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Abstract

Part deformation has been a longstanding challenge
for object parsing, of which the primary difficulty
lies in modeling the highly diverse object struc-
tures. To this end, we propose a novel structure
parsing model to capture deformable object struc-
tures. The proposed model consists of two de-
formable layers: the top layer is an undirected
graph that incorporates inter-part deformations to
infer object structures; the base layer is consisted
of various independent nodes to characterize lo-
cal intra-part deformations. To learn this two-layer
model, we design a layer-wise learning algorithm,
which employs matching pursuit and belief prop-
agation for a low computational complexity infer-
ence. Specifically, active basis sparse coding is
leveraged to build the nodes at the base layer, while
the edge weights are estimated by a structural sup-
port vector machine. Experimental results on two
benchmark datasets (i.e., faces and horses) demon-
strate that the proposed model yields superior pars-
ing performance over state-of-the-art models.

1

Given a target object in the image, structure parsing refers to
inferring the structural information, which is useful for ap-
plications such as object matching and alignment. It typi-
cally works under a coarse-to-fine manner, where bounding
boxes are first detected by running a specific object detector
to provide coarse information of object locations, and then
fine parsing models, e.g., [Fidler et al., 2009], [Zhu et al.,
2010] and [Yang and Ramanan, 20111, are built to attain ac-
curate object structures, parts, subparts and key points. In
general, parsing of rigid objects works well by using simple
geometry representations [Viola and Jones, 2001]. However,
difficulties raise when facing deformable objects, like face
[Felzenszwalb and Huttenlocher, 2005], pedestrian [Dalal
and Triggs, 2005] and horse [Zhu et al., 2010]. The key chal-
lenge lies in the difficulty to achieve a robust and unified ge-
ometry representation for deformable objects. In such a cir-
cumstance, a fine-gained analysis of object parts and detailed
structures is highly required.

Introduction
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Figure 1: Two-layer deformation model for parsing object
structure. The inter-part layer (the top layer) handles defor-
mations among object parts, and the intra-part layer (the base
layer) makes some local adjustments to characterize small lo-
cal deformations.

In this paper, we investigate the feasibility of parsing
highly deformable objects, which remains as an open prob-
lem. Specifically, we take a systematic understanding of
the object deformation, and then conduct a flexible model-
ing for both inter- and intra-part deformations. Taking eyes
and mouth in a face for instance, relative position changes
between eyes and mouth belong to inter-part deformations,
while appearance changes, like close eyes and open mouth,
belong to intra-part deformations. Notably, most existing
parsing models [Zhu et al., 2010; Yang and Ramanan, 2011]
are based on the independence assumption of two kinds of
deformations. Typically, they concentrate on either construct-
ing the deformable model to deal with inter-part deforma-
tions or encoding feature to comprise intra-part deformations.
For modeling intra-part deformations, there exist a few ap-
proaches [Wu et al., 2010], which yet cannot extract the in-
variance hidden in large deformations.

In this paper, we propose a novel two-layer model to jointly
consider two kinds of deformations. To the best of our knowl-
edge, there is not existing work targeting at modeling both
inter-part and intra-part deformations, which is therefore un-
able to explore complicated object structures. As shown in



Fig. 1, it contains two layers: the base layer accounts for lo-
cal intra-part deformations, which is consisted of a set of local
nodes that match feature bases in small image regions to gen-
erate low-dimensional descriptors for image patches. The top
layer handles inter-part deformations, which is modeled as
a Markov Random Field (MRF) whose nodes correspond to
the object parts of potentially large deformations, described
by the feature descriptors obtained from the base layer.

The proposed two-layer model merits in a joint inference
of both abstract and detailed deformation of object parts. It
enables to further localize the key feature points and sketch
the finer object structures. Moreover, we design a layer-wise
learning algorithm which employs belief propagation for in-
ference, which enjoys a low computational complexity by
eliminating the superfluous training samples. To learn our
model, active basis sparse coding is carried out to learn the
nodes as bases at the base layers, while the edge weights are
estimated by deploying a structural support vector machine.

The rest of this paper is organized as follows. Sec. 2 sum-
marizes the related work. Sec. 3 builds the architecture of the
proposed parsing model, including the inter- and intra-part
deformation layers. Sec. 4 describes a procedure for learning
the model parameters, and Sec. 5 gives an efficient algorithm
for optimal structure inference. Sec. 6 presents the experi-
mental results, and Sec. 7 draws the conclusion.

2 Related Work

Mixture models, e.g., Gaussian Mixture Model (GMM)
[Dempster et al., 1977], are commonly used for modeling ob-
ject structures. In that sense, one object can be considered as a
combination of multiple conventional structure types, and the
structure estimation refers to matching the unknown struc-
ture with the most similar types. Gu and Ren [Gu and Ren,
2010] employed multiple templates to detect objects in dif-
ferent views. In [Park ef al., 2010], multiple detectors at dif-
ferent scales are combined into a mixture model.

Compared to mixture models, tree-based models [Awasth
et al., 2007] are more flexible in characterizing the correla-
tions among mixture components. A typical tree structure
contains no loop, so the message passing algorithm [Kschis-
chang et al., 2001] can be applied to identify the optimal
configuration. Felzenszwalb and Huttenlocher [Felzenszwalb
and Huttenlocher, 2005] proposed a Pictorial Structure (PS)
tree model to recognize the face structure and estimate the
face pose in an image.

A branch of work has been motivated from the PS model.
For example, the Articulated Model (AM) [Ramanan and
Sminchisescu, 2006] employs Conditional Random Fields
(CRFs) [Kumar and Hebert, 2003; Awasth et al., 2007] to
handle inter-part deformations. The Deformable Part Model
(DPM) [Felzenszwalb et al., 2010] extends the AM model to
allow for more flexible spatial correlations. Nodes of DPM
can be enlarged to force a more accurate parsing. For ex-
ample, the Mixtures of Parts Model (MPM) in [Yang and
Ramanan, 2011] exploits 26 nodes corresponding to human
joints (shoulder, elbow, hand, efc.) for pose estimation, and
the DPM in [Zhu and Ramanan, 2012] exploits 99 nodes to
locate face landmarks.
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However, increasing the number of nodes results in higher
dimension of the encoded features as well as more training
samples needed, which typically compromises the detection
accuracy due to the increase of inference uncertainty. One
solution is to reduce the number of parts by aggregating con-
nected parts into a larger one. Another solution is to con-
struct a multiple layer model [Fidler et al., 2010] and allocate
nodes for each layer. In this way, the high-dimensional fea-
ture space can be decomposed into multiple low-dimensional
ones. In [Zhu et al., 2010], Zhu et al. introduced the hierar-
chical deformable template to group every three nodes at one
layer. The later hierarchical AOT model [Si and Zhu, 2013]
is configured as a deep mixing of And-Or nodes to represent
the compositions of parts and structural variations.

Although our proposed model is relevant to two re-
cent multi-layer models, Hierarchical Deformable Template
(HDT) [Zhu et al., 2010] and And-Or Template (AOT) [Si
and Zhu, 2013], our model differs from and merits over them
in terms of robustly dealing with appearance variations and
shape deformations. First, the HDT model [Zhu et al., 2010]
imposes a restriction on the number of child nodes, i.e., each
node can only have three child nodes at one layer. Notably,
our model discards this restriction so that each node can as-
sociate an arbitrary number of child nodes. Second, unlike
the independence assumption adopted in AOT [Si and Zhu,
2013], our model encodes visual appearances with geometry
deformations in a joint feature encoding function, therefore
allows for capturing large non-rigid deformations.

3 The Proposed Model

Considering that object structure varies significantly with
poses and view points, we anticipate the proposed pars-
ing model to deal with such variances. Unlike the HDT
[Zhu et al., 2010], MPM [Yang and Ramanan, 2011] and
AOT [Si and Zhu, 2013], we use two deformation layers to
model both inter- and intra-part deformations.As shown in
Fig. 1, the top layer consists of a few nodes to represent
key object parts and describes global inter-part deformations
with an undirected graph. The nodes at the base layer are
divided into different types of part templates, which have
connections with the corresponding parent nodes at the top
layer. Unlike the part detectors in [Yang and Ramanan, 2011;
Zhu and Ramanan, 2012; Gu and Ren, 2010], the part tem-
plates in our model are not fixed, but are composed of many
nodes which make minor adjustments independently and lo-
cally represent the distinguished sub-part regions. Such a de-
sign enables us to accurately characterize complicated intra-
part deformations.

We assume that an object structure Z is composed of N
parts, Z = (z1,...,2n). Each part z; is anode v; € V of a
graph G = (V, E), and the undirected edge e;; = (v;,v;) €
FE connecting two nodes encodes their pairwise interaction.
In our model, z; is denoted as a triple set (z;,y;, ;) where
(x4, ;) is its pixel location and ¢; € {1,2,...,T} indicates
which type of part template is activated, e.g., the horse head
may go up and down and thus has multiple types based on the
head position relative to the body. Given a feature map J of
the image I (J in our experiment is set as the Gabor feature



map by convoluting I with rotational Gabor filters), we define
a MRF to evaluate the posterior probability of an object struc-
ture configuration Z under the unary and pairwise potential
weighting parameter set w (Wi, oo, W, ey Wiy )
and the template set D = (D4, ..., Dy),

p(Z)J, w,D) exp( > h(zi, 25, Wi5)
ei;€EE

+ Z g(z’bv vaivDi))a
v, €V

ey

where the first term h(z;, zj, w;;) is the pairwise potential
that quantifies the spatial relationship of z; and z;, and is re-
sponsible for modeling the inter-part deformation, as detailed
in Sec. 3.1. The second term g(z;, J, w;, D;) is the unary po-
tential that collects the local image evidence for the part z; in
J given the template D; of part <. Indeed, g can be regarded
as a part template to locate a certain object part in the feature
map .J, as detailed in Sec. 3.2. The weighting parameters w;
and w;; control the contribution of g and h.

3.1 Inter-Part Deformation Layer

The inter-part deformation derives from the relative location
changes among parts. Following [Yang and Ramanan, 2011;
Zhu and Ramanan, 2012; Felzenszwalb et al., 2010], we
assume the relative location is dependent on the type ¢;.
That is, the relative location between them have T2 com-
binations. When a part z; is given, the other part z; can
be estimated by the posterior probability p(z;|z;, w;j;). We
rewrite p(zj |Zi7 Wij) as p(tj |Zi, Wij)p(xj, Yj ‘t]‘, Zis Wij), and
approximate it using two exponential functions, i.e.,

) @)

(w; —2; — Awyi)?

it (1
p(tj|zi, Wij) o< exp(wfjtj( )

titi(2
p(xjvyj‘tj7zivwij) X exp ( —w; i(2)

tit; (3 tit;
— Wy o )(yz‘ —Yj— Ayij ])2), (3)

2 . .
where w;; (wSU),...,wiTj (3)). Amﬁ}tj and Ayz;-t’
are the x- and y-directional mean displacements of parts z;

. . . . tit;
and z; respectively. For simplification, we define vz,;”

titj\2 tit; titj\2
—(w; — x5 — Amij 7)? and vy, = —(yi —yj — Ayij ’)
Note that Eq. 1 is an exponential function. @~ We then
define the inter-part deformation term p(z;|z;, w;;) by
exp (h(zi, Zj, wij)), i.e., h(z;, zj, w;;) is written as

h(zi,z5, Wij) =

“

i(2) tit;(3)

ij

tit;

tit;(1) t;t tit;
W, 5 + W, 5 VT +w i

)

3.2 Intra-Part Deformation Layer

In models presented in [Yang and Ramanan, 2011; Zhu and
Ramanan, 2012; Gu and Ren, 2010; Park et al., 2010], the
invariance to intra-part deformations relies on the feature en-
coding scheme by using, e.g., the HOG descriptor. However,
the dimension of HOG is linearly related to the part’s area,
which would result in a high dimensional feature vector if the
node at the inter-part deformation layer covers a large object
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part region. In addition, HOG encodes the gradient informa-
tion of the block instead of the pixel, which cannot provide
accurate localization information.

In contrast, active basis sparse coding [Wu et al., 2010]
can produce a lower dimensional feature vector by projecting
image patches onto feature bases. Unlike the invariance in the
HOG encoding, Matching pursuit (MP) provides another way
of invariance by searching the local optimal matching for the
node of template. MP has been used in [Wu et al., 2010] to
construct the part template and encode image patches as the
sum of active bases.

In this work, we utilize MP at the intra-part deformation
layer to handle local deformations and achieve the local in-
variance. It can be formulated as:

MP(J,¢) = max (J(q)),

(&)

where ¢ means a candidate from the candidate set ¢ of MP. In
practice, the more candidates in ¢, the larger deformation is
allowed, yet the accuracy might decrease. The result of MP
can be considered as a local image evidence of the object part
z;. It is employed as a child node of z; at the base layer. To
prevent overfitting, we restrict each part z; to T' x K child
nodes at the base layer, which form 7T’ types of part templates
with K members, i.e., D; = (d}!,...,dI'¥). Based on the
type variable ¢; of z;, the connections of K nodes of the ;-
th type are activated. Unlike the dependent nodes at the top
layer, the nodes at the base layer are independent from each
other for an effective representation and inference. Thus, the
unary potential g of Eq. 1 is defined as the sum of contribu-
tions of K nodes:

K
g(ziaJ7Wi7Di) = Zw:LkMP(va(Zlvd?k))a (6)
k=1

(1)

K2

where w; = (w TKY, and w!* weights the contri-

bution of the node df"k. The function ¢ takes z; and dfik as
parameters and produces the candidate set ¢ of MP, and it is
introduced in Sec. 3.3.

R T)

3.3 Feature Map

The intra-deformation layer is constructed with the feature
map J of the original image /. Here, we define J as the
whitening normalization of the contentional Gabor feature
map introduced in [Wu et al., 2010]. It normalizes the re-
sponse of Gabor filtering over a number of pixels and orien-
tation directions to make the feature map comparable among
images.

The feature of a point g in J is denoted as g
(zk, Y, ok ), Where (zk, yi) and o, are its spatial location and
orientation, respectively. Though small deformations cause
some perturbations in g, MP can search for the best match
in the candidate set which collects feasible locations to offset
these perturbations. In Eq. 6, the candidate set ¢ is generated

by the function ¢ with two parameters z; and dfk ie.,



Q(zi,di'") = {(Fr, G, O1);

|lz; + szk — Z| < Adcos Ao, -
lyi +y5* — G| < Adsin Ao,

0% — 64| < Ao},

where d?k = (a:fik, yf"k, ojﬁk) is the t;k-th child node of z;,
and two predefined parameters Ad and Ao controlling the
size of the candidate set.

4 Model Learning

the labeled positive samples {(J1,Z1),...
(Jp+, 2 M+)} and the wunlabeled negative samples
{JM++1,...7JM}, the model learning is to estimate
w and D, in which the parameter set w balances the
contributions of the unary and pairwise potentials, while
the D localizes the object parts in the feature map.
Here, we follow the assumption in [Zhu et al, 2010;
Yang and Ramanan, 2011; Dalal and Triggs, 2005;
Zhu and Ramanan, 2012] that inter-part and intra-part
deformations are independent. Therefore w and D can be
learned separately from the training samples. According
to the model architecture, the base layer, i.e., intra-part
deformation, should be learned prior to the top layer, i.e., the
inter-part deformation, to generate the template set D. Then,
the learning procedure in the top layer only estimates the
weighting vectors w.

Given

)

4.1 Learning Intra-Part Deformation Layer
At the intra-part deformation layer, the set D includes NV x

T x K Gabor feature bases {dgu), ..., di} as the base
layer nodes. According to Eq. 7, the location of the base
layer node is determined by its parent node z; and its offset
location (z%*, yf*). Thus, we collect feature maps from the
same part and the same type, and search for K distinguished
Gabor feature bases to construct a type of part template of D,.
For each type of part, MP is used to search the feature map
for the maximum filtering response over all locations, which
pools a probability distribution. Then, projection pursuit (PP)
extracts the first K feature bases with highest probabilities to
form a part template. For more details about learning D;, the
reader is encouraged to refer to [Wu et al., 2010].

Notably, we assume each training sample is assigned a la-
bel z; composed of the part location (z;, y;) and the part type
t;. However, it is difficult to give unambiguous definitions
of the part’s location and type, i.e., x;, y; and t; cannot be
directly labeled by hand.With these key points, active shape
model (ASM) [Ginneken et al., 2002] is adopted to align the
root part and project key points onto a uniform coordinate.
Then, K-means is used to generate clusters for each object
part. The center of a cluster is considered as the part location
(x4,9:) , and the cluster label as its type ¢;.

4.2 Learning Inter-Part Deformation Layer
For simplicity, we rewrite Eq. 1 as the inner product of the
weighting vector w and the feature function F(Z, J, D):

p(Z|J,w,D) x exp (w' F(Z,J, D)), (®)
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where

T

W = [wgn),...,w%T,...,wz;tj(l), f;tj@),...}
(11) TK tit; T

F(Z,J,D) = [ul e UN e Loy ,}

and u!** denotes M P (J, p(z;,di")).

Based on the structural support vector machine [Tsochan-
taridis er al., 2005], the weighting vector w can be estimated
by maximizing the margin between positive samples and neg-
ative samples:

M
s 1T
min ;W' w + A Zlfm,
m=

©))

WIF (Zp, Jp, D) > 1 — &, ¥Ym < MT
WIF(Z, J,, D) < —1+&,,YVm > M VZ.

S.t.

The constraints make the learned model assign large scores
and small scores to positive samples and negative samples,
respectively. The training samples violating these principles
result in the penalty variables &,,, > 0. Moreover, the cutting-
plane method [Joachims et al., 2009] is employed to search
for those active constraints and ignore inactive ones.

5 Inference

Given the feature map J, the two-layer deformation model
defined in Eq. 1 can be applied to make a confidence score
for an arbitrary structure Z. However, for a simple object with
only 5 parts and 5 mixture types in a 320 x 240 image, the
number of possible configuration is (320 x 240 x 5)°, hence
it is impractical to adopt the brute-force search. Instead, we
propose to conduct an efficient inference to determine the op-
timal configuration Z*, i.e.,

7* = argm%X( Z g(zi7J,wi7D1',) + Z h(zi,zj,wij)).

v; €V € (S

(10)

To this end, we consider the graph G as a simple tree
structure, so that belief propagation (BP) [Kschischang et
al., 2001; Felzenszwalb and Huttenlocher, 2005] can be ap-
plied with a linear time complexity. BP inference includes
three steps: messages passing from leaves to the root, optimal
root configuration determination, and message backtracking
to determine the optimal configuration of other parts. With-
out loss of generality, we define the root part as z1, and each
non-root part z; has only one parent part z,;). Each z; sends
a message B; to its parent 2, ;), that is

B; (Zpa(i)) = max (g(zia J,wi, Dz) + h(zlv Zpa(i)s Wipa(i))

D

ce{pa(c)=i}
Starting from leaf parts, every non-root part sends a mes-
sage to its parent, and the propagation procedure continues
until the root part receives all messages. Then, the optimal

+ B.(z)). (11)
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Figure 2: Parsing results on the facial images(Row 1: our
model. Row 2: ABM. Row 3: AOT). The eyes, eyebrow,
nose and mouth are emphasized in green, blue, red and yellow

respectively. The fine color line segments represent the nodes
q;* at the base layer.

1.8
=

configuration z7 of the root part is determined as the one with
the highest score, i.e.,

>

ce{pa(c)=1}

Be(21)),

(12)

At last, we can backtrack the messages sending to zj
by performing a reverse propagation, through which we
can find the optimal configurations of non-root parts z;
arg Igax(Bi(zpa(i))). Continuing to backtrack to the base

ZI = argmax (9(2’1, Ja leDl) +
21

layer, the optimal configuration of the k-th child node of part
z} is written as :

arg max (MP(J, o(z], d?k))),
a€p(zr,dii")

a* (13)

The tree structure used in our model is simple and loop-
free. We can easily extend the tree structure to a loopy graph-
ical model. Accordingly, the loopy belief propagation [Weiss,
2000] is run to approximately infer the optimal configuration.

6 Experiments

The proposed model' is evaluated on Kaggle face dataset
[KAG, 2013] and the Weizmann horse dataset [Borenstein
and Ullman, 2008]. These two datesets provide test images
with key points to quantitatively evaluate the performance
of parsing models in [Zhu et al., 2010; Wu er al., 2010;
Yang and Ramanan, 2011; Si and Zhu, 2013], especially
the horse dataset which present many complicated structures,
with large intra- and inter-part deformations. The effective-
ness of our model is addressed through comparing to these
popular and state-of-the-art deformation models. For the
evaluation protocol, the average pixel distance between the
predicted key points and the ground truth, namely Average
Position Error (APE), is calculated for each model.

'"MATLAB codes can be downloaded from Ling Cai’s homepage
at: https://sites.google.com/site/lingcai2006sjtu/parsing
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Average Position Error

Key Point

(a) The Kaggle face dataset. (b) The Weizmann horse dataset.

Key Point

Figure 4: The average position error of key points on two
datasets.

Kaggle Face Dataset Weizmann Horse Dataset
Ours | AoT | AB Ours | HDT | AoT | AB | MPM
Eye || 38 | 49 [ 192 |[Body || 99 | 13.1 | 143 | 264 | 297
brow | 54 | 10.1 | 19.7 || Head || 12.0 | 158 | 29.1 | 383 | 314
Nose || 59 | 7.1 | 67 || FLeg || I5.1 | 145 | 193 | 322 | 347
Mouth || 49 | 67 | 122 |[ HLeg || 157 | 174 | 237 | 323 | 323
Total || 4.6 | 69 | 16:6 || Total || 13.0 | 152 | 21.3 | 31.6 | 32.1
() (b)
Table 1: The average position error of object parts on two
datasets.

6.1 Face Structure Parsing

Face is composed of six basic parts (two eyes, two eyebrows,
a nose and a mouth) set up in a spatial structure configu-
ration. In the Kaggle face dataset, some parts present the
intra-part deformations, e.g., the mouth shape undergoes its
movement when human is speaking. However, the facial ex-
pressions elicit the inter-part deformation. In addition, some
accessories, like beard and eyeglasses, cause enormous diffi-
culties for the deformation model. We test our performance
on the Kaggle face dataset [KAG, 2013] to parse face images
and localize the facial key points. Each image includes 15
key points of 6 facial parts. Even the same person can exhibit
varying facial appearances according to his pose, the camera
position or the illumination. As a result, the facial keypoint
detection is actually quite challenging for the parsing models.

In our parsing model, the top layer includes 6 nodes with
one type (I = 1) to represent the corresponding face parts,
and each one has 20 child nodes at the base layer to offset the
intra-part deformations. The nearest node at the base layer is
used to predict the key point by adding a displacement vector.
Moreover, 100 facial images are used to estimate the model
parameter D and w. Test is made on 250 images, and the re-
sults from our model are visualized in the first row of Fig. 2.
As can be seen, for each part, the nodes at the base layer are
mainly scattered around the key point to effectively encode
the local region, while the node at the top layer allows the big
movement to handle the inter-part deformations. Unlike two
deformation layers in our model, the single intra-deformation
layer in ABM cannot overcome the inter-part deformation,
which generates larger positioning errors as shown in the sec-
ond row. Though the grid graph in AOT can approximate the
inter-part deformations, it often uses two nodes to represent
one object part. Consequently intra-part deformations at the
base layer are handled by the nodes at the top layer, e.g., two
key points at the eyebrows shown in the last row of Fig. 2.



Figure 3: Horse parsing results. Row 1: our model. Row 2: ABM. Row 3: MPM. Row 4: AOT. Row 5: HDT

6.2 Horse Structure Parsing

Compared to faces, the horses in the Weizmann horse dataset
[Borenstein and Ullman, 2008] present more complicated
structures, with more intra- and inter-part deformations.
Firstly, the structure of a horse has been represented by four
parts: the root part corresponding to the horse’s body and
three child parts being the head, the front legs and the hind
legs. Secondly, we transformed all the training images to a
uniform coordinate system by aligning the root parts, so that
the scales and orientations are almost the same for the training
samples. At last, the clustering approach is run to determine
the part label. With the clusters of the object parts using PP,
we constructed a template for each type of object parts. 164
images in the dataset have been considered as positive sam-
ples to impose positive constraints for the parameter w. To
predict the specific key points on the horse, we employ the
node in the intra-part layer as the anchor and a linear dis-
placement vector to determine the positions of these points.
Both ABM and our model use 80 Gabor features to represent
object structure, while MPM and HDT detects 24 specific ob-
ject parts as its structure.

Fig. 3 shows the comparison result of the five models for
the horse parsing. The 1st row illustrates the results pro-
duced by our model, with the Gabor bases corresponding to
the head, body, front legs and hind legs being drawn in green,
red, blue and yellow line segments, respectively. Note that,
some mixed colors appear in the overlap parts, e.g., the yel-
low segments in the neck region is the mixture of red and
green. Without the inter-part deformation, ABM (2nd row of
Fig. 3) fuses the simple similarity transform to learn a single
template and fits it with different object structures, so it can
only represent the most common structure and the others are
considered as noise, shown in the second row. HOG gains
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better invariance to minor local deformations than Gabor fea-
ture, but it loses the capability of accurate position detection,
e.g., the results in the 3rd row of Fig. 3 indicate that MPM
cannot accurately determine some object parts, especially for
the front and hind legs. To overcome the shortages of Gabor
features, the intra-part deformation layer is constructed in our
model to handle those local deformations. Similarly, the base
layer in AOT deals with the intra-part deformations, but the
top layer based on a grid graph present strict limitations on
the part’s size and position. Occasionally, an object part is
represented by multiple nodes. Moreover, the grid graph does
not allow the nodes for large movements. Therefore, to a cer-
tain extend, AOT is limited on describing some parts with
large inter-part deformations, like head and legs as shown in
the 4th row of Fig. 3. Unlike the two deformation layers in
our model, HDT, based on the hierarchical structure, contains
multiple deformation layers but can only include three nodes
at each layers in order to construct an invariant triplet vec-
tor. As shown in the last row of Fig. 3, the structures from
HDT parsing results are just composed of some key points,
which is much less informative than the sparse representation
produced by our model.

6.3 Quantitative Evaluation

APE is used to quantitatively evaluate the performance of dif-
ferent parsing models. There is no scale issue on the Kaggle
face dataset [KAG, 2013] as all images have the same size, so
we measure APE on the original images. Fig. 4 (a) shows the
APE of 15 key points in 300 facial images. Table 1 (a) show
the APE of parts and the total APE, respectively. It can be
seen that our model achieves more accurate position results
at almost all key points comparing against ABM and AOT,
and has the total APE less than 5.



Unlike facial images, the horse images of the varying size
should be noticed for the Weizmann horse dataset [Borenstein
and Ullman, 2008]. To offset the scale variations, all test im-
ages are transformed to a unified coordinate system by align-
ing the body part. Compared to facial images, the horse im-
ages undergo larger intra- and inter-part deformations, which
pose a greater challenge to the parsing model. The quantita-
tive evaluation for the horse samples is illustrated in Fig. 4
(b). The APE of parts and the total APE of the five models
are listed in Table 1 (b). It is clear that our model gives the
smallest APE at 22 key points of 24 key points, and has the
total APE less than 14.

7 Conclusion

In this paper, we proposed a novel two-layer object parsing
model, which incorporates and jointly learns inter- and intra-
part deformations towards robust object parsing. The base
layer accounts for intra-part deformations, and carries out ac-
tive basis sparse coding to encode an object part as a feature
vector. The top layer captures inter-part deformations through
employing a MRF to accommodate large deformations of ob-
ject parts. By designing such a two-layer architecture, the
optimal object structure can be effectively and efficiently in-
ferred via our devised layer-wise learning algorithm. Exten-
sive qualitative and quantitative experimental results corrob-
orate that the proposed model can tolerate larger part defor-
mations and characterize finer object structures than the state-
of-the-art models.
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