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Abstract

Transitive distance is an ultrametric with elegant
properties for clustering. Conventional transitive
distance can be found by referring to the mini-
mum spanning tree (MST). We show that such dis-
tance metric can be generalized onto a minimum
spanning random forest (MSRF) with element-wise
max pooling over the set of transitive distance ma-
trices from an MSRF. Our proposed approach is
both intuitively reasonable and theoretically attrac-
tive. Intuitively, max pooling alleviates undesired
short links with single MST when noise is present.
Theoretically, one can see that the distance metric
obtained max pooling is still an ultrametric, render-
ing many good clustering properties. Comprehen-
sive experiments on data clustering and image seg-
mentation show that MSRF with max pooling im-
proves the clustering performance over single MST
and achieves state of the art performance on the
Berkeley Segmentation Dataset.

1 Introduction

Over the past decades, clustering has been and is still one of
the most important and fundamental machine learning prob-
lem. A number of clustering methods have been proposed,
ranging from the famous k-means algorithm and graph-based
approaches (such as single linkage algorithm) [Sibson, 1973],
to the family of mode seeking [Comaniciu and Meer, 2002],
spectral clustering [Ng ef al., 2002; Zelnik-Manor and Per-
ona, 2004; Shi and Malik, 2000], and subspace cluster-
ing [Elhamifar and Vidal, 2009; Liu er al., 2013; 2013;
Peng et al., 2013; 2015]. Despite the large variety of different
methods, some general principles are commonly considered
when evaluating the performance among different methods.
These principles include:

e Ability to discover clusters with arbitrary shape.
e Robustness against noise
e Scalability

The family of spectral clustering methods received much
attention and found wide applications for the excellent clus-
tering performance. Given n data points, eigendecomposition
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Figure 1: (a) Clustering with transitive distance on a single
MST. (b) Clustering with the proposed framework.

is conducted on an n X n normalized pairwise similarity ma-
trix, followed by k-means to generate clusters. A key reason
for spectral clustering’s success lies in its ability to discover
non-convex latent structures. This comes from the the fact
that eigendecomposition projects data in to a kernel space
with nicely shaped clusters.

Spectral clustering is not the only family of methods that
can handle clusters with arbitrary shapes. Transitive distance
clustering (also known as path based clustering) provides an
elegant and intuitive non-eigendecomposition alternative also
effective in handling non-convex clusters. Specifically, tran-
sitive distance emphasizes the connectivity rather than abso-
lute distance between pairwise data. This is achieved by find-
ing the set of largest hops (edges) along all possible connect-
ing paths and defining the pairwise distance as the minimum
hop. [Fischer and Buhmann, 2003b] proposed the concept
of transitive distance and an agglomerative bottom-up clus-
tering framework. The idea of connectivity kernel was later
proposed in [Fischer et al., 2004]. Other works include the
transitive closure [Ding er al., 2006] and transitive affinity
[Chang and Yeung, 2005; 2008].

There exist some inherent connections between transitive
distance and minimum spanning tree. It was proved that the
transitive distance edge for all pairwise data lies on the mini-
mum spanning tree, if the maximum order (number of nodes)
of a path is equal to n. This, however, does not necessarily
mean that transitive distance clustering is identical to early
graph based method such as single linkage algorithm. There
are many nice properties associated with transitive distance,
one of them being that the transitive distance is an ultrametric



and can be embedded into another space with better cluster
shapes. This means transitive distance can serve a similar
role to eigendecomposition and makes it possible to design
a top-down clustering framework with transitive distance [Yu
et al., 2014]. Such framework can be regarded as an approx-
imate spectral clustering and behaves much more robust than
many MST based bottom-up methods.

Despite the fact that top-down clustering benefits the al-
gorithm with noise robustness. Transitive distance may still
suffer from noisy short links due to its bottom up nature. An
example is illustrated in Fig. 1(a). Resampling based bag-
ging [Fischer and Buhmann, 2003a] was shown to be effec-
tive against short links. However, when the average cluster
size becomes small, resampling turns out to lose consider-
able discriminative cluster information and label permutation
becomes computationally expensive. In addition, resampling
requires a totally connected graph while many applications
such as image segmentation often works better with sparsely
connected adjacency graphs.

In this paper, we extend the concept of transitive distance
from a single MST to a minimum spanning random forest.
Our contribution in this paper lies in several aspects: (1) The
proposed framework is a generalization of the conventional
transitive distance framework; (2) The proposed framework
presents an alternative strategy that naturally generates dis-
tance metric more robust to noise (See Fig. 1(b)); (3) With
max pooling, the proposed framework preserves many nice
properties for clustering. We conduct comprehensive exper-
iments ranging from challenging toy examples to large scale
speech data clustering (up to tens of thousands of samples and
thousands of clusters) and image segmentation. Our method
shows excellent performance, including the state of the art
results on Berkeley Segmentation Dataset.

2 The Generalized Transitive Distance (GTD)

The goal of spectral clustering is to cluster data that is con-
nected but not necessarily compact or clustered within con-
vex boundaries. A common way to handle data with arbitrary
cluster shapes is to use kernel method to create a nonlinear
mapping

¢:VCR =V CR’, (1)
such that the clusters in R® has a more compact cluster shape.
In spectral clustering, such nonlinear mapping is often ob-
tained by eigendecomposition on the normalized variants of
its affinity matrix (Such as the Laplacian matrix).

2.1 Definition of The GTD

Transitive distance seeks to implicitly build a non-linear map-
ping similar to spectral clustering without eigendecomposi-
tion. The pairwise transitive distance for any pairwise data is
defined as follows:
Definition 1. Given certain pairwise distance d(-,-), the
transitive distance is defined as:
Dr(x,,2,) = min max{d(e 2

T( P> q) PePeeP{ ()}» (2)
where P is the set of paths connecting x, and x, with at most
n nodes. In addition:

max{d(e)} = (wurg?;ep{d(wm%)}- 3)

Intuitively, transitive distance looks into the connectivity
between pairwise data by searching for the minimum gap
among all possible paths. Even if the Euclidean distance is
far away, two data samples are close if there is at least one
path that strongly correlates them.

To further allow more robustness, a natural and reasonable
generalization is to extend such definition to the case of con-
sidering multiple paths instead of a single path. Here we pro-
pose the following generalized pairwise transitive distance:

Definition 2. Given certain pairwise distance d(-,-), the gen-
eralized transitive distance is defined as:

Dg(zp, ¢q) = max gmin  max{d(e)}, 4)
t PLEPy, ecPy
vte{1,..,T}

where gmin denotes the generalized min returning a set of
minimum values from multiple sets instead of just one mini-
mum value from one set. Py denote the sets of all candidate
paths respectively from multiple diversified graphs G..

The idea of bagging is a widely used strategy to increase
robustness. Similar ideas can be found in many other machine
learning problems, such as extending a decision tree classifier
to random forest classifier.

2.2 Kernel Trick with The GTD
Definition 3. A distance metric D is called an ultrametric if
it satisfies non-negativity, symmetry, identity of indiscernibles
and the following strong triangularity:

D(Ih Ij) < maX{D(xiv xk)7 D(zkv xj)}? V{Za j7 k} (5)
Lemma 1. The transitive distance is an ultrametric.

The corresponding proof is very easy and can be found in
[Fischer er al., 2004] and [Ding et al., 2006].

Theorem 1. The proposed generalized transitive distance is
an ultrametric.

Proof: According to Lemma 1, the pairwise transitive dis-
tance defined over every set of G, satisfies:

Dip (i, x5) < max{D7(zs, xx), Dip(xy, ;) }, ¥Vt (6)
Therefore, we have:
mtangp(:vi,xj)
§mtaxmax{D}(xi,xk),DtT(xk,acj)} (7
:max{mtax DtT(mi,mk),mzathT(kaj)}
Proposition 1. The generalized transitive distance metric

can be embedded into an n — 1 dimensional vector space.

Proposition 1 directly comes from the lemma that every
finite ultrametric space with n discernible points can be em-
bedded into an n — 1 dimensional vector space. More de-
tails of this lemma can be found in [Lemin, 1985; Fiedler,
1998]. The proposition conveys the following important in-
formation: with the generalized transitive distance, we have
an implicit nonlinear mapping:

¢:(VCRLD)— (V cRLd), (8)
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where d'(¢(z;), p(x;)) = D(z;,2;) and d'(-,-) is the Eu-
clidean distance in R"~!. Such mapping plays a similar role
to the kernel trick in spectral clustering except that it is an im-
plicit mapping where one does not have the mapped feature
in the kernel space but the pairwise Euclidean distance.

We now analyze conditions and properties associated with
cluster distributions in the nonlinearly projected space. Simi-
lar to spectral clustering, one would ideally hope that the data
projected by the transitive distance form well separated clus-
ters in the embedded space. [Yu et al., 2014] shows that if a
labeling scheme of a dataset is consistent' with certain dis-
tance (say Euclidean), then the convex hulls of clusters in the
projected transitive distance space do not intersect with each
other. However, in the case of generalized transitive distance,
the same condition no longer holds and whether the projected
clusters will intersect now dependent on the specific strategy
one chooses to generate sets of candidate paths.

To analyze the clustering properties, we cut into this prob-
lem from a even more direct perspective which does not de-
pend on any specific strategy one chooses. We first need to
redefine the concept of consistency:

Definition 4. A distance metric is called strictly consistent
with the labeling scheme of a dataset, if for any intra-cluster
pair x;, x; and any x), with a different cluster label, the fol-
lowing relation holds:

D(Iiv Ij) < min(D(Iiv Ik)v D(Ija zk))v V{i,j, k} (9)

Note that the consistency term redefined here differs from
the conventional definition of “consistency” in [Yu et al.,
2014]. Its definition is no longer related to the method that
constructed such distance. An underlying relation is that the
“consistency” (conventional) in the original data space is a
sufficient condition for the consistency (redefined) in the tran-
sitive distance space returned by a single MST. But such re-
lation no longer holds under GTD.

Theorem 2. If a distance metric satisfies the strict consis-
tency with the labeling scheme and there exist an Euclidean
embedding, the convex hulls of the images of clusters in the
embedded space do not intersect with each other.

Proof: We prove this theorem using contradiction. Suppose
(@i, ;) are the pair of samples from cluster C' in the em-
bedded space returning the maximum possible pairwise intra-
cluster distance. Also assume there exist a point y with a dif-
ferent label such that y lies in the convex hull of C. Since y
also lies in this convex hull, by definition there must exist a

linear combination such that y = ZLC:|1 oy, which leads to
(y—xj) = Z‘kczll ar(zr — ;). In this case, it is very easy to
prove that ||y — x;||2 is upper bounded by ||z; — x||2, which
contradicts with the fact that ||y — z;||2 > |[z; — 2|2

Proposition 2. For the GTD to be consistent with the label,
the following inequality should be satisfied:

mtath(aci,xj)

. (10
<min(mtath(:ci,xk),mtaXDt(acj,xk)),V{i,j,k:} (10)

!The readers please kindly refer to the original paper for detailed
conventional definition of the term “consistency”.
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This is a direct conclusion from definition of GTD and (9).
(10) intuitively shows why the proposed framework can be
robust against noise. In the extreme case, even if none of the
G return a transitive distance consistent to the label, there is
a chance that (10) can still be satisfied. Considering the fact
that a point inside a cluster often has a much larger degree of
nearby points than that on a margin (due to the nature of den-
sity difference), The chance of recovery can further increase
considerably with more tree numbers.

2.3 Locating Transitive Edges

We now generalize transitive edge localization under our
framework. The following lemma efficiently locates the tran-
sitive edge for any pairwise data:

Lemma 2. Given a weighted graph, the transitive edge lies
on the minimum spanning tree of the graph.

The proof can be found in [Fischer et al., 2004; Yu er al.,
2014]. The lemma basically states that there is an compu-
tationally feasible way to find the transitive distance given
any pairwise data. To efficiently find the pairwise general-
ized transitive distance, we have the following proposition:

Proposition 3. Given the sets of candidate paths, the tran-
sitive distance edge lies on the MSRF formed by MSTs ex-
tracted from each set of candidate paths.

This is a direct extension of Lemma 2 and the proof is omit-
ted here. The proposition shows a general process to obtain
the generalized pairwise transitive distance. Detailed algo-
rithm for obtaining the transitive distance with an MST can
be found in [Fischer et al., 2004].

3 Random Forest Generation

The remaining issue is how to obtain different sets of can-
didate paths that generates diversified trees. Here we pro-
pose two exemplar methods that gives diversified sets of trees.
Note that many other alternative strategies can also be incor-
porated into the proposed framework.

3.1 Generating Mutually Exclusive Trees

A very intuitive and effective way to generate diversified ran-
dom forest is to force the minimum spanning trees to be com-
pletely non-overlapping. In other words, the edges that has
previously been used to construct a minimum spanning tree
can not be used for subsequent ones. The sets of candidate
paths and the minimum random spanning forest can be gen-
erated with the extended sequential Kruskal’s algorithm:

Algorithm 1 Extended Sequential Kruskal’s Algorithm
1:

Initialize Gy = G = (V, E), where G is a weighted
graph and E is the set of available edges.

Extract MST from G using the Kruskal’s algorithm and
return the n X n pairwise transitive distance matrix.

: Remove the set of MST edges P; from G, and update:
Gy = (V. By — By).

Repeat 2 to 4 for T times.

: Perform element wise max pooling over the stack of
transitive distance matrices.

2:




Theorem 3. Without loss of generality, let G = (V, E) be
the complete graph, V. = {x;|i = 1,..,n.} C V be the
set of nodes from cluster ¢, G, and G, respectively be the
intra-cluster graph and the inter-cluster graph of c. Also let
the constructed MSRF containing T trees from G with Al-
gorithml. A sufficient condition for the GTD to be consis-
tent with the cluster label is that V¢, the following inequality
holds: _

max  Dg(z;,z;) < sort(G,T), (1D

(zi,z;)CVe

where Sort((N}’c, T) refers to returning the Tth largest edge
from G..

Proof: Let y denote any point with a different label. It can
be verified that min(D¢ (25, y), Da(z5, y)) is lower bounded

by sort(G.,T), for G, defines the gap between ¢ and other
clusters. Since we construct a minimum spanning random
forest with 7" non-overlapping trees and adopt max pooling,
the minimum possible inter-cluster distance therefore is de-

fined by the T'th largest edge in G..
In a sense, Theorem 3 can be regarded as a random forest
generalization of the “consistency” in [Yu et al., 2014].

3.2 Generating Perturbated Trees

Many clustering applications in reality have small cluster
sizes, or sparse edge connections on the graph. An exam-
ple with small cluster sizes is the speech dataset [Greenberg
et al., 2014] which has thousands of clusters (speaker identi-
ties), each sometimes containing as few as three or four sam-
ples. Image segmentation is another case where sparsely con-
nected graph such as the region adjacency graph is often pre-
ferred. There are reasons for such preference. One is that seg-
mentation is not a pure clustering problem, but a perceptual
grouping problem also emphasizing spatial continuity besides
cluster compactness. Another reason being that many state of
the art boundary features such as gPb[Arbelaez et al., 2011]
and structured random forest edge detection[Zelnik-Manor
and Perona, 2004] are edge-oriented and by nature only work
with neighboring superpixels.

Forcing to select non-overlapping MSTs under such cases
can reduce the discriminative cluster information. A possibly
better solution is not to diversify the trees so aggressively, and
allow overlap of the trees. We propose the following alterna-
tive algorithm to generate randomized trees:

Algorithm 2 Random Perturbation Algorithm

I: Initialize G; = G = (V, E), where G is a weighted
graph and F is the set of available edges.

2: If t # 1, obtain G; by randomly perturbate the edge
length of G with a random number ¢ * rand(1).

3: Extract MST from G} using the Kruskal’s algorithm and
return the n X m pairwise transitive distance matrix.

4: Repeat 2 to 4 for T times.

5: Perform element wise max pooling over the stack of
transitive distance matrices.

It is also very interesting to intuitively look into the reason
why such perturbation strategy works. One of the key reasons
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again being that the degree of closely neighboring on points
inside a cluster can be much larger than marginal ones. There
is a higher chance that edges on undesired short cut links gets
magnified compared with intra cluster edges, since a point
inside a cluster still gets considerably many choices for short
paths due to dense neighboring samples.

4 Top-Down Clustering

It is intuitively very attractive to directly performing k-means
in the projected transitive distance space. Unfortunately, with
the explicit nonlinear mapping missing, finding an optimal
cluster partitioning with a pairwise distance matrix is difficult
[Fischer and Buhmann, 2003b]. [Yu et al., 2014] proposed
an approximation which directly treats each row of the dis-
tance matrix as a single data and performs k-means over the
rows. Since the clusters after projection become much more
compact, the transitive distance matrix can be approximately
regarded as an ideal block matrix plus additional noise:

D:Dblock+E (12)

Performing k-means on the rows of D can be regarded
as certain low rank approximation to recover Dyjoct, Which
inherently is closely related to directly performing k-means
in the original data space. In addition, top-down methods
in general shows more robustness against noise compared
to bottom-up methods. Therefore, such top-down form also
benefits transitive distance clustering, making it considerably
different from MST based methods. Therefore, the top-down
approximation is more favorable for this paper.

We also propose an optional alternative which may further
improve the top-down clustering performance. When the di-
mensionality of D is huge, a considerable number of columns
in D contains noise information. Instead of directly perform-
ing k-means on the rows the full matrix, one can perform sin-
gular value decomposition on D ~ UXV™* for low rank ap-
proximation, followed by k-means on the first several column
of U. The following property states the inherent relationship
between the original top-down strategy and the new one:

Property 1. The matrix U approximately equals to the nor-
malized columns of Dyjocr, if F is small

In the experiment, we will show results from both top-
down clustering strategies.

5 Experiments

5.1 Toy Example Datasets

In this section, we conduct experiment on a set of very chal-
lenging toy examples to test the algorithm performance. We
compare our results with several popular spectral clustering
methods including spectral clustering[Ng er al., 2002], self-
tuning spectral clustering[Zelnik-Manor and Perona, 2004]
and normalized cuts[Shi and Malik, 2000]. Figure 2 shows a
set of toy example clustering results. Overall, We have care-
fully tuned the scale parameters for both spectral clustering
and normalized cuts on each dataset. The number of trees is
3 for GTD (Seq. Kruskal), and 20 for GTD (Perturb.). The
perturbation strength € is set to 2. One could see that GTD
+ SVD performs the best, getting almost all correct on every



Figure 2: Column 1: Transitive + SVD. Column 2: Spectral clustering. Column 3: Self-tuning spectral clustering (auto scale +
cluster num). Column 4: Normalized cuts. Column 5: GTD (Seq. Kruskal). Column 6: GTD (Perturb.). Column 7: GTD (Seq.
Kruskal) + SVD. Note that since GTD (Perturb.) + SVD also obtains similar correct results, the figures are omitted.

toy example. Both transitive distance and spectral clustering
showed very strong flexibility on non-convex clusters. Re-
sults on the second toy example, however, indicates stronger
ability of transitive distance in handling multi-scale clusters.
In addition, the first and third toy example clearly show that
both GTD bagging strategies to some extent reinforced ro-
bustness against short links.

5.2 Large Scale Speech Data Clustering

We also consider the application to large scale unsupervised
learning of speech samples. A recent hot topic in the speech
community is whether one can train a high quality speaker
verification model given large quantities of unlabeled speech
data. The NIST i-Vector Machine Learning Challenge 2014
(i-Vector) [Greenberg et al., 2014] organized competitions to
design unsupervised speaker verification systems with fully
unlabeled i-vector development dataset, in which clustering
and unsupervised learning methods were heavily emphasized.
The i-Vector dataset consists of 36572 600-dimensional pre-
extracted i-vectors with 4958 identities. In addition to the
i-Vector dataset we also form another large scale dataset
(NIST) with the NIST SRE 2004, 2005, 2006 and 2008
corpora on the telephone channel. A total of 21704 500-
dimensional i-vectors with 1738 identities were extracted un-
der the framework of [Li and Narayanan, 2014].

With such large scale dataset size and cluster number, the
problem becomes very challenging. We input the groundtruth
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number of clusters for all method and measure the cluster pu-
rity (accuracy). Since the cluster sizes are very small, we
choose the prosed GTD (perturb.) and GTD (perturb.) + SVD
and compare it with other baseline methods. T" which is the
number of trees are set to 30 for both the NIST dataset and the
i-Vector dataset. The perturbation strength € are respectively
set to 0.015 and 0.03. Table 1 shows the quantitative results
of the proposed methods and other compared methods. In
particular, the proposed GTD (Perturb.) + SVD achieves the
best performance. It is worth noticing that the single linkage
algorithm completely failed on the i-Vector dataset primarily
due to serious short link caused by bottom-up clustering. This
partially reveals the significant difference between bottom-up
and top-down strategies, despite similarity input of two meth-
ods are strongly related.

5.3 Image Segmentation

We conduct image segmentation experiments on the
BSDS300 dataset. The images are first superpixelized with
the code from [Dollar and Zitnick, 2014] and the edge prob-
ability maps are extracted using structured random forest.
We also consider the texton similarity between pairwise su-
perpixels. The input for GTD and transitive distance is a
region adjacency graph weighted by both the 2 distance
between neighboring superpixels and the average edge re-
sponse along their boundaries. For normalized cut, the input
is a sparse affinity graph where only neighboring superpixels



Figure 3: Examples of segmentation results. Row 1-2: Results from GTD clustering. Row 3-4: Results from transitive distance

clustering. Row 5-6: Results from normalized cuts.

Table 1: Quantitative Speech Clustering evaluation

Method NIST  Ivector
Normalized Cuts 0.4883  0.3654
Single Linkage 0.4544  0.156
Spectral Clustering 0.6841  0.4898
[Fischer and Buhmann, 2003a] | 0.6713 0.4539
Transitive 0.6915  0.498
Transitive + SVD 0.7152  0.5226
GTD (Perturb.) 0.7016 0.5013
GTD (Perturb.) + SVD 0.7255  0.5297

have nonzero affinity values, computed from the same dissim-
ilarity with a Gaussian kernel. We directly perform k-means
on the matrix rows without SVD, and use mean shift to pre-
cluster the rows of the GTD matrix to roughly initialize the
cluster centers. A lower bound of 2 and an upper bound of 12
is set on the final cluster number. Finally, singular small re-
gions are eliminated and merged with neighboring ones with
a fixed threshold.

Figure 3 shows the qualitative results of the proposed
method and the baselines. In segmentation, inter-cluster short
links usually present in the form of weak boundaries and is
the major hindrance against correct segmentation. One could
see conventional transitive distance is prone to over-merging
while the proposed method benefits from the bagging and
generates better results with closed contours. Our method
is also compared with other state of the art works on several
popular segmentation benchmarks. Results listed in Table 2
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Table 2: Quantitative segmentation evaluation

Method PRI Vol GCE BDE
[Cour et al., 2005] 0.7559 2.47 0.1925 15.10
[Wang et al., 2008] 0.7521 2.495 0.2373 16.30

[Mignotte, 2010] 0.8006 - - -
[Li et al., 2011] 0.8205 1.952 0.1998 12.09
[Kim et al., 2013] 0.8146 1.855 0.1809 12.21
[Li et al., 2012] 0.8319 1.685 0.1779 11.29

[Arbelaez et al.,2011] | 0.81 1.65 — -
[Yu et al., 2014] 0.7926 2.087 0.1835 13.171
[Wang et al., 2014] 0.8039 2.021 0.2066 13.77
Baseline: Ncut 0.7607 2.108 0.2217 14.608
Baseline: Transitive 0.8295 1.645 0.1688 10.568
GTD (Perturb.) 0.8331 1.639 0.1655 10.372

show the excellent performance of our method.

6 Conclusion

In this paper, we have proposed the framework of general-
ized transitive distance, which generalizes the conventional
work on transitive distance and possesses many nice theoret-
ical properties. It is shown that the GTD obtained by mini-
mum spanning random forest can be more robust. More im-
portantly, the framework is open to many other diversification
strategies that we so far have not yet fully investigated. Our
future research will continue to improve the current work.
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