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Abstract

Producing attractive trailers for videos needs hu-
man expertise and creativity, and hence is challeng-
ing and costly. Different from video summarization
that focuses on capturing storylines or important
scenes, trailer generation aims at producing trail-
ers that are attractive so that viewers will be ea-
ger to watch the original video. In this work, we
study the problem of automatic trailer generation,
in which an attractive trailer is produced given a
video and a piece of music. We propose a sur-
rogate measure of video attractiveness named fix-
ation variance, and learn a novel self-correcting
point process-based attractiveness model that can
effectively describe the dynamics of attractiveness
of a video. Furthermore, based on the attractiveness
model learned from existing training trailers, we
propose an efficient graph-based trailer generation
algorithm to produce a max-attractiveness trailer.
Experiments demonstrate that our approach outper-
forms the state-of-the-art trailer generators in terms
of both quality and efficiency.

1 Introduction
With the proliferation of online video sites such as Youtube,
promoting online videos through advertisements is becom-
ing more and more popular and important. Nowadays, most
advertisements consist of only key frames or shots accompa-
nied by textual descriptions. Although these advertisements
can be easily produced using existing video summarization
techniques, they are oftentimes not attractive enough. Only
a small portion of videos, e.g., Hollywood movies, are pro-
moted by highly attractive trailers consisting of well-designed
montages and mesmerizing music. Nevertheless, the quality
of trailers generated by video summarization techniques are
far from satisfactory, and it is reasonable because the goal
of trailer generation is to maximize the video attractiveness,
or equally, to minimize the loss of attractiveness, whereas
video summarization aims at selecting key frames or shots
to capture storylines or important scenes. To produce highly
attractive trailers, human expertise and creativity are always
needed, making trailer generation procedures costly. In this

paper, we study how to produce trailers automatically and ef-
ficiently, and our approach may be applied to potentially mil-
lions of online videos and hence lower the cost substantially.

Trailer generation is challenging because we not only need
to select key shots but also re-organize them in such a coher-
ent way that the whole trailer is most attractive. Neverthe-
less, attractiveness is a relatively ambiguous and subjective
notion, and it may be conveyed through several factors such
as the shots, the order of shots, and the background music.
In this paper, we propose an automatic trailer generation ap-
proach which consists of three key components: 1) A practi-
cal surrogate measure of trailer attractiveness; 2) An efficient
algorithm to select and re-organize shots to maximize the at-
tractiveness; 3) An effective method to synchronize shots and
music for improved viewer experience. Specifically, we learn
an attractiveness model for movie trailers by leveraging self-
correcting point process methodology [Isham and Westcott,
1979; Ogata and Vere-Jones, 1984]. Then, we position the
trailer montages by exploiting the saliency information of the
theme music. Finally, based upon the montage information
and the attractiveness model, we construct a shot graph and
generate a trailer by finding the shortest path that is equivalent
to maximizing the attractiveness.

We summarize our contributions as follows: 1) We pro-
pose an effective surrogate measure of video attractiveness,
namely, fixation variance. With this measure, we study
the dynamics of video attractiveness and the properties of
movie trailer. 2) Although point processes have been widely
used for modeling temporal event sequences, such as earth-
quakes [Ogata and Vere-Jones, 1984] and social behav-
iors [Zhou et al., 2013], to the best of our knowledge, our
methodology is the first to model video attractiveness using
self-correcting point processes, jointing a small number of
existing works for leveraging point process methodology for
vision problems. 3) We investigate the influence of music on
trailer generation, and propose a graph-based music-guided
trailer generation algorithm. Compared to the state-of-the-
art methods, our method achieves significantly better results
while using much less computational resource.

Related Work. Video summarization techniques have at-
tracted much research interest and many works have been
proposed in the past. Early works [Gong and Liu, 2000;
Li et al., 2001] extract features of frames and cluster frames
accordingly, but their performance is limited. Besides vi-
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sual frames, other information has been taken into consid-
eration in video summarization. For example, viewer atten-
tion model based summarization methods are proposed [Ma
et al., 2005; You et al., 2007]. User interaction is incorpo-
rated in a generic framework of video summarization [Li et
al., 2006]. Textual information is used to achieve transfer
learning based video summarization [Li et al., 2011]. Au-
dio and visual analysis is performed simultaneously [Jiang
et al., 2011]. Recently, a joint aural, visual, and textual at-
tention model is proposed for movie summarization [Evan-
gelopoulos et al., 2013]. Moreover, semantic information of
videos has been exploited, including the saliency maps of im-
ages [Yan et al., 2010], special events [Wang et al., 2011;
2012], key people and objects [Lee et al., 2012; Khosla
et al., 2013], storylines [Kim et al., 2014]. The exter-
nal information sources such as web images have also been
demonstrated to be useful [Khosla et al., 2013; Kim et al.,
2014]. Focusing on trailer generation problem, so far as
we know, Ma et al. proposed the first user attention model
for trailer generation [Ma et al., 2002]. Irie et al. [Irie
et al., 2010] built a trailer generator that combines a topic
model based on Plutchik’s emotions [Hospedales et al., 2009;
Irie et al., 2009] with the Bayesian surprise model [Itti and
Baldi, 2009], and their system is reported to achieve the state-
of-the-art performance. However, the system does not incor-
porate the relationships between a trailer and its music, and
the causality between the surprise degree and video attractive-
ness is questionable. In all the above works, the definition and
measures of the video attractiveness are largely overlooked,
which turns out to be rather critical for trailer generation.

2 Properties of Movie Trailer
Suppose that we have a set of K training trailers {Tk}Kk=1,
and in total N shots {Ci}Ni=1. Each shot comes from one
trailer and consists of a set of frames. Let Ci ∈ Tk indicate
that shot Ci comes from the trailer Tk, and Ci = {f (i)j }

ni
j=1

indicate that there are ni frames in Ci and f (i)j is the jth frame
of Ci. Similarly, we use T ⊂ V to indicate that T is the trailer
of the video V . We also represent a video V or a trailer T as a
sequence of shots, denoted as {Ci}Ni=1, in the sequel. We use
the index of a frame as the time stamp of the shot (trailer and
movie) for convenience. The beginning and the ending of a
video or a trailer are denoted as L0 = 0 and LN =

∑N
i=1 ni.

The position of montage between Ci and Ci+1 is denoted as
Li = Li−1 +ni =

∑i
j=1 nj . The trailer generation problem

is: given a video V and a piece of music m, we would like to
generate a trailer T ⊂ V that is the most attractive.

2.1 Measure and Dynamics of Attractiveness
We might observe such a common phenomenon: when at-
tractive scenes such as handsome characters and hot actions
appear, viewers will look at the same area on the screen; on
the other hand, when boring scenes such as the cast of char-
acters and tedious dialogues appear, viewers will no longer
focus on the same screen area. In other words, the attrac-
tiveness of a video is highly correlated with the attention
of viewers when they watch the video. Therefore, we pro-

pose a surrogate measure of attractiveness based on view-
ers’ eye-movement, whose efficacy is validated by the fol-
lowing experiments. Specifically, we invite 14 (6 female and
8 male) volunteers to watch 8 movie trailers, which contain
1,083 shots1. We further record the motions of their gazes
and calculate the mapped fixation points in each frame using
Tobii T60 eye tracker. Denote the locations of gaze on the
screen, namely, the fixation points, in the jth frame of Ci as
[x

(i)
j ,y

(i)
j ], where x

(i)
j ∈ R14 (resp. y(i)

j ∈ R14) is the vector
of the horizontal (resp. vertical) coordinates of the fixation
points of the 14 volunteers. For the jth frame, we define the
fixation variance as the determinant of the covariance matrix
of the fixation points:

σ
(i)
j = det (cov([x

(i)
j ,y

(i)
j ])), (1)

We average {σ(i)
j }

ni
j=1 for the frames belonging to the same

shot. The averaged fixation variance reflects the spread of at-
tention when watching the shot. Following the above reason-
ing and definition, we expect that the boring shots (e.g., back-
ground) should have large fixation variance whereas the at-
tractive shots (e.g., hot action scenes, characters) should have
small fixation variance. To verify this, we label these two
types of shots manually and calculate the statistics of their
fixation variance. The results are summarized in Table 1.

Table 1: The statistics of normalized fixation variance (×108)
mean(σ) median(σ) variance(σ)

Boring shots 1.19 0.45 0.03
Attractive shots 0.60 0.22 0.01

It is easy to observe that both the mean and the median of
the fixation variance of boring shots are about twice larger
than those of the attractive shots. The variance is very small,
meaning that our proposed fixation variance is stable in both
boring and attractive shot groups. These results show that fix-
ation variance is negatively correlated with the video attrac-
tiveness — it measures the loss of attractiveness accurately
and robustly. Fig. 1(a-d) further shows typical examples.

Figure 1: (a-d) Four shots in trailer “The Wolverine 2013” and
their fixation variances. (e) Dynamics of fixation variance
calculated from training trailers.

1In this paper, we segment video into shots using a commercial
software “CyberLink PowerDirector”.

(a) Authorization:
σ = 2.9× 108

(b) The background:
σ = 1.9× 108

(c) Main character:
σ = 0.3× 108

(d) Action scenes:
σ = 0.1× 108

(e) Dynamics of fixation
variance.
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The dynamics of fixation variance. Given N shots
{Ci}Ni=1, the averaged fixation variance in the jth frame is
calculated as σ̄j = 1

Nj

∑Nj

i=1 σ
(i)
j , where Nj is the number of

shots having at least j frames. In Fig. 1(e), we find that the
change of σ̄j over time can be approximated by an increasing
exponential curve. In other words, within a shot, its attrac-
tiveness decreases over time. The inter-shot dynamics can
be modeled as the stitching of the fitted exponential curves
for adjacent shots. It means that although the attractiveness
within one shot decreases over time, the montage between
shots increases attractiveness.

2.2 The Dynamics of Music
Similar to the dynamics of attractiveness, we empirically find
that the dynamics of music are also highly correlated with
the montages between shots. To see this, we first detect the
saliency points of the music associated with a trailer as fol-
lows. 1) Using the saliency detection algorithm in [Hou et al.,
2012], we extract the saliency curve of a piece of music as

m̂ = G((idct(sign(dct(m))))2), (2)

where dct(·) and idct(·) are a DCT transformation pair,
sign(·) is the sign function that returns 1, -1, and 0 for posi-
tive, negative, and zero inputs, respectively. G(·) is a Gaus-
sian filter. 2) After re-sampling m̂ with the number of frames,
we detect the peaks in m̂. Regarding these peaks as the
saliency points of the music, we investigate their correlations
with the montages in the trailer as follows. For each peak,
we label the peak as a correct indicator of the location of the
montage when a montage appears within ±6 frames (about
0.25 second). On the 8 sample trailers, we find that the time
stamps of the saliency points are highly correlated with those
of the montages (with accuracy 84.88%). Fig. 2 presents an
example: in high-quality trailers, the montages of shots are
synchronized with the rhythm of the background music.

Figure 2: The Saliency Points of Music v.s. Montage Posi-
tions (Trailer of “The Bling Ring”).

According to the analytic experiments above, we summa-
rize three properties of movie trailer as follows: Property 1.
The loss of attractiveness can be approximated by a surrogate
measure, namely, fixation variance. Property 2. Within each
shot, the loss of attractiveness increases exponentially and
this tendency is corrected when a new shot appears. Prop-
erty 3. The self-correction of attractiveness, the rhythm of
the music in the video, and the montages between shots are
highly correlated.

3 Point Process-based Attractiveness Model
3.1 Motivation
Our modeling assumption is that the fixation variance is
highly correlated with the number of viewers losing their
attention on the screen, which directly connects the notion
of the attractiveness of a video with a specific point process
model we will discuss below. To this end, suppose that there
are V viewers watching a movie. We define a sequenceEv(t)
of the event “whether the viewer loses her attention or not at
time t” for each viewer v:

Ev(t) =

{
1, viewer v loses her attention at time t,
0, otherwise.

Although we do not observe the event sequence directly, we
assume that the fixation variance is proportional to the num-
ber of viewers losing their attention. Therefore, given the
fixation variance of training trailers, we can approximate the
aggregated observations of viewers’ events

∑
v Ev(t), and

model viewers’ events as a temporal point process. Specif-
ically, we propose an attractiveness model based on a specific
point process, i.e., self-correcting point process.

3.2 Self-Correcting Point Process
A self-correcting point process is a point process with the fol-
lowing intensity function:

λ(t) =
E(dN(t)|Ht)

dt
= exp

(
αt−

∑
i:ti<t

β
)
, (3)

where N(t) is the number of events occurred in time range
(−∞, t], Ht denotes the historical events happened before
time t, and E(dN(t)|Ht) is the expectation of the number
of events happened in the interval (t, t + dt] given historical
observations Ht. The intensity function in Eq. (3) represents
the expected instantaneous rate of future events at time t.

The intensity function of the self-correcting point process
increases exponentially with rate α and this tendency can be
corrected by the historical observations via rate β. Note that
the intensity function exactly matches the dynamics of attrac-
tiveness described in Property 2. Therefore, given a video
V = {Ci}Ni=1, for each shot Ci, we define the local intensity
function in its time interval (0, ni] as

λCi(t) = exp
(
αiH

it− βiDi
t

)
, (4)

where t ∈ (0, ni] and

Hi =

{
H(f̂

(1)
1 ), i = 1,

D(f̂
(i−1)
Ni−1

||f̂ (i)1 ), i > 1,

Di
t =

btc∑
j=2

D(f̂
(i)
j−1||f̂

(i)
j ),

where f̂ = G((idct2D(sign(dct2D(f))))2)/C is the normal-
ized saliency map of frame f [Hou et al., 2012]. C is a l1
normalizer that guarantees f̂ to be a distribution. For the first
shot C1 of V (i = 1), Hi = H(f̂

(1)
1 ) represents the entropy
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of the first frame in C1, which is the initial stimulus given by
C1. For the following shots (i > 1), Hi = D(f̂

(i−1)
Ni−1

||f̂ (i)1 )

represents the KL-divergence between the last frame of Ci−1
and the first frame of Ci, which is the initial stimulus given
by Ci. Similarly, D(f̂

(i)
j−1||f̂

(i)
j ) represents the KL-divergence

between the adjacent frames in Ci, which is the supplemen-
tary stimulus. Di

t =
∑btc
j=2D(f̂

(i)
j−1||f̂

(i)
j ) is the accumulative

influence caused by the supplementary stimulus in the time
interval (0, t], where btc is the largest integer smaller than t.

The intensity function in Eq. (4) imitates the loss of attrac-
tiveness — it increases exponentially with the initial stimulus
till the supplementary stimulus corrects this tendency. For
each shot Ci, its intensity function has two non-negative pa-
rameters (αi, βi). To summarize, we define our attractiveness
model as a self-correcting point process with a global inten-
sity function for time interval (0,

∑N
i=1 ni], which stitches N

local intensity functions as λV(t) =
∑N
i=1 λCi(t − Li−1),

where L0 = 0, Li = Li−i + ni =
∑i
j=1 nj .

3.3 Model Learning
Given K training trailers {Tk}Kk=1 consisting of N shots, our
goal is to learn parameters of the N local intensity functions.
Similar to [Zhou et al., 2013], we achieve this goal by pursu-
ing an maximum likelihood estimation (MLE) of the param-
eters, and the likelihood function can be written as:

L =
∏N

i=1
Li =

∏N

i=1

((∏ni

t=1
(λCi(t))

σCi (t)
)

exp
(
−σm

∫ ni

0

λCi(s)ds

))
, (5)

where Li denotes the local likelihood for Ci. σCi(t) is the fix-
ation variance of the tth frame of shot Ci. σm is the maximum
of fixation variance.

Besides capturing the global event dynamics by maximiz-
ing Eq. (5), we also require the proposed model to fit local
event information in each time interval. Therefore, we further
propose to minimize a novel data fidelity loss function to cor-
relate the local intensity and fixation variance in each frame:∑N
i=1

∑ni

t=1 | log(γλCi(t)/σCi(t))|2, where γ is shared by all
frames. This term encourages the local intensity (scaled by
γ) to be equal to the fixation variance in each frame. To sum
up, we learn our model by solving the following problem:

min
α,β,γ

− log(L) + µ
N∑
i=1

ni∑
t=1

∣∣∣∣log

(
γλCi(t)

σCi(t)

)∣∣∣∣2,
s.t. α ≥ 0, β ≥ 0, γ > 0, (6)

where α = [α1, .., αN ] and β = [β1, .., βN ] represent the
parameters of N local intensity functions.

We develop an alternating algorithm to solve Eq. (6). To
be specific, given the initial values of (α,β, γ), we first solve
the following subproblem for each shot with γ fixed:

min
αi,βi

− log(Li) + µ

ni∑
t=1

∣∣∣∣log

(
γλCi(t)

σCi(t)

)∣∣∣∣2
s.t. αi ≥ 0, βi ≥ 0. (7)

The objective of Eq. (7) can be written as follows:

Ii =

ni∑
t=1

(
σCi(t)(βiD

i
t − αiHit)

+ σm
eαiH

it − eαiH
i(t−1)

αiHieβiDi
t

+ µ| log γ + αiH
it− βiDi

t − log σCi(t)|2
)
.

We can solve the subproblems using gradient-based methods
in a parallel manner. With α and β such learned, γ can be
updated using the following equation:

γ = exp

(∑N
i=1

∑ni

t=1 log(σCi(t)/λCi(t))∑N
i=1 ni

)
. (8)

Algorithm 1 summarizes our learning algorithm.

Algorithm 1 Learning Proposed Attractiveness Model
Input: Training shots {Ci}Ni=1, the maximum number of it-

eration M = 500, the parameter µ = 0.5. The gradient
descent step size: δα = 10−4, δβ = 10−5.

Output: Parameters of our model α, β, γ.
Initialize α0, β0 and γ0 randomly.
for m = 1 : M do

for i = 1 : N do
αmi =

(
αm−1i − δα ∂Ii∂αi

∣∣
αi=α

m−1
i

)
+

.

βmi =
(
βm−1i − δβ ∂Ii∂βi

∣∣
βi=β

m−1
i

)
+

.

(·)+ sets negative value to be 0.
end for
γm is calculated by Eq. (8).

end for
α = αm, β = βm, γ = γm.

4 Trailer Generation
After learning the attractiveness model from the training set,
we are able to generate an attractive trailer given a new testing
video V and a piece of music m with maximum attractive-
ness, or equally, minimum loss of attractiveness. The prob-
lem of trailer generation can be formulated as:

min
T

∫ LN

L0

λT (s)ds, s.t. T ⊂ V, (9)

where L0 = 0 and LN =
∑N
i=1 ni are the beginning and the

ending of the trailer, respectively. ni is the number of frames
in Ci andN is the number of candidate shots selected from V .
{ni} and N are the positions of the montages. According to
Property 3 in Section 2.2, they are determined by the saliency
points of the music, which is detected from the m̂ in Eq. (2).
The interval length between adjacent saliency points deter-
mines ni, and the number of saliency points determines N .
Since Eq. (9) is a combinatorial problem and NP-hard, we
have to resort to approximate solutions. Inspired by [Xu et
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al., 2014], we propose a graph-based method to solve Eq. (9)
approximately and efficiently.

Step 1: Candidate Selection. We rewrite Eq. (9) as:

min
T

N∑
i=1

∫ ni

0

λCi(s)ds, s.t. T = {Ci ∈ Si}Ni=1, (10)

where Si, i = 1, ..., N , is the set of s (s = 5 in our experi-
ments) candidate shots selected from V for Ci. Each selected
shot satisfies the following two constraints: 1) the length is
not shorter than ni; 2) it does not appear in Si−1. SN contains
only one shot, which corresponds to the title of the trailer
given in advance.

Step 2: Parameter Assignment. For a candidate shot Ci
in the new video, we do not know the parameters of λCi(t) in
advance. In this paper, we first extract the feature of Ci as

fCi = [H(f̂
(i)
1 ), D(f̂

(i)
1 ||f̂

(i)
2 ), ...] ∈ R64. (11)

We fix the length of feature vector as 64 in this work — if the
length of Ci is shorter than 64, we pad zeros in the end of fCi ;
if Ci is longer than 64, we cut the end of fCi . Then, we select
the matching shot in the training set for Ci by comparing the
features of training shots with those of candidate shots. The
matching criterion is the Euclidean distance. The parameters
of the matching shot are assigned to λCi(t).

Step 3: Graph-based Stitching. Eq. (10) is still a com-
plicated combinatorial optimization problem. To see this, we
note that the selection of Ci−1 has recursive influence on the
selection of subsequent shots {Ci, Ci+1, ...}. As we know, the
initial stimulus in λCi(t) is the KL-divergence between the
last frame of Ci−1 and the first frame of Ci. Hence, if we
change Ci−1, the intensity function λCi(t) will change, and
so dose the selection of Ci.

The problem will be efficiently solved if we only consider
the pairwise relationships between the shots in the adjacent
candidate sets. Given {Si}Ni=1, we can construct a trellis
graph G with N + 1 layers. The nodes in the ith layer are
the candidate shots from Si. The edge weights in the graph
can be defined as follows,

wi,i+1
p,q =

∫ ni

0

λCp,i(s)ds+

∫ ni+1

0

λCq,i+1(s)ds, (12)

where wi,i+1
p,q is the weight connecting the pth candidate in Si

with the qth candidate in Si+1. We calculate all the weights
independently: the initial stimulus in λCp,i(t) is the entropy of
the first frame of Cp,i, which is independent of shot selection
in the former layers; on the other hand, Cp,i only influences
Cq,i+1 through the initial stimulus in λCq,i+1

that is the KL-
divergence between the last frame of Cp,i and its first frame.
Influence of Cp,i will not propagate to the following layers. In
other words, Eq. (10) can be solved approximately by finding
the shortest path [Dijkstra, 1959] in the graph G (from the
first layer to the last one). We summarize our algorithm in
Algorithm 2 and illustrate it in Fig. 3.

5 Experiments
We conduct two groups of experiments (objective and subjec-
tive) to empirically evaluate the proposed method. Our data

Algorithm 2 Graph-based Trailer Generation Algorithm
Input: a video V , a piece of music m, training shots with

features and learned parameters.
Output: a movie trailer T .

1. Segment V to shots {Cj} and extract features.
2. For each Cj , find the matching shot in the training set
and assign parameters accordingly.
3. Detect saliency points of m by Eq. (2).
4. Construct candidate set Si and a hierarchical graph G.
5. Calculate the weight of edge by Eqs. (4,12).
6. Find the shortest path in G.
7. T is constructed by the sequence of shots corresponding
to the shortest path associated with the music m.

set consists of 16 publicly available movies including 3 ani-
mation movies, 2 fantasy movies, 2 action movies, 5 fiction
action movies and 4 dramas in 2012 and 2014. We also col-
lect the movies, their theme music and official trailers. The
experimental settings are as follows: we first select 8 of the
trailers as the training set and collect the fixation data from
14 volunteers. Then, we learn our attractiveness model as de-
scribed in Section 3.3. Finally, based on the attractiveness
model, we produce trailers for the remaining 8 movies fol-
lowing Section 4. All movies and their trailers are with frame
size 640×480.

Figure 3: The scheme of our trailer generator.

We compare our method (“Ours”) with the following four
competitors2: i) the trailer generator “V2T” in [Irie et al.,
2010]; ii) the commercial video summarization software
“Muvee3”; iii) the real official trailers (“RT”) generated by
professionals; iv) the real trailers without speech information
(“RTwS”). For fair comparison, for “V2T”, the training and
testing sets are the same as we described above; for “Mu-
vee”, we generate trailers for the testing movies only as there

2Representative trailers generated by all methods are on the web-
site: https://vimeo.com/user25206850/videos.

3http://www.muvee.com/
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is no training phase. We also note that, in this work, we fo-
cus on the visual attractiveness model and its contribution on
trailer generation, and hence we use “RTwS” as a baseline.
Moreover, we are only able to implement the shot selection
and arrangement algorithm of “V2T” since other steps such
as feature extraction is omitted in the reference.

5.1 Objective Evaluation
Loss of Attractiveness. An important criterion for trailers is
the loss of attractiveness, which can be approximately mea-
sured by the proposed fixation variance. We invite the 14 vol-
unteers to watch the testing trailers generated by all of the five
methods mentioned above, and record their fixation points in
each frames by an eye tracker. For each method, we calculate
the fixation variance σ in each frame for all 8 testing trailers,
and hence obtain 32,309 σ’s. The statistics of σ’s reflect the
overall loss of attractiveness. Specifically, larger σ indicates
more loss of attractiveness. We present the mean, the median
and the standard deviation of σ’s for each method in Fig. 4.

Figure 4: The mean, the median and the standard deviation of
the fixation variance σ for various methods.

It is easy to observe that both the mean and the median ob-
tained by our method are the smallest compared with its coun-
terparts. Specifically, the results of our method are compara-
ble to those of “RT” whereas the results of “Muvee”, “V2T”
and “RTwS” are much higher than those of “RT”. Last but not
least, the standard deviation results show that the attractive-
ness of our trailers is the most stable, and “RT” trailers are
the second best in this aspect. In our opinion, the superior-
ity of our method is mainly based on the utilizing of fixation
variance and the proposed point process model. Firstly, fixa-
tion variance is real feature from viewers, which reflects the
attractiveness of video better than the learned feature from
video. Secondly, the proposed point process model captures
the dynamics of attractiveness well, which provides us with a
useful guidance to generate trailer.

Table 2: Comparison on computational cost.
Training cost Testing cost

V2T [Irie et al., 2010] 0.0024 sec/frame 0.2676 sec/frame
Ours 0.0014 sec/frame 0.0113 sec/frame

Computational Cost. Computation cost is a key factor for
trailer generation. As we mentioned in previous sections, it is
very promising to have efficient automatic trailer generators
that may be potentially applied to millions of online videos.
We note that the training and testing computational complex-

ities of “V2T” are both O(N3), whereas ours are O(N) and
O(N2) for training and testing, respectively.

Table 2 compares empirical training and testing cost of our
method and “V2T”. Both methods are implemented by MAT-
LAB and run on the same platform (Core i7 CPU @3.40GHz
with 32GB memory). Specifically, the training cost is calcu-
lated as the model learning time per frame for training set,
and the testing cost is calculated as the trailer generation time
per frame for the generation result. Table 2 validates that our
method needs much less training and testing cost than “V2T”.

5.2 Subjective Evaluation
In this subsection, we evaluate our method as well as the base-
lines through subjective experiments. Similar to [Irie et al.,
2010], for each testing trailer generated by different methods,
we invited 14 volunteers to evaluate it by answering the fol-
lowing 3 questions: Rhythm: “How well does the montage
match with the rhythm of background music?” Attractive-
ness: “How attractive is the trailer?” Appropriateness: “How
close is the trailer to an real trailer?” For each question, the
volunteers were asked to provide an integer score in the range
of 1 (lowest) to 7 (highest). Fig. 5 shows the overall results
for all 8 testing movies.

Figure 5: The box plots of scores for various methods on
three questions. The red crosses are means and the red bars
are medians.

Consistency of Objective and Subjective Evaluation.
Similar to objective evaluation, we find in Fig. 5 that our
method is better than “V2T” and “Muvee” in all three ques-
tions, indicating that our attractiveness model based on fix-
ation variance and self-correcting point processes is reason-
able, and is able to generate trailers that satisfy our subjec-
tive feelings. On the other hand, our method are inferior to
“RTwS” and “RT”, which is different from the result of ob-
jective evaluation. The reasons for the difference may be at-
tributed to that we only use visual information to learn the at-
tractiveness model and produce trailers. On the contrary, offi-
cial trailers of “RT” often provide speeches, subtitles and spe-
cial effects of montages, which impress viewers a lot. Sim-
ilarly, although the trailers of “RTwS” does not have speech
information, they still contain subtitles and special effects of
montages. Since the information of these factors contribute
to raising the attractiveness of the video, volunteers feel that
the real trailers are better than our trailers. This observation
points out a future extension of our work, that is, in addi-
tion to visual and music information, we should also enrich
our model with information sources such as speech, subtitles,
and montage effects to capture holistic movie attractiveness.
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6 Conclusion and Future Work
In this work, we studied a challenging problem, namely, au-
tomatic trailer generation. To generate attractive trailers, we
proposed a practical surrogate measure of video attractive-
ness called fixation variance, and made the first attempt to use
point processes to model the attractiveness dynamics. Based
upon the attractiveness model, we developed a graph-based
music-guided trailer generation method. In the future, we are
interested in extending our method to utilize other informa-
tion such as speeches and subtitles. We would also like to
explore parallel algorithms to further improve the scalability
of our method.
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