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Abstract

Voting is commonly used as a method for aggregat-
ing information in crowdsourcing and human com-
putation. In many settings, one would like to use
voting rules which can be efficiently elicited, pre-
serve voter privacy, and are robust to strategic ma-
nipulation. In this paper, we give algorithms which
elicit approximate winners in a way which prov-
ably satisfies all three of these requirements simul-
taneously. Our results hold for tournament voting
rules, which we define to be the voting rules which
can be expressed solely as a function of the table
of pairwise comparisons containing the number of
voters preferring one candidate to another'. Tour-
nament voting rules include many common vot-
ing rules such as the Borda, Copeland, Maximin,
Nanson, Baldwin, Kemeny-Young, Ranked Pairs,
Cup, and Schulze voting rules. Our results signif-
icantly expand the set of voting rules for which
efficient elicitation was known to be possible and
improve the known approximation factors for e-
strategyproof voting in the regime where the num-
ber of candidates is large.

1 Introduction

Crowdsourcing and human computation systems often con-
tain components which aggregate collected information to ar-
rive at rankings over a set of alternatives. One method of ag-
gregation is to use social choice functions, commonly known
as voting rules [Brams and Fishburn, 2002; Brandt et al.,
2012]. In this setting, alternatives are viewed as candidates
in an election and participants are viewed as voters, each of
which submits a ranking over the alternatives according to
their beliefs or preferences. A voting rule is then a (possibly
stochastic) function which maps the set of rankings to an out-
put winner.

One scenario in which voting rules have been applied to
crowdsourcing is when a ground truth exists [Mao er al.,
2013], for which voting rules can be interpreted as maximum

!"Tournament voting rules can also be described as C1 or C2 func-
tions according to Fishburn’s classification [Fishburn, 1977].
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likelihood estimators for various noise models over user be-
liefs [Conitzer and Sandholm, 2013]. Another natural sce-
nario for the application of voting rules, due to its demo-
cratic nature, is that of crowdsourcing for political decision-
making [Lee et al., 2014]. For both of these scenarios, three
important problems exist:

e Preference Elicitation: Can the correct output ranking be
found without requiring all voters to submit their com-
plete preferences, e.g. by only eliciting a small sample
of voters or a small number of pairwise comparisons?

e Strategic Manipulation: Can the correct output ranking
be found when voters are strategic agents who may sub-
mit false rankings in order to improve their own utility?

e Participant Privacy: Can votes be elicited in a manner
which preserves participant privacy?

These are particularly important when crowdsourcing is
applied to political decision-making. Inefficient elicitation
can render the crowdsourcing effort infeasible since the num-
ber of alternatives produced by the crowd may be too large for
voters to even pick their top choices, not to mention ranking
them. Poor manipulation properties can result in voters who
strategically optimize for their own preferences at the cost of
the general electorate. Loss of privacy can result in sensitive
voter information being leaked to the public.

We specifically highlight the importance of privacy in vot-
ing since it is the least studied of the three in existing lit-
erature. It is self-evident that privacy is important when a
vote correlates clearly with sensitive information such as sex-
ual orientation. However, in an information-rich world, it has
become increasingly possible to obtain accurate predictions
of a sensitive information from seemingly benign informa-
tion [Narayanan and Shmatikov, 2008]. As a result, this age
is also one in which privacy properties are increasingly im-
portant to participants of social systems.

Both preference elicitation and strategic manipulation are
well-studied problems in the social choice literature and have
been found to be subject to impossibility results. For many
common voting rules, finding out how to elicit optimally is
NP-complete [Conitzer and Sandholm, 2002]. Moreover, for
many common voting rules, it is impossible to reduce the
number of bits necessary to find the output winner or ap-
proximate winner by more than a constant factor [Conitzer
and Sandholm, 2005; Service and Adams, 2012]. For strate-



gic agents, it is known that any strategyproof voting rule is a
dictatorship [Gibbard, 1973; Satterthwaite, 1975].

Many approaches have been taken to circumvent these
impossibility results. Two of these are particularly relevant
to our work. Lee et al. gave definitions for e-Borda and e-
Condorcet winners, and showed that they could be elicited
with O(%) and O(%) pairwise comparisons®, a significant
improvement over the Q(mn) pairwise comparisons previ-
ously thought to be necessary. They also proposed a broader
definition for approximate voting: an alternative is an e-
approximate winner if it could have been the winner given
a change in at most an e fraction of the pairwise comparisons
involving any alternative [Lee er al., 2014]. This definition,
formally given in the Model section, is applicable to all voting
rules which can be defined solely in terms of the preference
tournament, which informally consists of the number of vot-
ers preferring any given candidate to another. Lee et al. show
that any alternative which is an e-Borda or e-Condorcet win-
ner under their initial definition is also one under this broader
definition; however, they do not describe how to elicit approx-
imate winners for other voting rules.

Birrell and Pass defined a voting rule to be e-strategyproof
if a non-truthful voter can only improve his utility by e, re-
gardless of the rankings provided by other voters [Birrell and
Pass, 2011]. They showed that approximate winners® could
be found in an e-strategyproof manner; however, when the
number of candidates is large (m > \/en, where m and n are
the number of candidates and voters respectively), their ap-
proximation obtained is poor in that it admits any alternative
as an “approximate winner”.

1.1 Our Contribution

In this paper, we show that it is possible to elicit e-
approximate winners (as defined in Lee et al. 2014) for all
tournament voting rules in a way which is efficient, preserves
voter privacy (as formalized by the notion of differential pri-
vacy, detailed later), and is e-strategyproof.

e We first give a variant of the algorithm in Lee et al. which
finds an e-Borda winner in O(Z3) total comparisons (an

expected O(E%) per voter). Our variant uses the same
number of comparisons, but is also e-strategyproof and
e-differentially private.

e We then show that sampling O( 6%) voter rankings, a

process which takes O(g) total pairwise comparisons,

is sufficient for finding an e-approximate winner for
any tournament voting rule. This includes the Borda,
Copeland, Maximin, Nanson, Baldwin, Kemeny-Young,
Ranked Pairs, Cup, and Schulze voting rules, most of
which were previously thought to require Q(mn) pair-
wise comparisons [Conitzer and Sandholm, 2005]. We
note, however, that the comparisons elicited in this case

>The notation O(-) notation is the same as the O(-) notation, but
hides logarithmic factors.

3In Birrell and Pass, approximate winners are defined differently
than in Lee et al: an alternative is an e-approximate winner if it could
have been the winner given any change in at most € rankings.
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are all concentrated in a few voters who must give their
full rankings.
e Our third algorithm finds an e-approximate winner for

any tournament voting rule using O(mz/ﬁ) total pair-
wise comparisons. Like the first, this algorithm also
spreads the burden equally among all of the voters (an

expected O(@) per voter).

e Finally, we show that our algorithms also are resistant
to collusion in that the approximation factors degrade
gracefully when multiple voters collude together.

Beyond the contributions we make in extending efficient
elicitation to all tournament voting rules, our algorithms are
also the first to obtain e-strategyproofness when the number
of candidates are large. Specifically, our results give non-
trivial approximations so long as m < O(n), as compared
to prior results which gave non-trivial approximations for
m < y/en. Ours are also the first which obtain efficient elic-
itation, e-differential privacy, and e-strategyproofness simul-
taneously (the algorithms given in Lee et al. are not strate-
gyproof, and the algorithms given in Birrell and Pass require
complete preference profiles).

We note that, due to space constraints, detailed proofs can
be found in the Appendix section of the full version®.

2 Related Work

There are many other approaches that have been taken in
the literature on circumventing impossibility results in pref-
erence elicitation. One approach considers elicitation when
the set of rankings are restricted to single-peaked prefer-
ences [Conitzer, 2009; Goel and Lee, 2012]. Another ap-
proach studies elicitation experimentally using heuristics in-
spired from machine learning or assumes that preferences are
drawn from a given distribution [Lu and Boutilier, 2011a;
2011b; Kalech et al., 2011; Oren et al., 2013; Caragiannis et
al., 2013; Chevaleyre et al., 2011]. We specifically point out
[Caragiannis et al., 2013] in which they show that sampling
O(ei2 log ") voter rankings is sufficient for determining the
exact output ranking when voters rankings are assumed to be
drawn from a Mallows model. This is similar to our second al-
gorithm, except that we aim only at finding an e-approximate
winner, but in the more general case when voter rankings are
arbitrary.

There have also been many approaches to circumvent im-
possibility results in strategic manipulation. Gibbard was the
first to consider randomized voting rules [Gibbard, 1977], but
showed that only trivial randomized voting rules were strat-
egyproof. Procaccia studied the approximation factors possi-
ble with these voting rules [Procaccia, 2010], but showed that
the approximations are not good. Other approaches include
restricting the domain of voter preferences, e.g. to single-
peaked preferences [Moulin, 19801, studying voting rules
which are computationally difficult to manipulate [Bartholdi
et al., 1989; Conitzer and Sandholm, 2006], and considering
voters who only have partial probabilistic information on the
preference profile [Lu et al., 2012].

*http://stanford.edu/~dtlee88/papers/ijcai-2015-ef-full.pdf



3 Model

Let C denote the set of alternatives and V' the set of partic-
ipants. Let m and n denote the number of alternatives and
participants respectively. Each participant ¢ has a ranking, i.e.
a linear ordering, over the set of alternatives representing his
or her preference. Using the notation of [Conitzer and Sand-
holm, 2005], we use >; to denote the ranking of participant
1. If participant ¢ prefers alternative x to y, we denote this by
x >; y. The set of all rankings is called a preference profile,
and is denoted by =. A voting rule is a (possibly stochastic)
function which maps a given preference profile to a single
winning alternative®. We will use the term voting algorithm
to refer to the elicitation scheme inducing a voting rule.

A preference tournament 7" is a complete, directed graph
on the set of alternatives. The weight of an edge (x, y) is de-
noted by T, = |{¢ |  >; y}|, which represents the number
of participants who prefer alternative x to y. We use T}, to de-
note the vector of length m — 1 containing the weights from x
to all other candidates. Preference tournaments are also com-
monly depicted using a table as in Example 1. We define a
tournament voting rule to be any voting rule which can be
defined solely on the preference tournament.

3.1 Approximate winners

We use the definition of an approximate winner used in
Lee et al. It informally defines an alternative w to be an e-
approximate winner if it could have resulted from a prefer-
ence tournament 7" which differs from the true preference
tournament 7" in at most € fraction of the comparisons involv-
ing any candidate. Thus, an approximate winner can roughly
be interpreted as an alternative that could have been the win-
ner given a small perturbation in voter input.

Definition 1. For a tournament voting rule f and preference
tournament T', W is an e-f winner if

e 3T such that w = f(T") and,

o [T, —To|1 <en(m —1) forany z.
When the voting rule f is clear from the context, we simply
refer to W as an e-approximate winner.

The following example illustrates this concept.

Example 1. Suppose that 100 participants supply rankings of
3 alternatives, and that these rankings result in the following
preference tournament (the values in the table represents the
number of participants preferring the left alternative to the
top alternative):

A| B | C
Al - | 52|61
Bl148| - |71
c 13929 -

The Borda winner is the alternative which wins the largest
number of pairwise comparisons. A, B, and C win 113, 119,
and 68 comparisons respectively, so that the Borda winner
is B. The Copeland winner is the alternative which wins the
largest number of pairwise elections. A, B, and C win 2, 1,

3For some classical voting rules, such as Copeland, one would
have to specify a tie-breaking rule to ensure a single winner.

and 0 pairwise elections respectively, so A is the Copeland
winner.

Simple calculations show us that A is a 0.02-Borda win-
ner since swapping 4 of the comparisons preferring B to A
would make A the winner, and there are 200 comparisons in-
volving any given alternative. Similarly, C is a 0.13-Borda
winner since swapping 26 of the comparisons preferring B
to C would make C' the winner. We also see that B is a 0.015-
Copeland winner since swapping 3 of the comparisons pre-
ferring A to B would make B the winner. Similarly, C is a
0.17-Copeland winner since swapping 12 of the comparisons
preferring A to C and 22 of the comparisons preferring B to
C would make C' the winner.

We can see that the definitions capture the intuition that
A is a good approximate Borda winner, B is a good approx-
imate Copeland winner, but C' is a bad approximate Borda
and Copeland winner. O

3.2 Approximate strategyproofness

We consider participants who have utilities over the set of al-
ternatives. The utility of voter ¢ is denoted by u;(-) and is as-
sumed to satisfy 0 < w;(x) < 1 for all z. It is consistent with
a ranking >; if u;(x) > w;(y) if  >; y. An e-strategyproof
voting rule is defined according to the definition given by Bir-
rell and Pass, i.e. regardless of how a participant changes his
votes (including if he knows all the votes cast by others), he
cannot increase his expected utility by more than e.

Definition 2. A voting rule f is e-strategyproof if for all vot-
ers i, all preference profiles =, all alternative preference pro-
files =" which differ only in voter i’s ranking, and all utility
functions u; consistent with >;,

Efu;(f(=)] < Elui(f())] +

where the expectation E[-] is over any randomness in the vot-
ing rule f. A voting algorithm is e-strategyproof if the voting
rule it induces is e-strategyproof.

3.3 Differential privacy

Differential privacy is a standard way to formalize the loss of
privacy of an individual after a computation using the indi-
vidual’s personal information is published [Dwork and Roth,
2014]. In the context of voting, loss of privacy occurs when
others are able to determine the private preference rankings
of an individual, which could be sensitive depending on the
issue being voted on.

Informally, a differentially private voting rule is one in
which an intruder is unable to determine an individual’s rank-
ing based on the published output ranking, even if he knows
all the other voter rankings.

Definition 3. A voting rule f is e-differentially private if for

all preference profiles = and =’ that differ on a single voter’s
ranking, and all S C C,

Pr(f(5) € 8] < (1+e)Pr[f(5) € ).

A voting algorithm is e-differentially private if the voting rule
it induces is e-differentially private.
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Though we are not aware of work on differentially pri-
vate voting, it was pointed out by Birrell and Pass that the
approach they take to achieving e-strategyproofness, that of
adding noise to the original function computed, is a common
approach taken to achieving differential privacy.

4 Eliciting an approximate Borda winner

In Lee et al., an algorithm was given which found an e-
Borda winner with probability 1 — ¢ using N = O(%3 log ")
comparisons. In this section, we show that a variant of
their algorithm also obtains an e-Borda winner using N =
O(%Z log ) comparisons, but in a way which guarantees e-
differential privacy and e-strategyproofness when n > %N ,

ie. m < O(e’n). We emphasize that it is able to achieve
these while also spreading out the work evenly among all the
voters.

The algorithm (Alg. 1) works in the following way. With
probability v = min(%é, %) return a random alternative
as the winner. Otherwise, define IV, for x € C to be i.i.d.
Binomial(IV, 2) random variables®. For each x, sample N,
random comparisons in which a random voter compares x
and another random candidate. Let S, denote the number of
these comparisons for which & wins. Then return the alterna-
tive which maximizes .S,; as the winner (ties broken uniformly
at random).

ALGORITHM 1: BORDA+RANDOM
Input: alternatives C, voters V/, parameters N, y
Output: A winning alternative
if U ~ Uniform[0,1) < ~ then
‘ return an alternative uniformly at random;
else
L return an alternative according to BORDA(C, V, N);

ALGORITHM 2: BORDA
Input: alternatives C, voters V, parameter N
Qutput: A winning alternative
for x € C' do
Let N, ~ Binomial(N, 2);
Initialize S, = 0;
fori < 1to IV, do
Sample y € C'\ {z} and v € V uniformly at random;
if x >, y then

return the alternative maximizing S (ties broken uniformly);

Theorem 1. For any ¢, € (0,1), Algorithm 1 with N =
O(%In"2) and v = min(36, L) returns an e-Borda win-
ner with probability at least 1 — §. Moreover, it is also e-

differentially private and e-strategyproof when n > %N J

8Choosing N, i.i.d. was necessary for our proof, but it may be
that a proof exists which can relax this. The binomial parameter %
was chosen so that K[>~ S.] = N.

"For simplicity, we use a single parameter ¢ for approximate
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Proof. We first show that Algorithm 1 returns an e-Borda
winner with probability 1 — §. By Lemma 1, the alternative
returned by BORDA (Algorithm 2) is an e-Borda winner with
probability at least 1 — 3. Since the probability of returning
an alternative randomly is only v < g, our result follows by
a union bound.

Lemmas 2 and 5 show that Algorithm 1 is e-differentially
private and e-strategyproof. Lemma 2 first demonstrates that
BORDA (Algorithm 2), which we denote by B, satisfies

PrB(=) = u] < (1+ PrB(E) =] + e

when n > %N (see Definition 2). Lemma 5 then obtains our
final result from this condition. These Lemmas can be found
in the Appendix of the full version (see note in Section 1.1).

O

4.1 Intuition

The intuition for this result is that, for alternatives which have
a non-trivial probability of winning, their probability of win-
ning is not greatly affected (by more than a (1 + €) factor)
by a single voter’s ranking. This is due to the random nature
of the elicitation scheme. For alternatives which have a very
small probability of winning under the elicitation scheme,
their probability of winning is dominated by the probability of
choosing a random alternative as the winner. This intuition is
broadly applicable, and is the method used in our later proofs.
In this case, it is possible to show that mixing Algorithm
2 with choosing a random alternative is necessary to obtain
e-differential privacy. However, Algorithm 2 alone (without
choosing a random alternative) is sufficient for obtaining e-
strategyproofness. This will not always be true in the general
case. These statements are formalized in Lemmas 6 and 7 in
the Appendix of the full version (see note in Section 1.1).

5 Eliciting approximations by sampling voters

In [Caragiannis et al., 2013], it was shown that O(}2 log %)
sampled voter rankings allows one to find the true ranking
when voters are assumed to be drawn from a Mallows dis-
tribution. In this section, we show that it is possible to find
the e-approximate winner of any tournament voting rule by
sampling N = O(Z log 2) voter rankings (Alg. 3). By us-
ing standard sorting algorithms, such as quicksort, one can
elicit each ranking using O(m logm) pairwise comparisons
for a total of O(%) comparisons. Our results hold for arbi-
trary voter rankings. We also show that this simple proce-
dure is both e-differentially private and e-strategyproof when

n> %N, ie.m < O(e4n).
Theorem 2. For any ¢,0 € (0,1), Algorithm 4 with N =

O(}2 In %) and any tournament voting rule f returns an e-f
winner with probability 1 — 4.

Proof. Let T denote the true preference tournament of the
voters, i.e. T, is the number of voters preferring alternative
x to y. Recall that w is an e-f winner if another preference

winners, differential privacy, and approximate strategyproofness. It
would not be hard to generalize our results to different parameters.



ALGORITHM 3: SAMPLE-VOTERS+RANDOM
Input: alternatives C, voters V, a tournament voting rule f, and
parameters NV, y
Output: A winning alternative
if U ~ Uniform[0,1) < -y then
\ return an alternative uniformly at random;
else

I

ALGORITHM 4: SAMPLE-VOTERS
Input: alternatives C, voters V, a tournament voting rule f, and
parameter N
Output: An output winner
Zyy =0forallz,y € C;
Let S be N voters sampled with replacement from V;
for v € S do
Use quicksort to elicit participant v’s ranking of C;
for z,y € C do
if x >, y then
‘ Zacy - Zzy + 1
else

return an alternative according to
SAMPLE-VOTERS(C, V, f, N);

Normalize Z by letting T, = & - Zay forall z,y € C;
return f(7T");

tournament 7" exists such that @ = f(7”) and ||T, — Ty |1 <
en(m —1) for any x. In Algorithm 4, the winner returned was
defined as the output of f(T"), where T” is constructed from
the sampled voter rankings. We show in Lemma 8 that 7"
does indeed satisfy |77, —Ty||1 < en(m—1) with probability
at least 1 — §, which gives us our result (see Appendix in full
version linked to in Section 1.1).

The following theorem shows that mixing SAMPLE-
VOTERS with some small probability of returning a
random alternative achieves e-differential privacy and e-
strategyproofness. We note that a slight sacrifice is made in
that an e-approximate winner is only achieved in expectation
(as opposed to with high probability).

Theorem 3. For any € € (0,1), Algorithm 3 with N =
O(Ei2 In "), v = ¢ and any tournament voting rule f re-
turns an e-f winner in expectation. Moreover, it is also e-
differentially private and e-strategyproof when n > %”N .

Proof. Let ¢ 5. A winner is returned from SAMPLE-
VOTERS with probability 1 — ¢’. This winner is an €'-
approximate winner with probability at least 1 —¢’ (from The-
orem 2). In any other scenario, the alternative returned must
be a l-approximate winner at worst (since all comparisons
can be changed with ¢ = 1). Then the expected approxima-
tion factor is

1-NA1—€)+€e-1]+€-1<3 =¢

The proof that Algorithm 3 is e-differentially private and e-
strategyproof is similar to that of Theorem 1. We first show
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that SAMPLE-VOTERS (Algorithm 4), which we denote by
B, satisfies

w] < (14 PABE) =] + &

Pr[B(5) =
when n > % N (Lemma 9). Then we can apply Lemma 5 to
obtain e-differential privacy and e-strategyproofness. These
Lemmas can be found in the Appendix of the full version as
noted in Section 1.1. O

It is useful to note that one could still obtain an e-
approximate winner with high probability (> 1 — 9) if one
chooses v = O(J). However, this would require n to satisfy
n > 2N which restricts the applicability of such a result
since 9 is typically very small. We believe that it is possi-
ble to obtain a high probability result without further restrict-
ing n for many common voting rules by following the same
intuition described previously. However, such a proof would
likely need to be more specifically tailored to individual vot-
ing rules.

6 Eliciting approximations by sampled
subsets

Even though Algorithm 3 is efficient, e-strategyproof, and
e-differentially private for all tournament voting rules, it re-
lies on a small number of voters who must contribute a large
amount of information. While this may be useful in some situ-
ations, it is sometimes desirable to not require a large amount
of information from any voter. This is particularly important
when the number of alternatives is so large that it is not fea-
sible for voters to even look through all the alternatives.

In this section, we show that one can efficiently elicit ap-
proximate winners for any tournament voting rule, while also
spreading out the workload evenly among voters. However, it
is still an open problem whether the given algorithm is able
to achieve e-differential privacy and e-strategyproofness.

The algorithm we use asks each participant to provide a full
ranking of k randomly chosen alternatives, a task which can
be achieved in O(k log k) comparisons with standard sorting

m

algorithms. We show that when k = O(- \/ﬁ)’ it is possible to
approximate all tournament voting rules. This can be elicited
in a total of O(™

€

Theorem 4. For any €,6 € (0,1), Algorithm 5 with k =
O(e%\ /log &) and any tournament voting rule [ returns
an e-f winner with probability at least 1 — 6.

n

) pairwise comparisons.

Proof. The proof is similar to that of Theorem 2. All we need
to show is that 7" as constructed in Algorithm 5 satisfies
|72 — Ty|l1 < en(m — 1) with probability at least 1 — 6. We
show this in Lemma 10 (see Appendix in full version linked
to in Section 1.1). O

7 Group strategyproofness

Birrell and Pass also defined approximate group strate-
gyproofness to show that the approximation guarantees de-
graded gracefully if the algorithms were used to protect
against collusion from multiple players. In this section, we



ALGORITHM 5: SAMPLED-SUBSETS
Input: alternatives C, voters V, a tournament voting rule f, and
parameter k
Output: An output winner
Zyy =0foralz,y € C,
forv € V do
Let C, denote k alternatives sampled without replacement;
Use quicksort to elicit participant v’s ranking of C;
for z,y € C, do
if z >, y then
else

Normalize Z by letting T}, = n - ZWZf’ZW

return f(7T");

forall z,y € C;

show that our algorithms also degrade quite nicely as the
number of colluding voters increases.

Definition 4. A voting rule f is (t,€)-strategy-proof if for
any set of t voters D, all preference profiles =, all alterna-
tive preference profiles =" which differ only in the rankings of
voters in D, and all utility functions u;,

D El(f(F))] < Y Elui(f(5)] +e

i€D i€D

Intuitively, (¢, €)-strategyproofness states that no group of
t voters can improve their collective utility by more than € by
deviating, regardless of the ranking other voters give.

The following theorems show that decreasing the number
of pairwise comparisons used by a factor of ¢ allows one to
achieve (t, €)-strategyproofness for Algorithms 1 and 3. The
cost is that the approximation factor (for the winner obtained)
goes up by a factor of v/£. These results are shown with the
same assumptions as in the prior results, i.e. m < O(egn)
and m < O(e*n) respectively. The intuition for this is that
decreasing the number of comparisons adds more noise to
the winner, which leads to stronger strategyproofness.

Theorem 5. For any ¢,6 € (0,1), Algorithm 1 with N =
O(ZIn%) and v = min(36, =) returns an e\/t-Borda
winner with probability at least 1 — 8. Moreover, it is also
. . . t
e-differentially private and e-strategyproof when n > - N.

Proof. The proof is essentially identical to that of Theorem 1.
The key difference is in Lemma 4 in which one wants to show
that fi < (14 €) f;. With ¢ colluding voters, [p} — p;| < 2%,
so that fi, < flexp{O(tN/n)}.

Theorem 6. For any ¢ € (0,1), Algorithm 3 with N =
O(t%2 In ), v = ¢ and any tournament voting rule f re-
turns an e/t-f winner in expectation. Moreover, it is also e-
differentially private and e-strategyproof when n > %N .

Proof. The proof is essentially identical to that of Theorem
3. The key difference is in Lemma 9 in which one wants to
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find the probability that none of the ¢ colluding voters get
sampled. Let D be any set of ¢ voters. Then,
2
> e—ez/m >1— <
m

2tN

¢ N
PT[D¢S]:(1—> Ze_ n
n

The rest of the arguments are identical. O

8 Discussion and Future Work

There are a few important observations to make with respect
to limitations of the presented algorithms. First, our algo-
rithms do not circumvent intractability. That is, for voting
rules such as Kemeny, calculating f(7”) is intractable, which
means that Algorithms 4 and 5 are also intractable.

Second, we note that in the definition of an approximate
winner w, it was only required that w be the output of a pref-
erence tournament 77 which was close to the actual prefer-
ence tournament 7. It was pointed out in Lee et al. that this
does not necessarily imply that a preference profile (set of
rankings) exists which induces 7”. An interesting direction is
to generalize these results to a definition of an approximate
winner which is defined directly on preference profiles using
the Kendall-tau distance (see the discussion in Lee et al.).

Finally, we note that while our results scale well with the
number of candidates, we believe that there is still room for
improvement in the dependence on e. For example, in Theo-
rem 3, e-strategyproofness and e-differential privacy are only
attainable when n > O(Z;), which may only be feasible for
e~ 0.1.
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