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Abstract
Person re-identification plays an important role in
many safety-critical applications. Existing works
mainly focus on extracting patch-level features or
learning distance metrics. However, the represen-
tation power of extracted features might be limited,
due to the various viewing conditions of pedes-
trian images in reality. To improve the represen-
tation power of features, we learn discriminative
and robust representations via dictionary learning
in this paper. First, we propose a cross-view projec-
tive dictionary learning (CPDL) approach, which
learns effective features for persons across differ-
ent views. CPDL is a general framework for multi-
view dictionary learning. Secondly, by utilizing
the CPDL framework, we design two objectives
to learn low-dimensional representations for each
pedestrian in the patch-level and the image-level,
respectively. The proposed objectives can capture
the intrinsic relationships of different representa-
tion coefficients in various settings. We devise ef-
ficient optimization algorithms to solve the objec-
tives. Finally, a fusion strategy is utilized to gener-
ate the similarity scores. Experiments on the public
VIPeR and CUHK Campus datasets show that our
approach achieves the state-of-the-art performance.

1 Introduction
Person re-identification is the problem of matching pedes-
trian images observed from multiple non-overlapping cam-
eras. It saves a lot of human efforts in many safety-critical
applications such as video surveillance. In recent years,
many algorithms have been proposed to tackle this prob-
lem [Zheng et al., 2012; Zhao et al., 2013a; Wang et al., 2014;
Li et al., 2014b]. These methods can be mainly divided into
two categories, including the distance learning/metric learn-
ing methods [Weinberger et al., 2005; Zheng et al., 2011;
Davis et al., 2007; Mignon and Jurie, 2012; Pedagadi et al.,
2013] and feature learning methods [Gray and Tao, 2008;
Farenzena et al., 2010; Ma et al., 2012b; Zhao et al., 2013a].
The distance learning methods usually learn distance met-
rics that are expected to be robust to sample variations. The
feature learning methods aim to extract distinctive features

from pedestrian images, such as salient features [Zhao et al.,
2013a]. However, the representation power of learned fea-
tures or metrics might be limited, due to the various viewing
conditions of pedestrian images in real scenarios.

In this paper, we learn discriminative and robust represen-
tations via dictionary learning to improve the representation
power of features. Our motivations are two-folds. First, the
success of dictionary learning based domain adaptation tech-
nique inspires us to learn a pair of cross-view dictionaries
for person re-identification [Ni et al., 2013]. The adaptively
learned dictionaries can generate robust representations for
pedestrian images. Secondly, existing works either focus on
extracting features form image patches or directly learning
global features, but the complementary information resided
in patch-level and image-level are usually ignored.

Based on the motivations above, we propose a cross-view
projective dictionary learning (CPDL) approach, which is
a general framework for the multi-view dictionary learning
problem. We then design two objectives by utilizing the
CPDL framework, which learn low-dimensional representa-
tions for each person in the patch-level and the image-level,
respectively. Different from traditional dictionary learning
methods, CPDL adopts the projective learning strategy to
avoid solving the l1 optimization problem in training phase.
The proposed objectives can capture the intrinsic relation-
ships of different representation coefficients in various set-
tings. We also employ a strategy to fuse the similarity scores
estimated in two levels.

By far, there are few methods proposed to learn effec-
tive representations for the pedestrian images under different
views [Liu et al., 2014]. The basic idea of Liu’s method is
to learn expressive bases to represent the image patches. It
assumes that each pair of patches in two images shares the
same representation coefficients. However, it is not the case
in reality, due to the common misalignment problem in per-
son re-identification.

The major contributions of this paper are summarized be-
low.

• We propose a general framework, CPDL, for multi-
view dictionary learning, and apply it to person re-
identification. CPDL adopts the projective dictionary
learning strategy, which is more efficient than the tradi-
tional dictionary learning methods. We devise efficient
optimization algorithms to solve the model.
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• We design two objectives using CPDL, which explicitly
model the cross-view interactions in different represen-
tation levels, including the patch-level and image-level.
To the best of our knowledge, this paper is the first at-
tempt to learn representations at different levels for per-
son re-identification.
• We evaluate the performance of CPDL and related meth-

ods on the public VIPeR and CUHK Campus datasets.
Extensive experimental results show that our approach
outperforms the state-of-the-art methods.

2 Related Work
There are two types of works that are very related to our ap-
proach: (1) person re-identification, (2) dictionary learning.

Person Re-identification. In recent years, many algo-
rithms have been proposed for person re-identification. Some
traditional methods focus on learning effective metrics to
measure the similarity between two images captured from
different camera views [Hirzer et al., 2012; Zheng et al.,
2011]. Other research works focus on learning expressive
features, which usually obtain better performance that the
metric learning methods. They suggest that learning effective
representations is the key in person re-identification. Some
advanced features include attributes [Layne et al., 2012],
salience features [Zhao et al., 2013a; 2013b], mid-level fea-
tures [Zhao et al., 2014], and salient color features [Yang
et al., 2014]. Although the existing feature learning meth-
ods achieve good performance, the cross-view relationships
of pedestrian images haven’t been extensively studied. Our
CPDL approach explicitly models such relationships in dif-
ferent representation levels, and draws strength from them to
enhance the re-identification performance.

Dictionary Learning. As a powerful technique for learn-
ing expressive bases in sample space, dictionary learning
has attracted lots of attention during the past decades [Li
et al., 2014a]. Some popular dictionary learning methods
include K-SVD [Aharon et al., 2006], discriminative K-
SVD [Zhang and Li, 2010], and projective dictionary pair
learning [Gu et al., 2014]. Most recently, Liu et al. pre-
sented a semi-supervised coupled dictionary learning (SS-
CDL) method [Liu et al., 2014], and applied it to person
re-identification. The major differences between our ap-
proach and SSCDL are three-folds. First, SSCDL is a semi-
supervised method, while our approach is supervised. Sec-
ondly, SSCDL simply assumes that a pair of patches in two
views should have similar codings, which is unreasonable in
real scenario due to the misalignment problem. Our approach
models the cross-view interactions in image-level and patch-
level, respectively. Thirdly, SSCDL requires solving the l1
optimization problem that is time consuming. Our approach
adopts a more efficient learning strategy, i.e., projective dic-
tionary learning.

3 A General Framework for Cross-view
Projective Dictionary Learning (CPDL)

Traditional dictionary learning methods usually assume that
the samples A ∈ Rd×n can be reconstructed by sparse coef-
ficients Z ∈ Rm×n and a dictionary D ∈ Rd×m, i.e., A =

DZ, in which Z is constrained by l1 norm. However, solv-
ing sparse coefficients Z often suffers heavy computational
costs. Inspired by the projective dictionary learning [Gu et
al., 2014], we address this problem by reformulating the DL
process as a linear encoding and reconstruction process. Let
P ∈ Rm×d(m � d) denote a low-dimensional projection
matrix, we can reconstruct the sample set by A = DPA.
Note that PA denotes the linear encodings of sample set A.

We build a cross-view projective dictionary learning
(CPDL) framework in the two-view settings. Let A1 ∈
Rd1×n and A2 ∈ Rd2×n denote two training sets that are
collected under two different views, respectively. The recon-
structions in two views are formulated as

A1 = D1P1A1, A2 = D2P2A2, (1)

where D1 (and D2), P1 (and P2) are dictionaries and projec-
tions in two views, respectively.

The objective function of CPDL framework is

min
D1,D2,P1,P2

‖A1 −D1P1A1‖2F + ‖A2 −D2P2A2‖2F
+λ1f(D1, D2, P1, P2)

s.t.
∥∥d1(:,i)∥∥ ≤ 1,

∥∥d2(:,i)∥∥ ≤ 1.
(2)

where f(D1, D2, P1, P2) is a regularization function, λ1 is a
trade-off parameter, and d1(:,i) and d2(:,i) are the i-th columns
in D1 and D2, respectively.

The first two terms in objective (2) indicate reconstruc-
tion errors in two views, respectively. The last term
f(D1, D2, P1, P2) is a regularization function that bridges
two views. It can be customized for specific problems, such
as multi-view image classification or (cross-view) person re-
identification.

Finally, the obtained optimal dictionary pair {D1, D2} can
be used to generate new representations for test samples.
Note that, for simplicity, we only formulate two views in this
paper, but our model can be extended to the multiple-view
case by extending (2).

4 CPDL for Person Re-identification
In this section, we first introduce how to extract low-level
dense features from the pedestrian images. Then we formu-
late person re-identification problem using CPDL. Figure 1
shows the training framework of CPDL.

4.1 Feature Extraction
The pedestrian images in different camera views are not
usually aligned well. Extracting dense features from local
patches is a widely used strategy to obtain effective represen-
tations, as suggested in [Zhao et al., 2014]. Specifically, the
local patches are extracted on a dense grid. The size of each
patch is 10×10, and the grid step is 5. Then, for each patch,
we extract 32-dimensional color histogram features and 128-
dimensional dense SIFT features in each LAB channel. Fur-
ther, we also calculate the color histograms in different sam-
pling scales with the downsampling factors 0.5 and 0.75. All
the features of one patch are normalized with l2 norm. Fi-
nally, each patch is represented by a 672-dimensional feature
vector.
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Figure 1: Training framework of CPDL. The solid boxes rep-
resent the variables related to view 1, while the dashed boxes
represent the variables related to view 2. In the image-level
training (blue color), two views share the similar codings (i.e.,
PH
1 X1, PH

2 X2); in the patch-level training (red color), two
views share the similar dictionary (i.e., DL

1 , DL
2 ).

4.2 CPDL for Image Representation
Our goal is to learn robust representations for each pedes-
trian in different camera views by virtue of dictionary learn-
ing. It’s a challenging problem as the same person under dif-
ferent camera views usually exhibits significant differences
in appearance. In this section, we propose to emphasize the
feature learning in two levels, patch level and image level,
in order to capture both local and global characteristics from
the pedestrian images. Note that most existing methods only
consider feature learning in one single level [Liu et al., 2014].

LetX1 andX2 denote the training sets of high-dimensional
dense features in two views, respectively. For the i-th train-
ing image in view 1, the dense features of all the patches are
concatenated as a high-dimensional vector 1, which is the i-
th column in X1. Clearly, the corresponding columns in X1

and X2 should have similar codings, since they represent the
same pedestrian. Hence, by defining the regularization func-
tion f(·) in (2), we have the following objective

min
DH

1 ,DH
2 ,

PH
1 ,PH

2

∥∥X1 −DH
1 P

H
1 X1

∥∥2
F
+
∥∥X2 −DH

2 P
H
2 X2

∥∥2
F

+λ1
∥∥PH

1 X1 − PH
2 X2

∥∥2
F
,

s.t. ‖dH1(:,i)‖ ≤ 1, ‖dH2(:,i)‖ ≤ 1,

(3)
where DH

1 (and DH
2 ), P

H
1 (and PH

2 ) denote the dictionaries
and projection matrices in two views, respectively.

The regularization function in (3) is
∥∥PH

1 X1 − PH
2 X2

∥∥2
F

,
indicating that the codings in two views should be as close as
possible. In this way, the learned dictionariesDH

1 andDH
2 are

expected to generate similar codings for the same pedestrian
under two camera views.

1As we have high-dimensional image-level features and low-
dimensional patch-level features, we use superscripts H and L for
the image-level and patch-level variables, respectively.

4.3 CPDL for Patch Representation
In addition to modeling the image representation in (3), we
also consider the dictionary learning in patch-level repre-
sentations. Let Y1 and Y2 denote the training sets of low-
dimensional patch features in two views, respectively. In this
case, we cannot simply assume that the codings in two views
are close to each other. In reality, the i-th patch in view 1 may
not match the i-th patch in view 2 due to the misalignment
problem under cross-view settings. One reasonable assump-
tion is that the patches in different views could share a similar
dictionary. Therefore, the objective function is

min
DL

1 ,D
L
2 ,P

L
1 ,PL

2

∥∥Y1 −DL
1P

L
1 Y1

∥∥2
F
+

∥∥Y2 −DL
2P

L
2 Y2

∥∥2
F

+λ2
∥∥DL

1 −DL
2

∥∥2
F
,

s.t. ‖dL1(:,i)‖ ≤ 1, ‖dL2(:,i)‖ ≤ 1,

(4)
in which the last term emphasizes the similarity of two dic-
tionaries.

4.4 Matching and Fusion
With the learned two pairs of dictionaries, {DL

1 , D
L
2 } and

{DH
1 , D

H
2 }, we can obtain robust representations for the test

images in two views, and perform the following matching and
fusion strategy.

In person re-identification, we need to match a probe im-
age to a set of gallery images. As our approach jointly learns
the dictionaries in both patch-level and image-level, we pro-
pose a fusion strategy to take full advantages of the robust
representations.

Patch-level Matching. The patch matching methods have
been extensively studied in existing works [Zhao et al.,
2013a; 2014]. We adopt a similar constrained patch match-
ing strategy. For each patch in the probe image, we can not
directly match it to the corresponding patch in gallery im-
ages, due to the well-known misalignment problem. There-
fore, we search the spatial neighbors of the targeted patch
in the gallery images, and calculate the distances between
each pairs. Finally, we can estimate the similarity between
a probe image and every gallery image. Instead of comparing
the original patches, we match the representation coefficients
over the dictionaries {DL

1 , D
L
2 } for each pair of patches. The

similarity score ScoreP(i) between the probe image and the
i-th gallery image is generated from the similarities between
these patches.

Image-level Matching. The image-level matching be-
tween the probe image and gallery images is more straight-
forward, as we have already attained the compact represen-
tations for each image. The representation coefficients are
calculated using the dictionaries {DH

1 , D
H
2 } for each pair of

patches. We adopt the Gaussian kernel function to compute
the similarity score ScoreI(i) between the probe image and
the i-th gallery image.

Fusion. We first normalize the similarity score vectors
ScoreP and ScoreI, and utilize a simple strategy to perform
score fusion:

Score(i) = ScoreP(i) + λScoreI(i), (5)

where λ is an user-defined parameter.

2157



5 Optimization
5.1 Solving objective (3)
To facilitate the optimization of (3), we first add two relax-
ation variables AH

1 and AH
2 , and rewrite the objective as

min
DH

1 ,DH
2 ,PH

1 ,

PH
2 ,AH

1 ,AH
2

∥∥X1 −DH
1 A

H
1

∥∥2
F
+
∥∥X2 −DH

2 A
H
2

∥∥2
F

+α(
∥∥PH

1 X1 −AH
1

∥∥2
F
+
∥∥PH

2 X2 −AH
2

∥∥2
F
)

+λ1
∥∥AH

1 −AH
2

∥∥2
F
,

s.t. ‖dH1(:,i)‖ ≤ 1, ‖dH2(:,i)‖ ≤ 1,

(6)
where α is a balance parameter.

Although there are many variables in (6), we can alterna-
tively optimize these variables as follows.
1). Fix other variables and update AH

1 and AH
2 .

By ignoring the irrelevant variables with respect toAH
1 , the

objective (6) is reduced to

min
AH

1

J(AH
1 ) =

∥∥X1 −DH
1 A

H
1

∥∥2
F
+ α

∥∥PH
1 X1 −AH

1

∥∥2
F

+λ1
∥∥AH

1 −AH
2

∥∥2
F
.

(7)
Setting ∂J(AH

1 )

∂AH
1

= 0, we get the solution

AH
1 = (DHT

1 DH
1 + (α+ λ1)I)

−1

(DHT
1 X1 + λ1A

H
2 + αPH

1 X1),
(8)

where I is an identity matrix. We can obtain solution to AH
2

in a very similar way.
2). Fix other variables and update PH

1 and PH
2 .

The objective function regarding PH
1 can be written as

min
PH

1

α
∥∥PH

1 X1 −AH
1

∥∥2
F
. (9)

By setting the derivative with respect to PH
1 to zero, we

have the solution PH
1 = AH

1X1(X1X
T
1 + γI)−1, where γ is

a regularization parameter. Similarly, the solution to PH
2 is:

PH
2 = AH

2X2(X2X
T
2 + γI)−1.

3). Fix other variables and update DH
1 and DH

2 .
By removing the irrelevant terms in (6), we can write the

objective function regarding DH
1 as

min
DH

1

∥∥X1 −DH
1 A

H
1

∥∥2
F

s.t. ‖dH1(:,i)‖ ≤ 1. (10)

Problem (10) can be effectively solved using ADMM al-
gorithm as introduced in [Gu et al., 2014]. We have similar
solutions to DH

2 .
The above procedures are repeated until convergence. Fi-

nally, we obtain a pair of dictionaries {DH
1 , D

H
2 } that are used

to represent high-dimensional image features.

5.2 Solving objective (4)
To solve the problem (4), we first reformulate the objective as

min
DL

1 ,D
L
2 ,P

L
1 ,

PL
2 ,AL

1 ,A
L
2

∥∥Y1 −DL
1A

L
1

∥∥2
F
+
∥∥Y2 −DL

2A
L
2Y2

∥∥2
F

+β(
∥∥PL

1 Y1 −AL
1

∥∥2
F
+
∥∥PL

2 Y2 −AL
2

∥∥2
F
)

+λ2
∥∥DL

1 −DL
2

∥∥2
F
,

s.t. ‖dL1(:,i)‖ ≤ 1, ‖dL2(:,i)‖ ≤ 1,

(11)

Algorithm 1. CPDL for Person Re-identification
Input: Training images in two views A1, A2,

test images T1, T2, parameters λ1, λ2, λ, α, β.
Output: Matching results.
Training
1: Extract dense features from A1, A2 (Section 4.1), and

construct feature sets X1, X2, Y1, Y2;
2: Learn dictionaries {DH

1 , D
H
2 } from image-level

features X1, X2 (Section 5.1);
3: Learn dictionaries {DL

1 , D
L
2 } from patch-level

features Y1, Y2 (Section 5.2);
Testing
4: Extract dense features from T1, T2 (Section 4.1), and

construct feature sets Xt1, Xt2, Yt1, Yt2;
5: Encode Xt1, Xt2 using {DH

1 , D
H
2 }, and perform

image-level matching (Section 4.4);
6: Encode Yt1, Yt2 using {DL

1 , D
L
2 }, and perform

patch-level matching (Section 4.4);
7: Fuse matching results in two-levels using (5).

where β is a balance parameter.
We alternatively update the variables in (11), and obtain

the sub-problems (with solutions) as follows

min
AL

1

∥∥Y1 −DL
1A

L
1

∥∥2
F
+ β

∥∥PL
1 Y1 −AL

1

∥∥2
F
. (12)

The solution to (12) is AL
1 = (DLT

1 DL
1 + βI)−1(DLT

1 Y1 +
βPL

1 Y1).

min
PL

1

β
∥∥PL

1 Y1 −AL
1

∥∥2
F
. (13)

The optimal solution is PL
1 = AL

1Y1(Y1Y
T
1 + γI)−1.

min
DL

1

∥∥Y1 −DL
1A

L
1

∥∥2
F
+ λ2

∥∥DL
1 −DL

2

∥∥2
F
,

s.t. ‖dL1(:,i)‖ ≤ 1.
(14)

We have similar solutions to AL
2 , PL

2 and DL
2 . The above

procedures are repeated until convergence. We finally obtain
a pair of optimal dictionaries {DL

1 , D
L
2 } that are used to re-

construct low-dimensional patch features.
The complete algorithm is summarized in Algorithm 1.

6 Experiments
In this section, we compare our approach with several re-
lated methods on two benchmark datasets, VIPeR [Gray et
al., 2007] and CUHK01 Campus [Zhao et al., 2014].

6.1 Settings
Baselines. We compare our approach with three types of
person re-identification methods, which are feature learning
methods, metric learning methods and dictionary learning
methods. The feature learning methods include symmetry-
driven accumulation of local features (SDALF) [Farenzena
et al., 2010], local descriptors encoded by Fisher vectors
(LDFV) [Ma et al., 2012b], unsupervised salience learn-
ing method (eSDC) [Zhao et al., 2013b], salience matching
method [Zhao et al., 2013a], and mid-level filters [Zhao et
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Figure 2: Illustration of images in (a) VIPeR dataset and (b)
CUHK Campus dataset.
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Figure 3: CMC curves of average matching rates on VIPeR
dataset. Rank-1 matching rate is marked before the name of
each approach.

al., 2014]. The compared metric learning algorithms include
probabilistic relative distance comparison (PRDC) [Zheng et
al., 2011], large margin nearest neighbor (LMNN) [Wein-
berger et al., 2005], eBiCov [Ma et al., 2012a], information-
theoretic metric learning (ITML) [Davis et al., 2007], pair-
wise constrained component analysis (PCCA) [Mignon and
Jurie, 2012], KISSME [Köstinger et al., 2012], and local
Fisher discriminant analysis (LF) [Pedagadi et al., 2013].
We also compare with the dictionary learning method SS-
CDL [Liu et al., 2014].

Evaluation Metrics. We employ the standard cumulated
matching characteristics (CMC) curve as our evaluation met-
ric, and report the Rank-k recognition rates.

Parameter Setting. There are five parameters in our
model, including α, β, λ, λ1 and λ2. In the experiments, we
empirically set these parameters to achieve the best perfor-
mance. In particular, α and β are set to 2 and 1, respectively.
λ used in the fusion strategy is chosen in the range [0 1]. Two
parameters λ1 and λ2 control the effects of cross-view inter-
actions, and we will discuss their settings in the next section.

6.2 VIPeR Dataset
The VIPeR dataset was collected in an outdoor academic en-
vironment. It contains images of 632 pedestrian pairs un-
der two camera views with different viewpoints. The images
in two views have significant variations in pose, viewpoint

Table 1: Top ranked matching rates in (%) with 316 persons
on VIPeR dataset.

Method r = 1 r = 5 r = 10 r = 20

PRDC 15.66 38.42 53.86 70.09
PCCA 19.27 48.89 64.91 80.28
SDALF 19.87 38.89 49.37 65.73
eBiCov 20.66 42.00 56.18 68.00
LDFV 22.34 47.00 60.40 71.00
LF 24.11 51.24 67.09 82.01
eSDC 26.31 50.70 62.37 76.36
SalMat 30.16 53.45 65.78 N/A
SSCDL 25.60 53.70 68.10 83.60
Mid-level 29.11 52.50 67.12 80.03
Ours 33.99 64.21 77.53 88.58

and illuminations. Figure 2(a) shows some images captured
by Camera-1 (first row) and Camera-2 (second row) in the
VIPeR dataset. The images are normalized to the size of
128×48 in our experiments.

We follow the evaluation protocol in [Gray and Tao, 2008].
In particular, we randomly select 316 pairs of images for
training, and the remaining pairs are used for test. Then, two
groups of experiments are conducted. First, the images cap-
tured by Camera-1 are utilized as probe images, and the im-
ages captured by Camera-2 as gallery images. For the probe
images, we match each of them to the gallery set, and obtain
the Rank-k rate. The CMC curves are also obtained by using
the rates at all ranks. Second, we exchange the training and
test sets, and repeat the above procedures. As the raw fea-
tures for image-level training have very high dimensions, we
apply PCA to reduce the dimensionality by keeping the 95%
energy. We conduct 10 random tests and report the average
results. Each random test has two groups of evaluations as
described above.

Figure 3 shows the CMC curves of the compared methods.
We can observe that our approach achieves higher match-
ing rates in each rank. Table 1 shows the detailed Rank-
1, Rank-5, Rank-10, and Rank-20 matching rates of all the
compared methods. It shows that the advanced feature learn-
ing methods like salience matching (SalMat) and mid-level
filters obtain much better results than metric learning meth-
ods. The dictionary learning method SSCDL achieves better
Rank-5/10/20 rates than the SalMat and Mid-level methods,
which shows the merits of dictionary learning. Our approach
achieves the best Rank-1 rate, and significantly improves the
Rank-5/10/20 rates, validating the effectiveness of the pro-
posed CPDL framework.

6.3 CUHK01 Campus Dataset
The CUHK01 Campus dataset contains pedestrian images
of 971 persons in two camera views. It was collected in a
campus environment. This dataset shows significant changes
of viewpoints. The frontal or back views are captured by
Camera-1, while the side views are captured by Camera-2.
Figure 2(b) illustrates some images in view 2 (first row) and
view 1 (second row). The images are resized to 160×60 in
our experiments.
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Figure 5: Experimental analysis on VIPeR dataset. (a) Rank-1 matching rates v.s. different values of parameters; (b) Matching
rates of image-level model, patch-level model and the fusion model; (c) Rank-1 matching rates v.s. different dictionary size.
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Figure 4: CMC curves of average matching rates on CUHK01
dataset. Rank-1 matching rate is marked before the name of
each approach.

We follow the evaluation protocol in [Zhao et al., 2014].
For each person, one image is randomly selected to build the
gallery set, and the other one is used to construct the probe
set. We map each image in probe set to every gallery im-
age, and calculate the correct matched rank and CMC curves.
The whole procedure is repeated for 10 times, and the aver-
age CMC curves are generated, as shown in Figure 4. Ta-
ble 2 shows the detailed Rank-1/5/10/20 matching rates of
the compared methods. We can observe that our approach
obtains much higher matching rates than other methods. The
Rank-1 matching rate is improved by 25.17%, compared to
the mid-level filter method.

6.4 Discussions
Different from existing methods, the proposed CPDL ap-
proach models the interactions between different views, such
as the similarities of codings (in the image-level) or dictionar-
ies (in the patch-level). The parameters λ1 and λ2 control the
effects of the cross-view interactions. Figure 5(a) shows the
Rank-1 matching rates of our approach with different values
of λ1 and λ2. It shows that our approach is not very sensi-
tive to the choice of parameters in the range [0 5]. We set
λ1 = 1, λ2 = 2.

Table 2: Top ranked matching rates in (%) on CUHK01
dataset.

Method r = 1 r = 5 r = 10 r = 20

SDALF 9.90 22.57 30.33 41.03
eSDC 19.67 32.71 40.28 50.57
LMNN 13.45 31.33 42.25 54.11
ITML 15.98 35.22 45.60 59.80
SalMat 28.45 45.85 55.67 68.89
Mid-level 34.30 55.06 64.96 73.94
Ours 59.47 81.26 89.72 93.10

Figure 5(b) shows the CMC curves of our approach and
its two components, i.e., image-level model and patch-level
model. We can observe that the representations in image-
level and patch-level are complementary to each other, and
our approach takes full advantage of the complementary in-
formation.

Another important factor in our approach is the size of dic-
tionary. We use the same dictionary size in different views.
Figure 5(c) shows the Rank-1 matching rate with different
dictionary size. We achieved similar results on the CUHK01
dataset. Accordingly, the dictionary size is set to 50 in our ex-
periments. Also, we note that the matching process in exist-
ing feature learning methods (e.g., SalMat or Mid-level filter)
is very time consuming. However, our approach adopts a rela-
tive small dictionary, which leads to compact representations
of images, and therefore speeds up the matching process.

7 Conclusions
We proposed a cross-view projective dictionary learning
(CPDL) approach for person re-identification in this paper.
Our approach learned two pairs of dictionaries across dif-
ferent views in patch-level and image-level, respectively.
The learned dictionaries can be used to represent probe and
gallery images, leading to robust representations. Experimen-
tal results on the public VIPeR and CUHK Campus datasets
showed that our approach took full advantages of the com-
plementary information in different views and representation
levels, and achieved the state-of-the-art performance com-
pared with the related methods.
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