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Abstract
Recent advances in imaging and multimedia tech-
nologies have paved the way for automatic analysis
of visual art. Despite notable attempts, extracting
relevant patterns from paintings is still a challeng-
ing task. Different painters, born in different pe-
riods and places, have been influenced by different
schools of arts. However, each individual artist also
has a unique signature, which is hard to detect with
algorithms and objective features. In this paper we
propose a novel dictionary learning approach to au-
tomatically uncover the artistic style from paint-
ings. Specifically, we present a multi-task learning
algorithm to learn a style-specific dictionary repre-
sentation. Intuitively, our approach, by automat-
ically decoupling style-specific and artist-specific
patterns, is expected to be more accurate for re-
trieval and recognition tasks than generic methods.
To demonstrate the effectiveness of our approach,
we introduce the DART dataset, containing more
than 1.5K images of paintings representative of dif-
ferent styles. Our extensive experimental evalua-
tion shows that our approach significantly outper-
forms state-of-the-art methods.

1 Introduction
With the continuously growing amount of digitized art avail-
able on the web, classifying paintings into different cate-
gories, according to style, artist or based on the semantic con-
tents, has become essential to properly manage huge collec-
tions. In addition, the widespread diffusion of mobile devices
has led to an increased interest in the tourism industry for de-
veloping applications that automatically recognize the genre,
the art movement, the artist, and the identity of paintings and
provide relevant information to the visitors of museums.

Imaging and multimedia technologies have progressed
substantially during the past decades, encouraging research
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Figure 1: Given the images belonging to the Baroque, Re-
naissance, Impressionism, Cubism, Postimpressionism, Mod-
ern art movements, can you detect which ones correspond to
the same style1?

on automatic analysis of visual art. Nowadays, art histori-
ans have even started to analyse art based on statistical tech-
niques, e.g. for distinguishing authentic drawings from imi-
tations [Hughes et al., 2010]. However, despite notable at-
tempts [Li et al., 2012; Carneiro, 2013; Wang and Takat-
suka, 2013; Karayev et al., 2014], the automatic analysis of
paintings is still a complex unsolved task, as it is influenced
by many aspects, i.e. low-level features, such as color, tex-
ture, shading and stroke patterns, mid-level features, such as
line styles, geometry and perspective, and high-level features,
such as objects presence or scene composition.

In this paper we investigate how to automatically infer
the artistic style, i.e. Baroque, Renaissance, Impressionism,
Cubism, Postimpressionism and Modernism, from paintings.
According to Wikipedia, an artistic style is a “tendency with a
specific common philosophy or goal, followed by a group of
artists during a restricted period of time or, at least, with the
heyday of the style defined within a number of years”. Refer-
ring to paintings, the notion of style is more difficult to define
than to perceive. Looking at Fig. 1, where images represen-
tative of six art movements are shown, can you guess which
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ones belong to the same style? At the first glance, it may not
be hard to group these images into different styles, i.e. (1)
and (9), (4) and (8), even if you have never seen these paint-
ings before. Indeed, human observers can easily match art-
works from the same style and discriminate those originated
from different art movements, even if no a-priori information
is provided. That is because humans recognize the style by
implicitly using both low-level cues such as lines or colors
and more subtle compositional patterns.

Recently, statistical methods have shown potential for sup-
porting traditional approaches in the analysis of visual art by
providing new, objective and quantifiable measures that as-
sess the artistic style [Carneiro, 2013; Wang and Takatsuka,
2013; Karayev et al., 2014]. In this paper we propose a dic-
tionary learning approach for recognizing styles. Dictionary
learning, which has proved to be highly effective in differ-
ent computer vision and pattern recognition problems [Yang
et al., 2009; Elad and Aharon, 2006], is a class of unsuper-
vised methods for learning sets of over-complete bases to
represent data efficiently. The aim of dictionary learning is
to find a set of basis vectors such that an input vector can
be represented as a linear combination of the basis vectors.
In this paper we propose a novel framework unifying multi-
task and dictionary learning in order to simultaneously infer
artist-specific and style-specific representations from a col-
lection of paintings. Our intuition is that if we can build
a style-specific dictionary representation by exploiting com-
mon patterns between artists of the same style with multi-task
learning, more accurate results can be obtained for painting
retrieval or recognition. For example, by automatically learn-
ing a dictionary for Cubism which captures the features as-
sociated to straight lines, we expect to easily detect that the
paintings (1) and (9) in Fig.1 belong to the same category.
Our experiments, conducted on the new DART (Dictionary
ART) dataset, confirm our intuition and demonstrate that the
learned dictionaries can be successfully used to recognize the
artistic styles.

To summarize, the main contributions of this paper are: (i)
We are the first to introduce the idea of learning style-specific
dictionaries for automatic analysis of paintings. (ii) A novel
multi-task dictionary learning approach is proposed through
embedding all tasks into an optimal learned subspace. Our
multi-task learning strategy permits to effectively separate
artist-specific and style-specific patterns, improving recogni-
tion performances. The proposed machine learning frame-
work is a generic one and can be easily applied to other prob-
lems. (iii) We collected the DART dataset which contains
paintings from different art movements and different artists.

2 Related Work
2.1 Automatic Analysis of Paintings
In literature, [Cutzu et al., 2005] were the first to borrow
ideas from classification systems for automatic analysis of
visual art and studied the differences between paintings and
photographs. Image features such as edges, spatial varia-
tion of colors, number of unique colors, and pixel saturation
were used for classification. [Li et al., 2012] compared van
Gogh with his contemporaries by statistical analysis of a mas-

sive set of automatically extracted brushstrokes. [Carneiro,
2013] introduced the problem of artistic image annotation and
retrieval and proposed several solutions using graph-based
learning techniques. [Wang and Takatsuka, 2013] proposed a
SOM-based model for studying and visualizing the relation-
ships among painting collections of different painters. [Yan-
ulevskaya et al., 2012] presented an analysis of the affective
cues extracted from abstract paintings by looking at low-level
features and employing a bag-of-visual-words approach. Few
works focused specifically on inferring style from paintings
[Shamir et al., 2010; Karayev et al., 2014]. However, none
of these works have studied the problem of decoupling artist-
specific and style-specific patterns as we do with our multi-
task dictionary learning framework.

2.2 Dictionary and Multi-task Learning

Dictionary learning has been shown to be able to find succinct
representations of stimuli. Recently, it has been successfully
applied to a variety of problems in computer vision, pattern
recognition and image processing, e.g. image classification
[Yang et al., 2009], denoising [Elad and Aharon, 2006]. Dif-
ferent optimization algorithms [Aharon et al., 2006; Lee et
al., 2006] have also been proposed to solve dictionary learn-
ing problems. However, as far as we know, there is no re-
search work on learning dictionary representations for recog-
nizing artistic styles.

Multi-task learning [Argyriou et al., 2007; Yan et al., 2013;
2014] methods aim to simultaneously learn classification and
regression models for a set of related tasks. This is typically
advantageous as compared to considering single tasks sep-
arately and not exploiting their relationships. The goal of
multi-task learning is to improve the performance by learning
models for multiple tasks jointly. This works particularly well
if these tasks have some commonality while are all slightly
under-sampled. However, there is hardly any work on com-
bining multi-task and dictionary learning problems. [Ruvolo
and Eaton, 2014] developed an efficient online algorithm for
dictionary learning from multiple consecutive tasks based on
the K-SVD algorithm. Another notable exception is [Mau-
rer et al., 2013] where theoretical bounds are provided to
study the generalization error of multi-task dictionary learn-
ing algorithms. [Yang et al., 2010; Chang et al., 2014;
2015] proposed different convex formulations for feature se-
lection problems. These works are very different from ours,
since we focus on a specific applicative scenario and propose
a novel multi-task dictionary learning algorithm.

1Answers: Cubism (1,9), Impressionism (2,7), Postimpression-
ism (3,10), Renaissance (4,8), Baroque (6,11), Modern (7,12).

Names and authors of paintings: 1) Bottle and Fishes, Braque;
2) Bouquet of Sunflowers, Monet; 3) Portrait of the Postman Joseph
Roulin, van Gogh; 4) Christ Falling on the Way to Calvary, Raphael;
5) The Disintegration of the Persistence of Memory, Dali; 6) The
Adoration of the Golden Calf, Poussin; 7) Portrait of Claude Renoir
Painting, Renoir; 8) Death of Actaeon, Titian; 9) Bananas, Gris; 10)
Vegetation Tropicale, Martinique, Gauguin; 11) The Night Watch,
Rembrandt; 12) Living Still Life, Dali.
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Figure 2: Extracted features: color (light blue), composition
(red) and lines (blue).

3 Learning Style-specific Dictionaries
In this section we present our multi-task dictionary learn-
ing approach for inferring style-specific representations from
paintings. In the following we first describe the chosen fea-
ture descriptors and then the proposed learning algorithm.

3.1 Feature Extraction from Paintings
Color, composition and brushstrokes are considered to be the
three most important components in paintings. Therefore, to
represent each painting, we construct a 37-dimensional fea-
ture vector as proposed in [Wang and Takatsuka, 2013], in-
cluding color, composition and lines informations (Fig.2).
Color. Following [Wang and Takatsuka, 2013], the color fea-
tures are computed as a function of luminance and hue. They
are: (i) The visual temperature of color (the feel of warmth
or coldness of color), as the wavelengths of the visible color
light waves are considered to be related to the human per-
ception of color temperatures. Different emotions can be ex-
pressed by using cold or warm color temperatures. (ii) The vi-
sual weight of color (the feel of heaviness of color). From the
perspective of psychology, people usually feel that a darker
color is heavier and a lighter color is lighter. (iii) The expres-
siveness of color (the degree of contrast including the con-
trast between luminance, saturation, hue, color temperature,
and color weight). Global and local contrast features are both
used to measure the differences between pixel and image re-
gions.
Composition. The composition represents the spatial orga-
nization of visual elements in a painting. For each image
we compute a saliency map. The saliency map is divided
into three parts both horizontally and vertically and we con-
sider the mean salience for each of the nine sections to com-
pute the “rule of thirds”. Additionally, properties of the most
salient region such as size, elongation, rectangularity and the
most salient point are used to represent properties of ‘golden
section’ composition principles. In details, elongation mea-
sures the symmetricity along the principal axes, rectangular-
ity measures how close it is to its minimum bounding rect-
angle, the most salient point is the global maximum of the
saliency map.
Lines. Lines in paintings are generally perceived as edges.
Different styles of paintings or different painters may favor a
certain type of line. To interpret the concepts of lines, the
Hough Transform is adopted to find straight lines that are
above a certain threshold (longer than 10 pixels). The mean
slope, mean length, and standard deviation of slopes of all the
detected straight lines are calculated.

3.2 Multi-task Dictionary Learning
Intuitively, in this and in many other applications [Kong and
Wang, 2012; Mairal et al., 2008], it is reasonable to expect
that more accurate recognition results are achieved if class

Algorithm 1: Learning artist-specific and style-specific dic-
tionaries.

Input:
Samples X1, ...,Xk from K tasks
Subspace dimensionality s, dictionary size l, regularization
parameters λ1, λ2.

Output:
Optimized P ∈ Rd×s, Ck ∈ Rnk×l, Dk ∈ Rl×d, D ∈ Rl×s.

1: Initialize P using any orthonormal matrix
2: Initialize Ck with l2 normalized columns
3: repeat

Compute D using Algorithm 2 in [Mairal et al., 2009]
for k = 1 : K

Compute Dk using Algorithm 2 in [Mairal et al., 2009]
Compute Ck using FISTA [Beck and Teboulle, 2009]

end for
Compute P by eigendecomposition of
B = X′(I−C(C′C)−1C′)X;
until Convergence;

specific dictionaries are adopted rather than generic ones. To
this end, in this paper we demonstrate that better classification
performance are obtained when we consider a style-specific
dictionary for each artistic style. In details, we propose to
jointly learn a set of artist-specific dictionaries and discover
the underlying style-specific dictionary projecting data in a
low dimensional subspace.

More formally, for each painting style we considerK tasks
and the k-th task corresponds to the k-th artist. Each task
consists of data samples denoted by Xk = [x1

k,x
2
k, ...,x

nk

k ],
Xk ∈ IRnk×d, k = 1, ...,K, where xi

k ∈ IRd is a d-
dimensional feature vector and nk is the number of samples
in the k-th task. We propose to learn a shared subspace across
all tasks, obtained by an orthonormal projection P ∈ IRd×s,
where s is the dimensionality of the subspace. In this learned
subspace, the data distribution from all tasks should be sim-
ilar to each other. Therefore, we can code all tasks together
in the shared subspace and achieve better coding quality. The
benefits of this strategy are: (i) We can improve each individ-
ual coding quality by transferring knowledge across all tasks.
(ii) We can discover the relationship among different tasks
(artists) via coding analysis. (iii) The common dictionary
among tasks, i.e. the style-specific dictionary, can be learned
by embedding all tasks into a good sharing subspace. These
objectives can be realized solving the optimization problem:

min
Dk,Ck,P,D

K∑
k=1

‖Xk −CkDk‖2F + λ1
K∑

k=1

‖Ck‖1

+λ2
K∑

k=1

‖XkP−CkD‖2F

s.t.

 P′P = I
(Dk)j·(Dk)

′
j· ≤ 1, ∀j = 1, ..., l

Dj·D
′
j· ≤ 1, ∀j = 1, ..., l

(1)

where Dk ∈ IRl×d is an overcomplete (artist-specific) dictio-
nary (l > d) with l prototypes of the k-th task, (Dk)j· in the
constraints denotes the j-th row of Dk, and Ck ∈ IRnk×l cor-
responds to the sparse representation coefficients of Xk. In
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the third term of Eq.1, Xk is projected by P into the subspace
to explore the relationship among different tasks. D ∈ IRl×s

is the (style-specific) dictionary learned in the tasks-shared
subspace and Dj· in the constraints denotes the j-th row of
D. Moreover, I is the identity matrix, (·)′ denotes the trans-
pose operator and λ1 and λ2 are regularization parameters.
The first constraint guarantees the learned P to be orthonor-
mal, and the second and third constraints prevent the learned
dictionary to be arbitrarily large. In our objective function,
we learn a dictionary Dk for each task k and one shared dic-
tionary D among k tasks. When λ2 = 0, Eq.1 reduces to the
traditional dictionary learning on separated tasks. It is fun-
damental to underline the difference between D and Dk: D
is the learned style-specific dictionary and Dk is the dictio-
nary associated the k-th artist in each style. In Eq.1, we share
the same coefficient Ck in the global and in the task-specific
reconstruction error terms. This is actually meant to enforce
the coherence between artist-specific and style-specific dic-
tionaries found in the low dimensional subspace.

Optimization
To solve the problem in Eq.1, we adopt an alternating opti-
mization algorithm. The proposed algorithm is summarized
in Algorithm 1. The source code for the optimization will be
made available online. In details, we optimize with respect to
D, Dk, Ck and P respectively in four steps as follows:

Step 1: Fixing Dk, Ck, P, compute D. Considering the
matrices X = [X′1, ...,X

′
k]
′, C = [C′1, ...,C

′
k]
′, we obtain∑K

k=1 ‖XkP−CkD‖2F = ‖XP−CD‖2F . Therefore Eq.1
is equivalent to:

min
D

‖XP−CD‖2F

s.t. Dj·D
′
j· ≤ 1, ∀j = 1, ..., l

This is equivalent to the dictionary update stage in traditional
dictionary learning algorithms. We adopt the dictionary up-
date strategy of Algorithm 2 in [Mairal et al., 2009] to effi-
ciently solve it.

Step 2: Fixing D, Ck, P, compute Dk. To compute Dk
we solve:

min
Dk

‖Xk −CkDk‖2F
s.t. (Dk)j·(Dk)

′
j· ≤ 1, ∀j = 1, ..., l

(2)

Similarly to Step 1, solving (2) corresponds to the update
stage for dictionary learning in case of k tasks. Then, to com-
pute Dk we also use the approach described in Algorithm 2
in [Mairal et al., 2009].

Step 3: Fixing Dk, P, D, compute Ck. Eq.1 is equivalent
to:

min
Ck

K∑
k=1

‖Xk −CkDk‖2F + λ1

K∑
k=1

‖Ck‖1

+λ2

K∑
k=1

‖XkP−CkD‖2F

This problem can be decoupled into n′ = n1 +n2 + ...+nk
distinct problems:

min
ci
k

‖xi
k − cikDk‖22 + λ1‖cik‖1 + λ2‖xi

kP− cikD‖22 (3)

We adopt the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA) [Beck and Teboulle, 2009] to solve the

Braque
Ceiling in the Louvre, 

1952

Gris
Bottle and Glass on a Table, 

1914

Monet
Bouquet of mallows, 

1880

Gauguin
Bord de Mer II, 

1887

Titian
Center panel of resurrection, 

1542

Raphael
Cecilia,

1516

Figure 3: Examples of paintings from the DART dataset.
Each image is associated with a detailed description contain-
ing year, artist and painting name.

problems in Eq.3. FISTA solves the optimization prob-
lems in the form of minµ f(µ) + r(µ), where f(µ) is
convex and smooth, and r(µ) is convex but non-smooth.
We adopt FISTA since it is a popular tool for solv-
ing many convex smooth/non-smooth problems and its ef-
fectiveness has been verified in many applications. In
our setting, we denote the smooth term part as f(cik)
= ‖xi

k − cikDk‖22 + λ2‖xi
kP− cikD‖22 and the non-smooth

term part as g(cik) = λ1‖cik‖1.
Step 4: Fixing Dk, Ck, D, compute P. Considering X =

[X′1, ...,X
′
k]
′, C = [C′1, ...,C

′
k]
′, we solve:

min
P

‖XP−CD‖2F

s.t. P′P = I (4)

Substituting D = (C′C)−1C′XP back into the above func-
tion, we obtain:

min
P

tr(P′X′(I−C(C′C)−1C′)XP)

s.t. P′P = I

The optimal P is composed of eigenvectors of the matrix
B = X′(I−C(C′C)−1C′)X corresponding to the s small-
est eigenvalues.

After the optimized dictionaries are obtained for styles
and artists, the final classification of a test image is based
on computing its sparse coefficient and calculating the min-
imal reconstruction error, similarly to [Yang et al., 2011;
Mairal et al., 2008].

4 Experimental Results
In this section we introduce the DART dataset and evaluate
the effectiveness of our method.

4.1 Dataset
The DART dataset contains paintings collected from the web
representing six different artistic styles, i.e., Baroque, Cu-
bism, Impressionism, Postimpressionism, Renaissance and
Modern. Examples with a detailed description for artists,
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Table 1: Structure of the DART dataset.
Artistic Style Artists # of paintings

Baroque
Rubens 60

Rembrandt 104
Poussin 117

Cubism
Braque 113

Gris 119
Picasso 62

Impressionism
Monet 108
Renoir 109
Manet 58

Post-impressionism
van Gogh 134
Gauguin 136
Odilon 69

Renaissance

Raphael 67
Titian 92
Bosch 46

Caravaggio 59

Modern
Mondrian 60

Frida 45
Dali 58

painting name and year as recorded in DART are shown in
Fig.3. For each style the painting of at least three artists have
been collected. As shown in Table 1, there are totally 1616
paintings in the DART dataset. There is a high variability
in paintings as each artist typically developed different paint-
ing techniques and styles as time passed. Therefore, for each
painter, we ensured that the selected artworks cover a wide
range of techniques and subjects. We also ensured that the
paintings are from different periods of the artist life. To the
best of our knowledge, DART is the largest high quality art
dataset available with paintings and associated descriptions
so far.

4.2 Experimental Setup and Baselines

In our experiments we randomly split the dataset into two
parts, half for training and half for testing. We repeated the
experiments ten times. The average results and associated
standard deviations are reported. We set the regularization
parameters, the subspace dimensionality s and the dictionary
size l with cross-validation.

We compare the proposed method with several state-of-
the-art single-task dictionary learning and multi-task learn-
ing methods. Specifically we consider (1) Support Vector
Machine (SVM); (2) Elastic Net (EN), as it is the classifier
used for painting style analysis in [Karayev et al., 2014]; (3)
Dictionary Learning by Aggregating Tasks (AT-DL), i.e. per-
forming single task dictionary learning by simply aggregating
data from all tasks; (4) Locality-constrained Linear Coding
(LLC) [Wang et al., 2010], a method which uses the locality
constraints to project each descriptor into its local-coordinate
system and integrates the projected coordinates by max pool-
ing to generate the final representation; (5) Graph Structure
Multi-Task Learning3 (GSMTL) [Zhou et al., 2012], a state-
of-the-art multi-task learning method imposing graph struc-
ture to exploit tasks relationship; (6) Dirty Model Multi-Task
Learning3 (DMMTL) [Jalali et al., 2010], a multi-task learn-
ing algorithm based on `1/`q-norm regularization; (7) Robust
Multi-Task learning3 (RMTL) [Chen et al., 2011], a multi-
task learning approach which imposes a low rank structure

Table 2: Comparison with baseline methods.
Methods Average accuracy
SVM 0.564 ± 0.004
EN [Karayev et al., 2014] 0.624 ± 0.007
AT-DL 0.595 ± 0.003
LLC [Wang et al., 2010] 0.642 ± 0.003
GSMTL [Zhou et al., 2012] 0.681 ± 0.010
DMMTL [Jalali et al., 2010] 0.651 ± 0.005
RMTL [Chen et al., 2011] 0.672 ± 0.006
Ours 0.745 ± 0.003

Table 3: Evaluation on different features combinations.
Features Average accuracy
Raw Pixels 0.527 ± 0.004
Color 0.533 ± 0.002
Composition 0.571 ± 0.008
Lines 0.489 ± 0.003
Color + Composition 0.632 ± 0.005
Color + Lines 0.598 ± 0.004
Composition + Lines 0.675 ± 0.006
Color + Composition + Lines 0.745 ± 0.005

capturing task-relatedness and detects outlier tasks.

4.3 Quantitative Evaluation
We conduct extensive experiments to evaluate the effective-
ness of the proposed method in recognizing artistic styles.
Table 2 compares our approach with different single-task dic-
tionary learning and multi-task methods. From Table 2, the
following observations can be made: (i) Our proposed style-
specific dictionary learning method significantly outperforms
generic single task methods such as SVM and EN. (ii) Multi-
task learning approaches (GSMTL, DMMTL, RMTL) always
perform better than single-task dictionary learning (AT-DL,
LLC) since they consider the correlation among paintings of
different artists with the same style. (iii) Our approach per-
forms better than the other multi-task learning methods, due
to its unique ability of combining multi-task and dictionary
learning. By introducing style-specific dictionaries a more
discriminative data representation is obtained.

Fig. 4(left) shows the confusion matrix obtained with the
proposed method. Cubism achieves relative high recognition
accuracies compared with other styles, which is reasonable
since the paintings belonging to Cubism contain many “long
lines” compared with other styles. This aspect is evident ob-
serving Fig. 1. Moreover, many Impressionism and Postim-
pressionism paintings are misclassified into the other class
because these styles are more correlated. In the literature,
Postimpressionism was influenced by Impressionism. Indeed,
Postimpressionism was meant to extend Impressionism. The
painters continued to use vivid colors and brushtrokes and fo-
cused on real-life subjects, but they were more interested to
emphasize geometric forms, use unnatural colors and distort
the original forms for more expressive effects.

We also evaluate our approach with respect to different pa-
rameters, namely the dictionary size l and the different sub-
space dimensionality s. Fig. 4(middle) shows that the pro-
posed method achieves the best results when the dictionary
size is 100 and the subspace dimensionality is 25. Too large

3 http://www.public.asu.edu/∼jye02/Software/MALSAR/
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Figure 4: (Left) Confusion Matrix on DART dataset. (Middle) Performance at varying dictionary size l and subspace dimen-
sionality s. (Right) Visualization of contributions of each component for the Cubism style. Different colors represent different
components, i.e. color (green), composition (red) and lines (blue).

Figure 5: Visualization of learned dictionaries when using
raw pixels features for (left) Cubism and (right) Renaissance.

or too small values for dictionary size and subspace dimen-
sionality tend to decrease the performance. We also analyze
the convergence of the proposed approach.

It is also interesting to investigate the contributions of each
component (color, composition, and lines) for painting style
classification. To evaluate this, we set the dictionary length
equal to the dimensions of the feature vector and averaged the
learned sparse codes for each style. Fig. 4(right) visualizes
the contribution of each component for the Cubism style. We
observe that the line features contribute the most to the recog-
nition of the Cubism style. We also quantitatively evaluate
the importance of different features on recognizing all styles
as shown in Table 3. Raw pixels, color, composition, lines
and their combinations are considered. Experimental results
shows that using high-level features is advantageous with re-
spect to simply using raw pixels. Moreover, combining all
the heterogeneous features is greatly beneficial in terms of
accuracy. While raw pixels are not appropriate for classifi-
cation, to give a better idea of the output of our method, we
use pixel values as features to learn the dictionary for each
specific style. Fig. 5 visualizes the qualitative learned dictio-
naries for the Cubism and the Renaissance style, respectively.
It is interesting to notice that the learned dictionaries share
some similarity while many visual patterns are different. This
clearly implies the necessity of learning style-specific dictio-
naries for paintings classification.

Finally, to further validate the proposed feature represen-
tation, we show a phylogenetic tree reflecting the similari-
ties among artists (Fig. 6). The similarities are measured by
euclidean distance among the average values of our feature

Figure 6: The phylogenetic tree reflecting the similarities
among artists. (Figure is best viewed under zoom).

vectors. Then a hierarchical clustering algorithm is applied.
We can clearly see that painting collections of the same artis-
tic styles are much more similar to each other than painting
collections of different art movements (e.g. Dali is clustered
with Frida Kahlo and Mondrian rather than with Rubens or
Picasso).

5 Conclusions
In this paper we investigated how to automatically infer paint-
ing styles from the perspective of dictionary learning and we
proposed a novel multi-task dictionary learning approach to
discover a low dimensional subspace where a style-specific
dictionary representation can be computed. We conducted
extensive experiments to evaluate our algorithm on the new
DART dataset. Our results show that our style-specific ap-
proach performs significantly better than a generic one and
that the proposed multi-task method achieves higher accuracy
than state of the art dictionary learning algorithms.
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