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Abstract

Social networks, due to their popularity, have been
studied extensively these years. A rich body of
these studies is related to influence maximization,
which aims to select a set of seed nodes for max-
imizing the expected number of active nodes at
the end of the process. However, the set of active
nodes can not fully represent the true coverage of
information propagation. A node may be informed
of the information when any of its neighbours be-
come active and try to activate it, though this node
(namely informed node) is still inactive. Therefore,
we need to consider both active nodes and informed
nodes that are aware of the information when we
study the coverage of information propagation in a
network. Along this line, in this paper we propose
a new problem called Information Coverage Maxi-
mization that aims to maximize the expected num-
ber of both active nodes and informed ones. After
we prove that this problem is NP-hard and submod-
ular in the independent cascade model, we design
two algorithms to solve it. Extensive experiments
on three real-world data sets demonstrate the per-
formance of the proposed algorithms.

1 Introduction

Social network sites, such as Facebook and Twitter, have be-
come very popular these days. These sites play important
roles in the spread of information, ideas or opinions, because
many people like to share their thoughts and other informa-
tion on them. Thus the analysis of information propagation in
social networks has been a critical research area these years.
Researchers have proposed several models to describe the
diffusion of information in a social network, such as Indepen-
dent Cascade (IC) model [Goldenberg et al., 2001] and Lin-
ear Threshold (LT) model [Granovetter, 19781, a data-based
credit distribution model [Goyal et al., 2011a] and linear so-
cial influence model [Xiang ef al., 2013]. Among these mod-
els, IC and LT models are stochastic diffusion models [Chen
et al., 2013] which specify the randomized process of infor-
mation propagation. In these models, each node in the net-
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Figure 1: Information propagation in a social network

work has two possible states: active and inactive. Intuitively,
an active node can be viewed as adopting the new information
or product that is propagated in the network.

Given an information propagation model, most of the ex-
isting works focused on selecting a set of seed nodes to be
activated that could lead to the maximum expected number
of active nodes. This selection problem is formulated as
a discrete optimization problem called Influence Maximiza-
tion [Kempe et al., 2003]. This problem, due to its im-
portant application in viral marketing, has been extensively
explored ( [Kimura and Saito, 2006; Wang et al., 2010;
Liu et al., 2010; Kim et al., 2013; Borgs et al., 2014;
Wang er al., 2014] ).

However, during the process of information propagation,
there are actually two types of inactive nodes. For exam-
ple, when we publish a message in Twitter, some users may
retweet the message and others may not. But, among all users
who have not retweeted the message, many of them may be
aware of this message as their friends have retweeted it, while
the rest is truly inactive. An example of such information
propagation in a social network is shown in Figure 1. If we
take a close look at the process of information propagation in
this example, we will find that a node may be informed of the
information if at least one of its neighbours become active.
We call such nodes as informed nodes in this paper. In con-
trast, a node may never know the information if none of its
neighbours is active. In fact, there are a large number of in-
formed nodes in many real-world social networks as we will
show in our experiment later. Influence maximization only
considers the active nodes and neglects the informed nodes,
thus it can not model the true coverage of information prop-



agation well. To better measure the coverage of information
propagation, we should consider both active nodes and in-
formed nodes.

To this end, we formulate a new problem called Informa-
tion Coverage Maximization to address this issue. The ob-
jective of this problem is to maximize the expected number
of both active nodes and informed nodes. We prove that the
problem is NP-hard and submodular in the IC model. We
also show that computing exact information coverage in the
IC model is #P-hard. Then, we design two algorithms to solve
the proposed problem. Finally, we evaluate the proposed al-
gorithms with three real-world data sets. The experimental
results demonstrate the performance of the proposed algo-
rithms. Our contributions can be summarized as follows:

e We distinguish the informed node from the inactive
node, and explore the value of informed nodes to better
measure the coverage of information propagation. Thus,
we propose a new problem of maximizing the expected
number of both active nodes and informed nodes.

e We prove that the proposed problem is NP-hard and sub-
modular in the IC model. We also show the computation
of information coverage in the IC model is #P-hard.

e We design two algorithms to solve the proposed prob-
lem. The proposed algorithms are examined with three
real-world data sets and the experimental results show
the performance of the proposed algorithms.

2 Related Work

Social networks have been studied extensively for many
years. A rich body of these studies is focused on the anal-
ysis of influence and information propagation in social net-
works. Several models have been proposed to describe the
diffusion of information through the social network, such
as IC model [Goldenberg et al., 2001], LT model [Gra-
novetter, 1978] and decreasing cascade model [Kempe et al.,
2005]. These models define the stochastic process of in-
formation propagation. Thus they are called stochastic dif-
fusion models [Chen ef al, 2013]. There are also mod-
els which formulate the information propagation from other
perspectives ( [Aggarwal ef al., 2011; Goyal et al., 2011a;
Xiang et al., 2013] ). Moreover, in [Chen et al., 2012]
and [Liu et al., 2012], the authors extended IC model to con-
sider the time-delay aspect of influence diffusion.

Influence maximization [Kempe et al., 20031, which aims
to maximize the expected number of active nodes in a
given diffusion model, is another main research direction of
the analysis of information propagation in social networks.
In [Kempe ef al., 2003], the authors proved the problem is
NP-hard in both IC and LT models and proposed a greedy
framework to solve it. The following researchers focused on
developing both efficient and effective algorithms, such as
CELF [Leskovec et al., 2007], PMIA [Chen et al., 2010al,
LDAG [Chen et al., 2010b], SIMPATH [Goyal et al., 2011b],
StaticGreedy [Cheng et al., 2013], Linear and Bound [Liu
et al., 2014] and IMRank [Cheng er al., 2014]. In addition,
in [Chen et al., 2012] and [Liu et al., 2012], the authors stud-
ied the influence maximization with time-critical constraint.
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In [Tang er al., 2014], the authors studied the diversified in-
fluence maximization which considers both the magnitude of
influence and the diversity of the influenced crowd. But in-
fluence maximization only considers the active nodes, which
makes it different from the proposed problem.

3 Problem Formulation

In this section, we first give a formal statement of informa-
tion coverage maximization problem. Then we discuss the
properties of the proposed problem.

3.1 Problem Definition

Let the directed graph G = (V, E,T) denote an informa-
tion propagation network, where V' = {1,2,...,n} is the set
of nodes in the graph and E denotes all edges that include
all the information propagation paths between nodes. And
T = [t; j]n+n is the propagation probability matrix, where ¢; ;
represents the probability of information propagation from
node i to node j. We use n to denote the number of nodes
and m to denote the number of edges respectively.

Although we can use different stochastic diffusion model
to describe the information propagation process, we adopt IC
model in this paper as it has been shown as one of the most
suitable models for the diffusion of information [Chen et al.,
2013]. In the model, seed nodes are the initial nodes selected
to propagate the information and they will try to activate their
neighbours. Their neighbours will be informed in this process
and may be activated. If a node is activated, it becomes an
active node and will try to activate its own neighbours. If a
node is not activated but receives the information, then it is an
informed node. The process converges when no more nodes
can be activated.

Let S, A and L denote the seed nodes, active nodes and
informed nodes respectively. Then we can get the relationship
between A and S' as follows:

A=1(9) (1)

where I(S) are the active nodes when the information dif-
fusion process converges. Similarly, we can get the relation-
ship between L and A as follows:

L= N(a) @)

acA

where N (a) are the inactive out neighbours of node a. To
this end, we can formulate the Information Coverage Maxi-
mization Problem as follows:

argmax F(S) = B(|Al) + E(L))
o 3)
st. |S|=k

where k is a given budget. FE(-) is the expectation of the
number, because information propagation is a stochastic pro-
cess. F'(.S) is the sum of the expected number of active nodes
and informed nodes. We will refer to it as information cover-
age in this paper.

Considering the relationship given by Eq.(1) and Eq.(2),
we can rewrite the Eq.(3) as follows:



argmax F(S) = E(I(S))+ E( |J N())
s acI(S) (4)
st |S|=k

Comparing Eq.(4) to the objective function of the tradi-
tional influence maximization problem, we can find that the
first term of Eq.(4) is exactly the influence spread of S. But
Eq.(4) has an extra term E(| U, (s) NV (a)[) which is the ex-
pected number of informed nodes. Thus information cover-
age maximization can better model the true coverage of in-
formation propagation in a social network.

In the real world, the informed nodes may have different
values than the active nodes. Thus we introduce a weight to
adjust the contribution of informed node to the measure of
information coverage. Along this line, we propose a gen-
eral form of information coverage maximization problem:
Weighted Information Coverage Maximization Problem. We
formulate it as follows:

argmax W (S) = E(I(S)) +AE( |J Na))
S acI(S) 5)
st. |S|=k and Xe€]0,1]

where ) is the weight coefficient that controls the impor-
tance of informed nodes. When ) equals 0, the problem de-
generates into the traditional influence maximization prob-
lem. When A equals 1, the problem is the same as the infor-
mation coverage maximization problem.

3.2 Problem Property

In this part, to show the properties of the problem, we prove
several theorems about the problem.

Theorem 1 For an information propagation network formu-
lated by IC model, the information coverage maximization
problem is NP-hard.

Proof. Consider the NP-complete set cover problem [Karp,
1972]: given a collection of subsets Sy, Ss,..., S, of a
ground set U = {uy,us, ..., uy, }; the question is if there exist
k of the subsets whose union equals to U. We will reduce the
problem to the information coverage maximization problem.

Given an arbitrary instance of the set cover problem, we
construct a corresponding directed bipartite graph: there is a
node ¢ for each subset .S;, a node j for each element u;, and
a directed edge(4, j) with a propagation probability ¢; ; = 0
when u; € S;. Since all probabilities are 0, the propaga-
tion is a deterministic process. Thus, the set cover problem
is equivalent to deciding if there is a set IV of k£ nodes in the
graph with F'(N) = n + k. If any set N of k nodes has
F(N) = n + k, then we can initially activate the k& nodes
corresponding to subsets such that all n nodes corresponding
to elements in the ground set will be informed. This means
that the set cover problem must be solvable.

Theorem 2 For an information propagation network formu-
lated by IC model, the weighted information coverage maxi-
mization problem is NP-hard.
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Proof. Since the information coverage maximization prob-
lem is a special case of the weighted information coverage
maximization problem, the result is straightforward.

Theorem 3 For an information propagation network formu-
lated by IC model, computing the information coverage F(S)
or the weighted information coverage W (S) is #P-hard.

Proof. Consider the #P-complete s—t connectedness prob-
lem [Valiant, 1979]: given a directed graph G = (V, E) and
two nodes s and ¢ in the graph; the question is to count the
number of subgraphs of G in which s is connected to ¢. It is
straightforward to see that this problem is equivalent to com-
puting the probability that s is connected to ¢t when each edge
in GG is connected with a probability of %

Given an arbitrary instance of the s —¢ connectedness prob-
lem, we will reduce it to the computation of information cov-
erage. let Fg(S) denote the information coverage of seed
set S in graph G. Then let S = {s} and p(e) = 3 for all
e € FE, and compute Iy = F¢(S). Next, add a new node ¢/
and a directed edge from ¢ to ¢’ with propagation probabil-
ity p;++ = 1. Now we obtain a new graph G’ and compute
Iy = Fei(S). Let pe(S,t) denote the probability that node
t is activated by S. Since graph G’ has an extra node t/, it is
easy to see that Iy = Fg(S) + pa(S,t)(pry + 1 — pr).
Thus, I — I; is the probability that s is connected to .
This means that s — ¢ connectedness problem must be solv-
able. For the W (S) case, replace F'(-) with W(-) and Iy =

Wa(S) +pa(S,t)(pee + A1 = peer)).

Theorem 4 For an information propagation network formu-
lated by IC model, F (-) is monotone and submodular.

Proof. Since the monotonicity of F(-) is straightfor-
ward, we focus on proving its submodularity. Given a graph
G = (V,E,T), we can construct live-arc graphs for the IC
model according to the methods proposed in [Kempe et al.,
2003]. Then let G, be a random live-arc graph, and let the
Prob(Gr) denote the probability that G, is selected from
all possible live-arc graphs. Let R¢, (S) denote the set of
all nodes that can be reached from S in GG;,. For traditional
influence maximization problem, the expected numbers of
R, (S) is exactly the influence spread of S. However, in
our case, we need to add the inactive out neighbour nodes of
the active nodes. Then we use ()¢, (S) to denote the union
of the R, (S) and the out neighbour nodes of R¢, (S) in G.
Thus for IC model, we have

ST Prob(Gr)|Qe, (S)| (6)

all possible G,

F(S)

Since an non-negative linear combination of submodular
functions is also submodular, we just need to prove |Q¢, (-]
is submodular for any live-arc graph. To do this, Let M and
N be two sets of nodes such that M C N, and consider the
number |Q¢, (M Uv)| — |Qg, (M)|. This is the number
of elements in Q¢, (v) that are not already in the Q¢ (M).
Thus it must be greater or equal to the number of elements in
Q¢, (v) that are not already in the Q¢ (IV). It follows that
Q. (M Uv)| — |Qa, (M)] > |Qc, (N Uv)| - |Qa, (V).
Thus function |Qg, ()| is submodular, which means that
F(+) is submodular.



Theorem 5 For an information propagation network formu-
lated by IC model, W (-) is monotone and submodular.

Proof sketch. We can utilize the live-arc graph technique to
prove this theorem in a similar way as the proof of Theorem 4.

4 Solution

In this section, we propose two algorithms to solve the prob-
lem. First, we discuss a greedy algorithm with “Lazy for-
ward” update scheme. Second, we discuss a degree-based
heuristic algorithm.

We have proved that both F'(-) and W (-) are monotone
and submodular, and they apparently satisfy F'((}) = 0 and
W(®) = 0. Thus, according to [Nemhauser ef al., 1978],
a simple greedy algorithm can approximate the optimal so-
lution with a factor of 1 — 1/e. Since we have proved that
computing F'(-) or W (-) is #P-hard, we have to run Monte
Carlo simulations for sufficiently many times (e.g., 10,000)
to estimate the value of F(-) or W(-). Consequently, the
simple greedy algorithm is very time-consuming. Inspired
by [Leskovec et al., 20071, we also design a “Lazy Forward”
update scheme for our algorithm. Due to the submodular-
ity of the problem, this update scheme can reduce the times
of estimating F'(-) or W (-). More details about the update
scheme are shown in Algorithm 1. From the algorithm, we
can see that it needs (n + k) times of information coverage
estimations, where 3 < n is the expected number of infor-
mation coverage estimations in each iteration. Thus the total
time cost is O(nRm + kBRm), where R is the number of
rounds of simulations in each estimation.

Algorithm 1: The Lazy-Forward Greedy Algorithm

Input: G = (V, E,T), number k
Output: seed set S
initialize S = ()
for each node n in'V do
//for the weighted case, replace F'(-) with W(-)
compute A(n) = F(n)
stampy, =0
end
while S| < k do
n = argmax,cy\ s A(n)

if stamp,, == |S| then
S=S5SUn

end

else

//for the weighted case, replace F'(-) with W (-)
compute A(n) = F(SU n) — F(S)
stampy,, = |5
end
end
return S

Although “Lazy Forward” update scheme reduces the time
cost dramatically, it is still intractable for large scale net-
works. In the real world, there are often thousands of nodes
and millions of edges in a social network. To address the
scalability issue, we develop an efficient heuristic algorithm.
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When we revisit the objective function, we can find that a
node’s contribution to the information coverage is highly de-
pendent on its out degree. Thus if we rank the nodes ac-
cording to their out degrees and take top-k nodes as the seed
nodes, we can probably get a good result. Furthermore, when
a node is selected, its out neighbours will be informed. This
will result in a decrease of other nodes’ “effective” out de-
grees, as their out neighbours may have been informed. This
observation means that we can benefit from adjusting each
node’s “effective” out degree dynamically. This heuristic is
summarized in Algorithm 2. From the algorithm, we can see
that it takes only O(k(n + m)) time to complete if we store
the graph G and the covered nodes set C' with appropriate
data structures.

Algorithm 2: The Effective Degree Rank Algorithm

Input: G = (V, E, T), number k
Output: seed set S
initialize S = ()
initialize C' = ()
for each node n in V do
Ef fectiveDegree(n) = OutDegree(n)
end
while |S| < k do
n = argmax, e\ g B f fectiveDegree(n)
S=SUn
C = C'U OutNeighbour(n)
for each node nin V'\ S do

Ef fectiveDegree(n) =
OutDegree(n) — |C'N OutNeighbour(n)|
end
end
return S

S Experiment

In this section, we explore the difference between influence
maximization and information coverage maximization. Then
we demonstrate the performance of the proposed algorithms.

5.1 Experimental Setup

Data Sets. The three real-world data sets we used are: wiki-
Vote which is the Wikipedia who-votes-on-whom network,
soc-Epinions1 which is the who-trusts-whom network of
Epinions.com !, and weibo which is the who-follows-whom
network of Weibo.com 2. The first two are downloaded from
SNAP?, and the last one is crawled from Weibo.com, which
is a Chinese microblogging site like Twitter. More detailed
information about the data sets is shown in Table 1.

The social networks are constructed like this: If a node
j votes (trusts or follows) another node i, there is a directed
edge from node ¢ to node j. The propagation probability of an

'http://www.epinions.com/
Zhttp://weibo.com/
*http://snap.stanford.edu



Table 1: Statistics of data sets

Data set Type #Nodes #Edges
wiki-Vote Directed 7,115 103,689
soc-Epinions1 | Directed 75,879 508,837
weibo Directed 76,491 9,572,897

08

07

06

LFG EDR CELF DDI ODR

(a) wiki-Vote

LFG EDR CELF DDI ODR

(b) soc-Epinionsl

LFG EDR CELF DDI ODR
(c) weibo

Figure 2: The Jaccard similarity coefficient of selected nodes

edge (7,7) is set to be %, as widely used in literatures

( [Chen er al., 2009; Goyal et al., 2011b] ).

Algorithms for Comparison. We compare the proposed
algorithms with several influence maximization algorithms.
The algorithms we used in the experiments include:

e LFG is the Algorithm 1 proposed in section 4.
e EDR is the Algorithm 2 proposed in section 4.

e CELF is an approximation algorithm for influence max-
imization proposed in [Leskovec et al., 2007].

e DegreeDiscountIC (DDI) is a degree-based heuristic al-
gorithm for influence maximization. We set the parame-
ter p to 0.01, same as used in [Chen et al., 2009].

e OutDegreeRank (ODR) outputs the top-k nodes with the
highest out degree.

Evaluation Method. With the output of each algorithm,
we use it as the seed set to compute their information cov-
erage in the IC model. In the computation process, we run
Monte Carlo simulation 10, 000 times to obtain an estimation
of the information coverage.

We implemented the algorithms in Java and conducted the
following experiments on a Linux server with two 2.0GHz
Six-Core Intel Xeon E5-2620 and 96G memory.

5.2 Experimental Results

Correlation Demonstration. For the purpose of demonstrat-
ing the difference between influence maximization and infor-
mation coverage maximization, Figure 2 shows the the Jac-
card similarity coefficient of the seed sets selected by differ-
ent algorithms when the size of seed set is 20. In Figure 2,
we can see that the seed sets selected by LFG and EDR for
information coverage maximization are similar to each other,
while CELF for influence maximization selects different seed
nodes from them. Meanwhile, DDI and ODR select simi-
lar seed nodes and these nodes are more similar to the ones
selected by CELF than LFG and EDR. This phenomenon
further shows the difference between influence maximization
and information coverage maximization.

Effectiveness validation. We run tests on three social net-
works to obtain information coverage results. The size of
seed set ranges from 5 to 20. Figure 3 (a), (b) and (c) show the
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Table 2: Number of nodes of different types

Data set #Active #Informed #Other
wiki-Vote 42 2,073 5,000
soc-Epinions1 274 10,259 65,346
weibo 465 66,362 9,674

information coverage results on three social networks. From
the figure, we can see that LFG and EDR obviously outper-
form the other algorithms. This result proves once more the
difference between influence maximization and information
coverage maximization. Meanwhile, we can find that LFG
and EDR have similar performance. This result demonstrates
the effectiveness of “effective” degree heuristic. Furthermore,
CELF has better performance than DDI and ODR, which
means that information diffusion still plays an important role
in the result. For better illustration, Figure 3 (d) shows the
comparative results of different algorithms in weibo data set,
where the performance of CELF is chosen as the baseline and
the size of the seed set ranges from 10 to 20. From the Figure,
we can see that LFG has the best performance. Also, EDR
performs better than CELF significantly. Finally, DDI and
ODR perform worse than CELF in most cases.

We also run tests to verify the weighted information cov-
erage case. We set A to 0.5 and 0.25 respectively. Figure 4
shows the weighted information coverage results on the same
three social networks. From the figure, we can find that
LFG and EDR still have better performance than the other
algorithms. But the gap between CELF and LFG does be-
come smaller, which means that information diffusion be-
comes more important when the relative values of informed
nodes become smaller. We also show the comparative results
of different algorithms in Figure 4 (d) and (h). From the fig-
ure, we can see that the result is similar to the one shown in
Figure 3 (d).

Case study. We run Monte Carlo simulations to obtain
the number of nodes of different types (e.g., active nodes) af-
ter we get the seed set selected by LFG. Table 2 shows the
statistic result when the size of seed set is 20. From the
table, we can find that the number of active nodes is very
small while the number of informed nodes is large. This phe-
nomenon is especially significant in weibo data set. The rea-
son is that nodes in weibo data set have more neighbours on
average. Furthermore, we calculate the ratio of nodes of dif-
ferent types. Results are shown in Figure 5. From the figure,
we can see that the total ratio of active nodes and informed
nodes is considerable even if there are only 20 seed nodes. It
means that we only need a small number of seed nodes if we
want to get a large information coverage.

Efficiency Comparison. Table 3 shows the running time
of different algorithms when the size of seed set is 20. From
the table, we can see that DDI and ODR are more efficient
than the other algorithms. Also, EDR has a very low time cost
while LFG and CELF are quite time-consuming. The reason
is that we need to run Monte Carlo simulations to estimate
information coverage and influence spread in LFG and CELF
respectively. Remarkably, to improve the efficiency of the
two algorithms, we have already utilized Java multi-thread
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Table 3: Efficiency comparison (in seconds)
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Figure 5: Node type distribution on three social networks

technology to speed up the simulation process.

6 Conclusion

In this paper, to better measure the coverage of information
propagation, we distinguish the informed node from the inac-
tive node and explore the value of the informed nodes. Mean-
while, we formulate a novel problem called information cov-
erage maximization which aims to maximize the expected
number of both active nodes and informed nodes. Further-
more, we prove the proposed problem is NP-hard and sub-
modular in the IC model. We also show that the computation
of information coverage in the IC model is #P-hard. Then
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Data set LFG EDR CELF DDI ODR
wiki-Vote 881.4 0.268 15.19 0.014  0.02
soc-Epinionsl | 940.6 1.169 63.36 0.025 0.066
weibo 6.6e5 23.78 866.6 0.121 0.086

based on the properties of the problem, we design two al-
gorithms to solve it. Finally, we conduct extensive experi-
ments to verify our idea. The experimental results show the
difference between influence maximization and information
coverage maximization. The performance of the proposed al-
gorithms is also demonstrated in the experiments. We hope
our study could lead to more future works.
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