MOMDP exploits observable information to reduce the
high dimensionality of the problem, it can still lead to a huge
state space. It may thus be impossible to use exact solving
methods. We ran experiments to test the scalability of the ap-
proach proposed in previous sections. We developed a library
(github.com/EHadoux/aptimizer) to automatically transform
an APS into a MOMDP and we applied the previously de-
scribed optimizations on the problem. Since the exact algo-
rithm MO-IP [Araya-López et al., 2010] was unable to com-
pute a solution in a reasonable amount of time (a few ten of
hours), we used MO-SARSOP [Ong et al., 2010], with the
implementation of the APPL library [NUS, 2014].

On the problem of Ex.1, after solving the generated
MOMDP, the policy graph of agent 1 is shown in Figure 2.
The observations of agent 1 are :
o1 = {a(a)}, o2 = {a(a), a(f)}, o3 = {a(a), a(c), a(f)}
o4 = {a(a), a(c), a(f), a(g)}
o5 = {a(a), a(c), a(e), a(f), a(g)}, o6 = {a(a), a(g)}
o7 = {a(a), a(e), a(f), a(g)}, o8 = {a(a), a(e), a(g)}

To follow this policy, start on the first node, apply the rule
and move in the graph depending on the observation received.
From the point of view of agent 1, accepting states (double
circled) are final states of the debate. The agent has no more
actions to execute unless the other agent adds or removes a
predicate that changes the state. Note that the second node
of the top row is an accepting state from which the agent
can transition. Indeed, receiving observation o3 can have two
meanings: either the opponent has not played a(g) yet or she
will never be able to. From that, the decision-maker can con-
sider waiting for the opponent to play or not. Of course, this
policy takes into account the ability for the opponent to apply
a rule she has already applied before. Below we consider an-
other example where some predicates can be removed from
the state, unlike in Ex.1.
Example 7. This example contains three arguments a, b, c
and a special argument s meaning agent 1 surrenders and
thus loses the debate immediately. Rules are:
• R1 = {h1(a) ∧ a(b)⇒ [1.0/� a(a) ∧�e(a, b) ∧�e(b, a)]

a(c)⇒ [1.0/� a(s)]}
• R2 = {h2(b) ∧ h2(c)⇒ [0.9/� e(b, a) ∧�e(a, b),

0.1/� a(c) ∧�e(c, a)]}

None Irr. Enth. Dom. Irr(s0). All
Ex 1 — — — — — 0.56
Ex 7 3.3 0.3 0.3 0.4 0 0
Dv. — — — — — 32
6 1313 22 43 7 2.4 0.9
7 — 180 392 16 20 6.7
8 — — — — 319 45
9 — — — — — —

Table 1: Computation time (in seconds)

The initial state is ({h1(a)}, {}, {h2(b), h2(c)}), g1 = g(a).

Figure 3 shows the optimal policy graph for Example 7.
The observations of agent 1 are as follows:
o1 = {a(a), e(b, a)}, o2 = {a(a), e(a, b), a(c), e(c, a)}
o3 = {a(a), e(a, b), a(c), e(c, a), a(s)}, o4 = {a(a), e(a, b)}

Finally, we investigated the influence of each optimization
on the computation time. Table 1 reports computation times
required to solve the problems while applying different sets of
optimizations before solving the problem with MO-SARSOP.
We considered Ex.1, Ex.7 and a slightly modified version (in
order to fit it in our framework ) of Dvorak (Dv.) problem
taken from [DBAI group, 2013]. A dash in the table means
that the computation of the optimal policy took more than 30
min. and 0 means that the time is less than 0.01 secs.

We can see that for Ex.1 only the fully optimized prob-
lem can be solved in a reasonable amount of time. In order
to study how the method scales, we also generated instances
built on bipartite argumentative graphs (but not trees) with an
increasing number of arguments evenly split among the two
agents. In Table 1, Line n (where n = 6, . . . , 9) shows the
time needed to solve problems with n arguments.

7 Conclusion and discussion
In this paper we explored the following research question:
can we find –and to what extent– the optimal policy of an
agent facing an opponent playing stochastically in an argu-
mentative dialogue. We first showed that one can take advan-
tage of the fact that arguments are exchanged through a public
space, making MOMDP a suitable model. Next we exploited
the fact that the domain of argumentation is highly structured:
different schemes can be designed to minimize the obtained
model, while preserving the optimality of the policy. Our
experimental findings are balanced: on one hand we show
the effectiveness of these optimization schemes, which make
several examples solvable in practice. On the other hand op-
timal resolution remains extremely costly with these models,

r11,1start r11,1

r12,1 ∅∅

o1

o2o2

o1

o3
o3

o4

o4

Figure 3: Policy graph for Example 7
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and it seems at the moment very unlikely to handle instances
involving more than a dozen of arguments. We believe this
provides valuable insights as to what can be done in prac-
tice when designing argumentative agents. Future work in-
volves conducting comprehensive experiments, possibly with
new optimizations. One possible room for improvement is to
use knowledge of the goal. Indeed by representing the goals
of the opponent in a belief function, we can update it using the
observation at each step, and eventually learn the adversary’s
goal, in order to avoid them.
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