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Abstract

Influence maximization plays a key role in social
network viral marketing. Although the problem has
been widely studied, it is still challenging to esti-
mate influence spread in big networks with hun-
dreds of millions of nodes. Existing heuristic al-
gorithms and greedy algorithms incur heavy com-
putation cost in big networks and are incapable of
processing dynamic network structures. In this pa-
per, we propose an incremental algorithm for in-
fluence spread estimation in big networks. The in-
cremental algorithm breaks down big networks into
small subgraphs and continuously estimate influ-
ence spread on these subgraphs as data streams.
The challenge of the incremental algorithm is that
subgraphs derived from a big network are not inde-
pendent and MC simulations on each subgraph (de-
fined as snapshots) may conflict with each other. In
this paper, we assume that different combinations
of MC simulations on subgraphs generate indepen-
dent samples. In so doing, the incremental algo-
rithm on streaming subgraphs can estimate influ-
ence spread with fewer simulations. Experimen-
tal results demonstrate the performance of the pro-
posed algorithm.

1 Introduction
Social networks is of vital importance in information diffu-
sion and viral marketing. Influence maximization in social
networks is defined as finding a subset of nodes that can trig-
ger the largest number of users propagating the given infor-
mation. The problem can be formulated as a discrete opti-
mization problem under the independent cascade model (IC)
and the linear threshold model (LT) [Kempe et al., 2003]. It
has been proved NP-hard, and a greedy algorithm is favored.
However, heavy Monte-Carlo simulations are needed to esti-
mate the influence spreads of different seed sets at each itera-
tion. As social networks increase in size continuously, greedy
algorithms are inapplicable of processing big networks.

Many efforts have been made to explore scalable algo-
rithms in big netowrks. An intuitive idea is to use heuris-
tic algorithms, i.e. DegreeDiscount [Chen et al., 2009],

PMIA [Chen et al., 2010], IRIE [Jung et al., 2011], Group-
PageRank [Liu et al., 2014]. However, these algorithms are
not robust with respect to network structures. On the other
hand, many advanced greedy algorithms, i.e. [Leskovec et
al., 2007], [Goyal et al., 2011], [Zhou et al., ], have been
proposed to speedup seed selection. These methods focus
on pruning unnecessary Monte-Carlo simulations in select-
ing new influential nodes. Unfortunately, these algorithms
are still incapable of processing big networks with hundreds
of millions of nodes because of unavoidable cost of simulat-
ing influence cascades. Moreover, all these greedy methods
are designed on static networks and cannot be generalized to
dynamic networks which commonly occur in reality.

In this paper, we propose an incremental algorithm for esti-
mating the expected influence spread of seed nodes and eval-
uate the performance under influence maximization. Specifi-
cally, the algorithm breaks down a big network into a large
number of small subgraphs, and then processes these sub-
graphs as data streams. The results on subgraphs are joined
to recover the global result in the whole network. The nature
of incremental processing also enables it to handle dynamic
networks where network structures change over time.

The main challenge of the problem is that small subgraphs
derived from a big network are not independent. For example,
as in Figure 1, the two subgraphs on the right hand side share
nodes 4, 5, 7 and even worse, two subgraphs may share com-
mon edges. In this case, MC simulation results on subgraphs
(defined as snapshots) may not be directly addable or even
conflict with each other. In this work, we assume that edges
between different subgraphs are disjoint and each subgraph
is converted as a class of Strongly Connected Components
(SCCs). SCCs on subgraphs are joined to form snapshots or
SCCs of the whole network, and different combinations of
simulations on subgraphs generate independent samples. In
experiments, we demonstrate that the solution outperforms
heuristics and existing MC simulation based methods.

The merits of the proposed incremental algorithm are sum-
marized as follows:

• A big network is broken down into subgraphs and the
“coin flip” technique [Kempe et al., 2003] is applied to
generate snapshots on each subgraph. Subgraphs can be
processed in parallel.

• Snapshots on subgraphs are converted to be a class of
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Strongly Connected Components (SCCs). Snapshots on
different subgraphs are joined to restore the global result
of the original network.

• The number of snapshot joins increases polynomially
with the number of subgraphs, which significantly re-
duces the complexity of MC simulations.

• Snapshots are incrementally maintained and updated
such that replicated simulations can be avoided when
changing seed sets.

2 Related Work
Data intensive applications such as data streams motivate in-
cremental learning algorithms. Incremental learning is ad-
vantageous when dealing with very large or non-stationary
data. Existing incremental learning algorithms can be cat-
egorized into two groups: approximate incremental learning
[Kivinen et al., 2004] and exact incremental learning [Laskov
et al., 2006]. Typical examples include the incremental SVM
[Poggio, 2001] and PCA models [Balsubramani et al., 2013].
However, these models were proposed to handle vectorial
training data with the Identical and Independent Distributions
(IID) assumption. Incrementally learning from subgraph data
without the IID assumption has not been addressed before.

In the domain of network influence maximization, most
existing models cannot handle big networks with hundreds
of millions of nodes due to heavy Monte-Carlo computation.
The typical algorithm Cost-Effective Lazy Forward (CELF)
[Leskovec et al., 2007] greatly reduce the number of influ-
ence spread estimations and is 700 times speed-up against
previous greedy algorithms. Unfortunately, these improved
greedy algorithms are still inefficient due to too many Monte-
Carlo simulations for influence spread estimation. Static-
GreedyDU [Cheng et al., 2013] reuses snapshots generated
from a given graph and reduces the number of simulations by
two orders of magnitude, meanwhile the performance is al-
most the same as the original greedy algorithm. Recent work
[Ohsaka et al., 2014] includes a Pruned BFS method and
community-based methods, i.e. [Wang et al., 2010], [Chen
et al., 2014]. Unlike these work, our method scales well to
big networks by breaking down the big network into small
subgraphs for fast spread estimation.

3 Preliminaries
Let G = (V,E) be an undirected graph with a node set V
of size |V | and an edge set E of size |E|. Without loss of
generality, we use the independent cascade (IC) model as
the propagation model. A node subset S ⊆ V is called a
seed set if we first activate nodes in S. Given a seed set S,
its influence spread σ(S) is defined as the expected number
of nodes eventually activated. Formally, the influence maxi-
mization problem is to find the optimal seed set S∗ such that
S∗ = argmaxS⊆V ;|S|=kσ(S), where |S| stands for the num-
ber of elements in S, and k is a predefined integer.

To solve the influence estimation problem, one needs to
estimate σ(S) for any given S. However, exact computation
of σ(·) is #P-hard [Chen et al., 2010], so in practice Monte-
Carlo simulations are employed to estimate σ(S):

Figure 1: An illustration of the network decomposition.

• Propagation Simulation. The influence spread is ob-
tained by directly simulating the random process propa-
gating from a given seed set S. Let Ai denote the set of
nodes newly activated in the i-th iteration and we have
A0 = S. In the i + 1-th iteration, each node u ∈ Ai
has a single chance to activate its each inactive neighbor
v with probability puv . If v is activated, it is added to
Ai+1. The process stops when AT+1 = ∅ the first time
for some T . And |X̃(S)| = |A0 ∪ A1 ∪ · · ·AT | is the
influence spread of this single simulation. We run such
simulations for many times and obtain the estimated ex-
pected influence spread σ(S) by averaging over all sim-
ulations.

• Snapshot Simulation. Based on “coin flip” [Kempe et
al., 2003], we flip coins in advance to produce a snap-
shot X = (V,E′), which is a sampled subgraph of G,
where an edge uv is either kept with the probability puv
or removed, such that E′ ⊆ E. Thus, in this specific
snapshot X the influence spread for the given seed set
S, denoted as |X(S)|, equals to the number of nodes
reachable from S. We generate a large number of snap-
shots and obtain the estimated expected influence spread
σ(S) by averaging over all the generated snapshots.

The above two simulation methods are equivalent, because
|X̃(S)| and |X(S)| share the same probability distribution
[Kempe et al., 2003]. In this work, we use snapshot simu-
lations because we need to frequently estimate the influence
spread of different seed sets when choosing new seeds to S∗.

4 Problem Formulation
The basic idea of the paper is to break down a big network
into small subgraphs and analyze the reachability of nodes on
each subgraph independently. The results from each subgraph
are joined to restore the results on the original network.

We use Figure 1 to explain the incremental subgraph al-
gorithm. Figure 1(a) is the original network that each edge
is associated with a propagation probability puv, u, v ∈
{1, 2, · · · , 8}. For simplicity, assume the edges in the graph
are split into two disjoint sets and two subgraphs are obtained
as shown in Figures 1(b) and (c). The propagation probability
puv on each edge in the subgraphs is inherited from the origi-
nal network. This way, the original graph is broken down into
two small and tractable subgraphs and incremental learning
can be applied to the subgraphs.

Consider that the original network G = (V,E) is
broken down into N subgraphs G1 = (V1, E1), G2 =
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(V2, E2), · · · , GN = (VN , EN ) with V1∪V2∪· · ·∪VN = V ,
E1 ∪ E2 ∪ · · · ∪ EN = E, and Ei ∩ Ej = ∅, 1 6 i, j 6 N .
In dynamic networks with increasing nodes and edges, we
keep increasing nodes and edges as new streaming subgraphs
denoted by GN+1 = (VN+1, EN+1), · · · . Then, we use the
“coin flip” method on each subgraph Gi for M times and
generate M snapshots. Denote these snapshots on Gi as
X

(i)
1 , X

(i)
2 , · · · , X(i)

M . Then, our problem turns to given a
seed set in a big network, incrementally learning snapshots
generated from N subgraphs to estimate the influence spread
of the seed set in the original big network.

5 The Incremental Algorithm
5.1 Expression of Influence
First, each snapshot Xr of the original network can be rep-
resented by a m-dimensional binary vector r = (ruv)uv∈E ,
where ruv = 1 if edge uv is activated in a coin flipping; oth-
erwise, ruv = 0. We call r a representation vector of Xr.
The closed set of all possible snapshot representation vectors
is denoted by R as follows,

R = {r|r = (ruv)uv∈E ∈ {0, 1}|E|} (1)

Under the IC model assumption, the probability distribution
on R is given by

q(r) =
∏
uv∈E

(puv)
ruv (1− puv)1−ruv , r ∈ R (2)

If the original graph is broken down into N subgraphs,
the snapshot we get by restricting Xr on subgraph Gi is
denoted by X

(i)
r = Xr|Gi with the representation vector

r(i) = (ruv)uv∈Ei . Obviously, the marginal distribution of
r(i) is q(r(i)) =

∏
uv∈Ei(puv)

ruv (1 − puv)
1−ruv , which

similarly describes the distribution of snapshots on subgraph
Gi. These distributions satisfy the following equation q(r) =
q(r(1))q(r(2))·· · ··q(r(N)). Therefore, subgraphs can be pro-
cessed incrementally by using the network decomposition.

We introduce the symbol “⊕” as the join operator in the
equation Xr = X

(1)
r ⊕X(2)

r ⊕· · ·⊕X(N)
r , which means that

Xr can be broken down into N snapshots X(i)
r , 1 6 i 6 N ,

where X(i)
r is the snapshot corresponding to subgraph Gi.

Conversely, if snapshots X(i)
r , 1 6 i 6 N are increasingly

obtained from subgraphs, we can join them to restore the
snapshot Xr of the original network. Hence the equation
Xr = X

(1)
r ⊕ X

(2)
r ⊕ · · · ⊕ X

(N)
r interprets the relation-

ship between Xr and X(i)
r . Let N(S;Xr) denote the set of

nodes reachable from the seed set S in a specific snapshotXr.
The expected influence spread σ(S) of the seed set S can be
described as follows,

σ(S) =
∑
r(1)

q(r(1))
∑
r(2)

q(r(2)) · · ·
∑
r(N)

q(r(N)) · |N(S;Xr)| (3)

We can observe from the above equation that σ(S) is deter-
mined by |N(S;Xr)| = |N(S;X

(1)
r ⊕X(2)

r ⊕ · · · ⊕X(N)
r )|.

Thus, we explain how to use the snapshots generated from
these N subgraphs to estimate the expected influence spread
of a given seed set in the original network.

Algorithm 1: The join of SCC classes.
Input: C1 = {C11, C12, · · · , C1α1

} and
C2 = {C21, C22, · · · , C2α2

}
Output: A class of SCCs after joining of C1 and C2

1 function join(C1, C2)
2 for j = 1, 2, · · · , |C2| = α2 do
3 s = 1, C ← ∅, C ← ∅;
4 for i = 1, 2, · · · , |C1| do
5 if C1i ∩ C2j 6= ∅ then
6 if C2j ⊆ C1i then return C1;
7 else C ← C ∪ C1i;
8 else
9 Cs ← C1i; C ← {C, Cs}; s← s+ 1

10 C ← {C, C}; C1 ← C
11 return C1

For any snapshot X in the network G = (V,E), we have
u→ v if node v is reachable from node u on the snapshot X .
We say the two nodes u and v are equivalent (u ↔ v) if and
only if both u → v and v → u are satisfied. Also, we define
that each node u is equivalent to itself, u↔ u.

Based on the definitions, a set of nodes C = C(u;X) =
{v|v ↔ u onX, v ∈ V } is called a Strongly Connected Com-
ponent (SCC) of X represented by the node u. The set C is
either a node {u} or equivalent nodes. This way, the snapshot
X can be described by a class of SCCs C = {C(u;X), u ∈
E} = {C1, C2, · · · }, where C1, C2, · · · are disjoint sets, and
C1 ∪C2 ∪ · · · = E. Also, SCCs are used for memory-saving
and efficient calculation.

As we aim to find the most influential nodes, single sets in
class C can be removed. Then, C = {C1, C2, · · · , Cα} with
|Ci| ≥ 2,∀i ∈ {1, 2, · · · , α}. And the elements of N(S;Xr)
can be described as follows,

N(S;Xr) =
⋃
u∈S

C(u;Xr) ≈
⋃
u∈S

|C(u;Xr)|>2

C(u;X(1)
r ⊕ · · · ⊕X(N)

r )

Based on the above equation, we join SCCs on subgraphs to
restore the result on the original network.

5.2 Join of the SCC Classes
Consider that we have transformed all the snapshot X(i)

j , 1 6
i 6 N, 1 6 j 6 M generated from N subgraphs into classes
of SCCs C(i)

j = {C(i)
jk , 1 6 k 6 α

(i)
j , |C(i)

jk | > 2}, where C(i)
j is

a SCC class of X(i)
j . We have discussed that if the snapshots

have been incrementally obtained on each subgraph, we can
join them to obtain snapshots of the original network. Now,
the problem turns to using the SCC classes of these N sub-
graphs to restore SCC classes of the original network. What
we need to do next is to join the SCC classes of these sub-
graphs. We take N = 4 for example. Suppose we incremen-
tally have C(1)

j1
, C(2)
j2
, C(3)
j3
, C(4)
j4

, where each C(i)
ji

is a SCC class
of the subgraphGi. In order to restore a SCC class of the orig-
inal network, we can first join C(1)

j1
, C(2)
j2

to obtain C(1,2)
j1,2

which
is a SCC class of the subgraphG1⊕G2 , (V1∪V2, E1∪E2),
then C(3)

j3
arrives and we increasingly join it with C(1,2)

j1,2
to ob-
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tain C(1,2,3)
j1,2,3

. At last, C(4)
j4

arrives and we join it with C(1,2,3)
j1,2,3

to obtain C(1,2,3,4)
j1,2,3,4

, which is a SCC class of the original net-
work. From this example, we can observe that the join of
C(1)
j1
, C(2)
j2
, · · · , C(N)

jN
, 1 6 j1, · · · , jN 6M can be reduced to

the join of any two SCC classes.
Therefore, we define a function join(C1, C2) in Algorithm

1 to return the class after joining C1 = {C11, C12, · · · , C1α1}
and C2 = {C21, C22, · · · , C2α2}.

5.3 Influence Estimation
In this section, we first briefly introduce the traditional net-
work influence estimation methods theoretically guaranteed
by Theorem 1. When extending the traditional methods into
streaming subgraphs, we can join the snapshots of subgraphs
to restore samples of the original network. However, the
join of subgraph snapshots exponentially increases with the
number of subgraphs. So, we propose to select only a few
number of snapshot joins. Proposition 3 explains that when
the selected joins are independent and identically distributed
(i.i.d.), the estimation converges fast. However, it is hard to
select i.i.d. snapshot joins across subgraphs in reality. There-
fore, we propose Definitions 1 and 2 to choose snapshot joins
that approximately follow the i.i.d. condition. Proposition 3
shows that by using the approximation, we can use a polyno-
mial number of snapshot joins to restore the global result.

For simplicity, |N(S;X
(1)
j1
⊕ X

(2)
j2
⊕ · · · ⊕ X

(N)
jN

)| is de-
noted by gj1,j2,··· ,jN (S), which means that the snapshot
of the original network can be obtained by incrementally
joining the ji-th snapshot from the i-th subgraph, and
gj1,j2,··· ,jN (S) returns the influence spread of a given seed
set S. The representation vector of X(1)

j1
⊕ X

(2)
j2
⊕ · · · ⊕

X
(N)
jN

follows the distribution q(r). Hence for any 1 6
j1, · · · , jN 6 M , gj1,j2,··· ,jN (S) is a random variable
such that Egj1,j2,··· ,jN (S) = σ(S), where E is the ex-
pectation operator. Generally, M simulations are indepen-
dently employed on the original network, generatingM snap-
shots denoted by Xi = X

(1)
i ⊕ · · · ⊕ X

(N)
i , and σ(S)

is empirically estimated by the following equation σ̂(S) =
1
M

∑M
i=1 gi,i,··· ,i(S) where gi,i,··· ,i(S), 1 ≤ i ≤ M are

bounded and i.i.d.. So the estimation is guaranteed by the
following Theorem [Hoeffding, 1963],
Theorem 1 (Hoeffding’s inequality). Let Y1, · · · , YM be in-
dependent variables span over the interval [a, b], and SM ,
Y1 + · · ·+ YM . Then, for all ε > 0,

P

(
1

M
|SM −ESM | > ε

)
6 2 exp

(
− 2Mε2

(b− a)2

)
(4)

In the traditional problem setting, components of the sub-
script of gi,i,··· ,i(S) are the same, because simulations are
employed on a single network G and subscript (i, i, · · · , i)
denotes the i-th snapshot simulation on G. Furthermore,
snapshots on subgraphs are not obtained by independent
simulations but by restricting snapshots of the original net-
work on subgraphs. In contrast, our incremental algorithm
considers that snapshots of subgraphs are generated inde-
pendently and then joined to the previous results. Specif-
ically, we first generate M snapshots X

(1)
j1
, 1 6 j1 6

M on subgraph G1, then the subgraph G2 arrives where
we generate another M snapshots X(2)

j2
, 1 6 j2 6 M .

We join them to the snapshots of G1 and obtain snapshots
X

(1)
j1
⊕ X

(2)
j2

. The process continues until the N -th sub-
graph is joined. This way, we generate MN random vari-
ables gj1,j2,··· ,jN (S), 1 6 j1, j2, · · · , jN 6 M such that
Egj1,j2,··· ,jN (S) = σ(S). Unfortunately, it is not reason-
able to take SΣ , 1/MN

∑M
j1=1 · · ·

∑M
jN=1 gj1,j2,··· ,jN (S)

as an estimation of σ(S). On the one hand, the number
of snapshot joins MN exponentially increases with respect
to the number of subgraphs. On the other hand, many
snapshot joins are redundant when estimating the expected
influence spread. To better explain these two points, we
first rewrite SΣ as the average summation of MN−1 groups
such that each group is the average summation of M in-
dependent and identically distributed random variables, i.e.,
SΣ = 1/MN−1∑MN−1

β=1

[
1/M

∑M
α=1 gj(α,β)1 ,··· ,j(α,β)

N

(S)
]

=

1/MN−1∑MN−1

β=1 Tβ , where g
j
(α,β)
1 ,··· ,j(α,β)

N

(S), 1 6 α 6 M

in Tβ are i.i.d.. Figure 2(a) shows the join of three
snapshots of the original network and the first join snap-
shot is obtained by incrementally join X(1)

1 , X
(2)
1 , X

(3)
1 , X

(4)
1 .

This join snapshot corresponds to the random variable
g1,1,1,1(S). Similarly, the rest two corresponding random
variables are g2,2,2,2(S) and g3,3,3,3(S). It is clear that
these three are i.i.d. and the average summation is T1 =
1/3 [g1,1,1,1(S) + g2,2,2,2(S) + g3,3,3,3(S)]. Hence, Figure
2(a) corresponds to T1. Similarly, Figure 2(b), 2(c), 2(d) cor-
respond to T2, T3, T4 respectively. Note that not all Tj are
shown in the figure. Each Tj can be treated as some SM in
Theorem 1 and Eq. (4) is satisfied, i.e., P (|Tj − σ(S)| ≥ ε) 6
2 exp

(
− 2Mε2

(b−a)2

)
. Therefore, each Tj has the same conver-

gence rate as the traditional method. Next, our goal is to
choose a portion of Tj to estimate the influence spread in
order to obtain higher convergence rate. If the same conver-
gence rate is required, our method needs fewer simulations
on each subgraph than the traditional method. Moreover, our
method can deal with dynamic networks.

For this goal, we first introduce the following proposition.

Proposition 2. If T1, · · · , Tk are independent and identically
distributed random variables, then 1/k

∑k
i=1 Ti has a higher

convergence rate than the righthand side of Eq. (4).

Proof. By applying the independence and Hoeffding’s
lemma [Hoeffding, 1963], we have, for any t > 0

P

(
1

k

k∑
i=1

Ti − σ(S) > ε

)
= P

(
t
1

k

k∑
i=1

Ti − tσ(S) > tε

)

6E exp

(
t
1

k

k∑
i=1

Ti

)
e−tσ(S)e−tε =

k∏
i=1

Ee
t
k
Tie−tσ(S)e−tε

6
k∏
i=1

exp

(
t

k
Ti

)
exp

(
1

8M

t2

k2
(b− a)2

)
e−tσ(S)e−tε

=exp

(
1

8M

t2

k
(b− a)2 − tε

)
6 exp

(
−2 · kMε2

(b− a)2

)
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(a) Join group 1 (b) Join group 2

(c) Join group 3 (d) Join group 4

Figure 2: Joins of subgraph snapshots. X(i)
j represents the

jth snapshot simulation result on the ith subgraph.

The first inequality is based on the Chebyshev’s inequality.
The second equality is guaranteed by the independence as-
sumption of T1, · · · , Tk. The second inequality is due to the
Hoeffding’s lemma. The last inequality is the upper bound of
the previous term after maximization with respect to t. The
last item of the above equation shows that a higher conver-
gence rate is obtained.

From the above proposition, the strategy is to choose those
Tj that tend to be independent. Besides, the influence spread
of a particular seed set is not only dependent on different
snapshots X(i)

j of subgraphs but also on different joins of
them, which determines the network topology of the snapshot
of the original graph. Hence, we define (j1, · · · , jN ) as a join
path with N − 1 stages (j1, j2), (j2, j3), · · · , (jN−1, jN ).

Definition 1. We call two join paths (i1, i2, · · · , iN ) and
(j1, j2, · · · , jN ) are orthogonal if there is no overlapping
stage, i.e., (iα, iα+1) 6= (jα, jα+1) for all 1 6 α 6 N − 1.

Definition 2. Let Tβ1 = 1/M
∑M
α=1 gj(α,β1)

1 ,··· ,j(α,β1)
N

and

Tβ2 = 1/M
∑M
α′=1 gj(α

′,β2)
1 ,··· ,j(α

′,β2)
N

.Tβ1
and Tβ2

are called

join-independent if for any given α and α′ such that 1 6

α′, α 6 M , (j
(α,β1)
1 , · · · , j(α,β1)

N ) and (j
(α′,β2)
1 , · · · , j(α′,β2)

N )
are orthogonal.

For example, in Figure 2, T1, T2, T3 are pairwise join-
independent and there are paths in T1 and T4 with two
overlapping stages. Now, we introduce the set T =
{Tβ |Tβ1 , Tβ2 are join-independent, ∀Tβ1 , Tβ2 ∈ T }. We use
Tβ ∈ T to estimate the influence spread. The following
proposition shows how many Tβ are selected.

Proposition 3. Let T be the set of Tβ
that are join-dependent pairwise, i.e., T =
{Tβ |Tβ1 , Tβ2 are join-independent,∀Tβ1 , Tβ2 ∈ T }, then we
have |T | =M .

Proof. All the paths in Tβ ∈ T form a set of paths P . Each
candidate T corresponds to a unique P . All candidates T
(or P) have the same cardinality. It can be verified that the
set P0 = {(i, j, i, j, · · · ), 1 6 i, j 6 M} is a portion of
candidates P . So, we have |P| = |P0| = M2, which means
|T | =M for Tβ ∈ T with M paths.

Algorithm 2: The Subgraph Incremental Algorithm.
Input: G = (V,E), G1 = (V1, E1), · · · , GN =

(VN , EN ), k,R, propagation probability p
Output: the optimal seed set S that maximizes the

influence on the original network
1 for i = 1, 2, · · · , N do
2 for j = 1, 2, · · · ,M do
3 sample each edge with probability p on the i-th

subgraph to obtain a snapshot X(i)
j ;

4 use the DFS graph search to get a class of SCCs
C(i)
j ;

5 for i = 1, 2, · · · ,M do
6 for j = 1, 2, · · · ,M do
7 calculate Cij using the function join(·, ·)
8 S ← ∅;
9 while |S| < k do

10 for v ∈ V \S do
11 σ(v|S)← 0;
12 for i = 1, 2, · · · ,M do
13 for j = 1, 2, · · · ,M do
14 if v ↔ S then return σ(v|S);
15 else σ(v|S)← σ(v|S) + |Cij(v)|;
16 t← argmaxv∈V \S

1
M2σ(v|S);

17 S ← S ∪ {t}
18 return S

Therefore, we regard σ̂(S) = 1/M
∑
Tβ∈T Tβ as the es-

timation of the influence spread given the seed set S on the
original graph. Though there may be many such T , from the
proof of Proposition 3 it is easily can be seen that there ex-
ists some T0 such that the set all the paths in Tβ ∈ T0 equals
P0. Hence one specific expression of σ̂(S) can be given by
σ̂(S) = 1/M

∑M
i=1

∑M
j=1 gi,j,i,j,···(S), where a polynomial

number M2 of snapshot joins are used.

5.4 Influence Maximization
In this section, we evaluate our estimation of the influence
spread in the process of influence maximization. Greedy al-
gorithm [Kempe et al., 2003] is adopted to select seed nodes,
starting with an empty seed set S, and then add the node u
with the maximum marginal influence in every iteration, i.e.,
u = argmaxv∈V \Sσ(S∪v)−σ(S), into S until the threshold
k (|S| = k) is met. Because the influence spread function is
non-negative, monotone and submodular, the accuracy of the
optimum solution is guaranteed by f(S) > (1− 1/e)f(S∗),
where S∗ is the optimal solution [Nemhauser et al., 1978]].
We summarize the above in Algorithm 2.

Note that σ̂(S) is used in each iteration when the
marginal influence is calculated σ̂(S ∪ v) − σ̂(S) =

1/M2
∑M
i=1

∑M
j=1 [gi,j,i,j,···(S ∪ v)− gi,j,i,j,···(S)] =

1/M2
∑M
i=1

∑M
j=1{|N(S ∪ v;X

(1)
i ⊕ X

(2)
j ⊕ · · · )| −

|N(S;X
(1)
i ⊕X

(2)
j ⊕· · · )|} = 1/M2

∑M
i=1

∑M
j=1[1−I(S ↔

v)]|Ci,j(v)|, where I(S ↔ v) = 1 if ∃ s ∈ S such that
s ↔ v, Ci,j(v) denotes the SCC including v on the snapshot

2080



Datasets number of nodes number of edges
ego-Facebook 4,039 176,468
ca-HepPh 12,008 118,521
ca-CondMat 23,133 186,936
email-Enron 36,692 367,662

Table 1: The four real-world datasets.

X
(1)
i ⊕X

(2)
j ⊕ · · · whose class of SCCs is denoted by Cij .

6 Experiments
We conduct experiments on four real-world data sets. All
algorithms are implemented in C++ and run on a Windows 7
system with 2.3GHz CPU and 4GB memory.

6.1 Data Sets
We use four network datasets from snap.stanford.edu/data/
for testing and comparisons. The number of nodes and edges
in each network is summarized in Table 1.

• ego-Facebook: This data set consists of ‘circles’ (or
‘friends lists’) from Facebook. It was collected from sur-
vey participants using the Facebook app.

• ca-HepPh and ca-CondMat: These two data sets are
obtained from the e-print arXiv. If authors i and j pub-
lish a paper together, the network contains an edge con-
necting nodes i to j.

• email-Enron: Nodes of the network are email addresses
and if an address i sent at least one email to address j,
the graph contains an undirected edge from i to j.

6.2 Benchmark Methods
We compare the incremental algorithm with five algorithms.
The propagation probability of each edge is set to p = puv =
0.01, uv ∈ E.

• CELF: We set M = 10, 000 in the Monte-Carlo simu-
lations to estimate the spread of a seed set.

• StaticGreedy: StaticGreedy reuses the generated snap-
shots to reduce the number of simulations. The number
of snapshots is set to M = 10, 000.

• DegreeDiscount: This algorithm is developed for the IC
model with the uniform propagation probability.

• PMIA: It uses maximization paths for influence spread
estimation. The value of the parameter θ is set to 1/320.

• PageRank: We implement the power method with a
damping factor of 0.85 and set the k highest-ranked
nodes as seeds. The algorithm stops by the threshold
value of 10−6 with the L1-norm.

6.3 Experimental Results
In our experiments, to obtain the influence spread of the
heuristic algorithms for each seed set, we run 10,000 simu-
lations and take the average spread as the influence spread,
which matches the accuracy of greedy algorithms.
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Figure 3: Comparisons between benchmark algorithms and
the incremental algorithm on the four data sets.
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Figure 4: Comparisons w.r.t. the running time on the four
data sets

Influence spread. Figure 3 shows the influence spreads of
different algorithms on the real-world networks with respect
to the seed set size k. k increases from 1 to 50. From the fig-
ure, we can observe that our method performs the best in all
settings. Together with CELF and StaticGreedy, our method
is also independent of the network structures. Moreover, only
M = 100 snapshots on each subgraph are generated to esti-
mate the influence spreads in the process of selecting the most
influential nodes. The results show much fewer MC simula-
tions than the other greedy methods.

Running time. Figure 4 shows the running time under the
optimal seed set of size 50 on the four datasets. Undoubt-
edly, heuristic methods, including DigreeDiscount, PMIA
and PageRank, are the fastest. CELF is the slowest because
too many MC simulations are employed during the estima-
tion of influence spreads. We can observe that the speed of
our algorithm is as fast as the StaticGreedy algorithm which
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is a popularly used scalable algorithm.
From these result, we can conclude that our algorithm is

robust to network structures, performs the best compared with
existing algorithms, and scale well to large networks.

7 Conclusions
In this paper, we presented an incremental algorithm for solv-
ing the big network influence maximization problem. Our
idea is to break down the original graph into small subgraphs
which can be sequentially processed as subgraph streams.
Experimental results show that the algorithm is robust to net-
work structures, performs the best compared with existing al-
gorithms, and scale well to large networks.
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Tardos. Maximizing the spread of influence through a so-
cial network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 137–146. ACM, 2003.

[Kivinen et al., 2004] Jyrki Kivinen, Alexander J Smola, and
Robert C Williamson. Online learning with kernels. Sig-
nal Processing, IEEE Transactions on, 52(8):2165–2176,
2004.

[Laskov et al., 2006] Pavel Laskov, Christian Gehl, Stefan
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