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Abstract
Graph-based video segmentation has demonstrated
its influential impact from recent works. However,
most of the existing approaches fail to make a se-
mantic segmentation of the foreground objects, i.e.
all the segmented objects are treated as one class. In
this paper, we propose an approach to semantically
segment the multi-class foreground objects from a
single video sequence. To achieve this, we firstly
generate a set of proposals for each frame and
score them based on motion and appearance fea-
tures. With these scores, the similarities between
each proposal are measured. To tackle the vulner-
ability of the graph-based model, low-rank repre-
sentation with l2,1-norm regularizer outlier detec-
tion is proposed to discover the intrinsic structure
among proposals. With the “clean” graph represen-
tation, objects of different classes are more likely
to be grouped into separated clusters. Two open
public datasets MOViCS and ObMiC are used for
evaluation under both intersection-over-union and
F-measure metrics. The superior results compared
with the state-of-the-arts demonstrate the effective-
ness of the proposed method.

1 Introduction
Video resource has grown tremendously with the develop-
ment of digital technology. YouTube has over 100 hours
of video uploaded per minute, so it is challenging to han-
dle such big video data. Video object segmentation is one of
the attracting applications for recent years, as it automatically
generates a pixel-level boundary of foreground objects which
benefits a lot for other higher-level applications, such as scene
classification or understanding.

Generally the existing video segmentation methods can
be categorized into the following groups: (1) graph-based
model [Grundmann et al., 2010, Lee et al., 2011, Galasso
et al., 2014,Zhang et al., 2013], (2) trajectory-based model [Li
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Figure 1: Semantic segmentation examples on dataset
MOViCS. From top to bottom, the video samples are
“chicken and turtle”, “lion and zebra”, “giraffe and elephant”
and “tiger”, respectively. From left to right, each column indi-
cates (a) Input videos, (b) results from image cosegmentation
method (ICS) [Joulin et al., 2012], (c) results from video seg-
mentation method (VS) [Zhang et al., 2013] and (d) results
from our proposed method. Different colors denote different
labels.

et al., 2013,Ochs and Brox, 2011,Palou and Salembier, 2013],
(3) generative layered model [Galasso et al., 2012, Ma et al.,
2013, Xu et al., 2013], and so on. It has been verified that
the effectiveness of graph-based models enjoys the following
advantages: (a) good generalizability to videos of arbitrary
sizes, (b) rich mathematical supports for graph-model opti-
mization, (c) encouraging segmentation result, and (d) less
computational load [Galasso et al., 2012]. Thus in this work,
we keep investigating the graph-based model.

Nevertheless, it is known that graph-based models are
vulnerable to outliers. When the input data are heavily
corrupted, graph-based models might fail [Candès et al.,
2011, Liu et al., 2010]. For video segmentation, outliers
and noises happen a lot, especially when the graph is built
upon superpixels/supervoxels. It is because the current super-
pixel/supervoxel generation methods have difficulties in pro-
ducing the exactly pixel-wise segmentation for objects. Af-
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ter over-segmenting video frames, those segments that cover
both foreground object and background, but not stable across
the frames, are considered as “outliers”, e.g., the scroll cap-
tion in “tiger” case as shown in the bottom row of Figure
1. To alleviate the influence of outliers, several attempts
have been made and encouraging results have been reported
[Zhang et al., 2012, Zhang et al., 2013]. Zhang et al. [Zhang
et al., 2012] represented each frame by a bunch of superpix-
els. Considering each superpixel as a vertex, the video se-
quence can be represented as a directed acyclic graph. The
shortest path algorithm is used to select the graph vertices for
all frames. However, this method cannot deal with the oc-
clusion case. Most recently, Zhang et al. [Zhang et al., 2013]
solved this problem by designing a dynamic programming al-
gorithm which makes the graph model more robust. Although
these attempts have demonstrated the effectiveness in han-
dling outliers, they can only deal with one single foreground
object case as shown in Figure 1(c).

To achieve the semantic segmentation, segment differ-
ent objects based on their class information is challeng-
ing, especially for single video case. Grundmann et al.
[Grundmann et al., 2010] proposed a hierarchical graph-
based segmentation method, which over-segments a volumet-
ric video graph into spatial-temporal regions (similar to su-
perpixel/supervoxel) firstly. Then a region-graph is created.
By finding the minimum spanning tree (MST) iteratively, the
segmentation is achieved. It is deserving to notice that al-
though different labels are assigned to different regions, the
aim is to find regions with the same spatial-temporal infor-
mation. While on opposite, we aim to produce the semanti-
cally meaningful segmentation for foreground objects. Simi-
larly, another graph-based recent work [Galasso et al., 2014]
by Galasso et al. focused on computation and memory costs
but not semantic segmentation. For the majority of seman-
tic segmentation works, multiple videos are needed. Chiu et
al. [Chiu and Fritz, 2013] formulated this as a non-parametric
bayesian model. Videos segmentation prior is introduced to
leverage the segments of coherent motion and global appear-
ance classes. Then objects with the same class property are
linked across frames. Fu et al. [Fu et al., 2014] proposed a
multi-stage selection graph method by leveraging the poten-
tial between two input videos and the potential within each
video. Zhang et al. [Zhang et al., 2014] designed a regulated
maximum weight clique extraction scheme. It balances well
the spatially saliency and temporal consistency in object pro-
posal (superpixels) tracklet selection step. The similar shape
and appearance could be iteratively extracted by weighted
groupings of objects. Unfortunately, these semantic segmen-
tation methods require more than one video as input, which
limits the scope of real-world applications.

In this work, to overcome the limitations of multiple videos
as input and sensitivity to outliers, we fully exploit the spatial
and temporal information in a single input video. As a trade-
off, we assume that (1) the location of foreground objects in
the successive frame has a relatively small shift and (2) mul-
tiple objects lie in separated latent subspaces. By considering
the spatial consistency of foreground objects, object-like re-
gions can be aligned across frames. With the usage of object
appearance and motion, different objects can be clustered into

different groups. In general, our method can be divided into
four major steps as shown in Figure 2(b-e). First, a pool of
scored “object-like regions” (proposals) for each frame are
generated based on appearance and motion features. Second,
to perform a robust graph representation, we conduct outlier
detection with the help of low-rank representation. Third,
spectral clustering is performed based on the clean represen-
tation. Finally, objects in the missing frame are recovered
using spatial consistency. In general, we summarize our con-
tributions as:

• To the best of our knowledge, this is the pioneer work
to achieve semantic video segmentation using one sin-
gle video, opposed to using multiple videos, required by
other graph-based video segmentation methods.

• Low-rank representation based outlier analysis is con-
ducted to uncover the intrinsic multiple structure of pro-
posals. By characterizing the outliers via l2,1-norm reg-
ularizer, this outlier detection technique can be applied
in any graph-based segmentation methods.

• By fully exploiting the motion directions of foreground
objects, we theoretically demonstrate the effectiveness
of our proposed proposal objectness prediction method,
which can well handle the inconsistent moving situation.

2 Related Work
In this section, we are talking about the related works of two
major techniques used in the proposed method, i.e. graph-
based video segmentation method and low-rank graph repre-
sentation.

Graph-based object segmentation is a relatively new topic.
Different from traditional video segmentation method [Shi
and Malik, 1998], which works on individual pixel, the re-
cent graph-based methods [Lee et al., 2011, Jain and Late-
cki, 2012,Zhang et al., 2013,Grundmann et al., 2010,Galasso
et al., 2014] work on superpixel or supervoxel generated us-
ing object-like region extraction methods [Endres and Hoiem,
2010, Alexe et al., 2010]. This has an advantage in terms of
processing speed. For instance, a 100×100 video clip has 100
superpixels per frame. The data to be processed with a pixel-
based method are 1000 times more than with a superpixel-
based method. Besides time saving, these object-like region
extraction methods can provide a pool of semantic region
candidates as a preprocessing step. Lee et al. [Lee et al.,
2011] utilized a single cluster graph partitioning method [Ol-
son et al., 2005] to discover the foreground object, then the
authors refined the result by proposed pixel-level object la-
beling methods. Ma and Latecki [Jain and Latecki, 2012]
treated the object region selection process as finding the max-
imum weight clique in a weight graph. Zhang et al. [Zhang
et al., 2013] first constructed a directed acyclic graph based
on object-like regions, then turned the region selection prob-
lem to find the maximal/minimal weight path problem. These
methods that work well in segmenting one foreground object,
however, will fail in multiple objects segmentation task.

Low-rank based graph representation attracts more and
more attention because of its robustness to the data corrup-
tion [Candès et al., 2011, Liu et al., 2010]. Candès et al.
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(e) Segmentation Completion
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(d) Proposal Clustering

…
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…
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Figure 2: Framework of the proposed method is shown in the black dash box. To achieve the semantic video segmentation, only
one single video is needed (a). Then we generate a pool of object-like regions (“Proposals”) for each frame (b). To perform a
robust graph representation, outlier detection with low-rank constraint is considered (c). With the new representation, spectral
clustering is performed (d). To achieve a continuous object trajectory, we perform a post-processing procedure to align and
recover the missing frames (e).

formulated the given observation matrix X by the sum of
two terms, i.e. low-rank clean matrix X0 and errors E,
X = X0 + E. This formulation implicitly assumes the un-
derlying structure is single low-rank subspace. However, in
real-world application, it is more likely that data are drawn
from multiple subspaces. Thus, Liu et al. [Liu et al., 2010]
proposed a low-rank representation (LRR) method to uncover
the multiple subspace structure of data, which can represent
the samples as linear combinations of the basis in a given dic-
tionary, asX = DZ+E, whereD is the “Dictionary”, which
can be set as data samples X itself in many applications [Liu
et al., 2010]. Under the low-rank representation framework,
l2,1-norm regularization has demonstrated the effectiveness
of handling outliers in many applications, for instance, face
recognition [Shao et al., 2014], kinship verification [Xia et al.,
2012], etc. This motivates us to characterize the video region
outliers using l2,1-norm regularizer.

3 Our Method
In this section, we illustrate our method in detail. Specifically,
according to the order of video processing, object-like regions
generation will be discussed firstly, then followed by the core
part, proposal clustering with outlier detection. To complete
the segmentation task, the post-processing step is followed at
last.

3.1 Object-like Regions Generation
To achieve the multi-class foreground object segmentation
task, the first thing is to segment all possible object-like re-
gions (proposals). There exist several works focusing on
finding proposals [Endres and Hoiem, 2010, Alexe et al.,
2010]. However, these works are all single image based,
which means the relationship between frames is not consid-
ered by simply applying these methods. We consider optical
flow between successive frames to make a better prediction
of objectness. Thus, the objectness of proposal can be calcu-
lated as:

S(r) = A(r) +M(r), (1)
where r denotes a proposal, A(·) and M(·) stand for object-
ness scores measured by appearance feature and motion fea-
ture, respectively.

Specifically, we compute A(r) using [Endres and Hoiem,
2010], which represents the objectness in the sense of appear-
ance, such as color, texton, etc. Although it gives a reason-
able likelihood measurement on proposal that is an object,
it does not take motion into account since it is single-image
based. With the help of consecutive frames at the input, ob-
jectness in the sense of motion M(r) is measured using opti-
cal flow [Liu, 2009] as follows:

M(r) = 1− exp(−ξ(ur,vr)), (2)

where u and v denote the optical flow calculated from
current-to-previous (backward) direction, and current-to-next
(forward) direction, respectively. ur means the optical flow
map in proposal r. Term vr is defined in the same way. Since
there are two directions x and y to quantify the optical flow,
we define ξ(u,v) as:

ξ(u,v) =
1

Ω
‖(ux · vx) + (uy · vy)‖1, (3)

where ‖ · ‖1 is the sum of absolute value of all elements in
the matrix [Lu et al., 2012]. It is worthy mentioning that the
way we measure motion features within the proposal has a
few benefits as follows: (1) It encourages the proposals with
large motions by multiplication of forward and backward op-
tical flows. Proposals with larger movements can be assigned
to a high motion score; (2) Proposals with inconsistent mov-
ing direction will be depressed by this separate-direction mo-
tion scoring method. Without loss of generosity, let’s assume
(ux, uy) and (vx, vy) are the forward and backward optical
flows on a single pixel. Only proposals with the similar direc-
tion (θ is small) are encouraged. For the extreme case, when
θ = π/2, and lengths (or norms) of two optical flows are the
same, the motion score is zero. The effectiveness of this defi-
nition is based on the assumption that the foreground objects
are moving consistently. Even object of interest moves errati-
cally, the movement trajectory between frames are slight; (3)
The noises induced by optical flow calculation or tiny back-
ground movement can be eliminated. Here an assumption
that background objects’ movements are trivial is made.

By normalizing two kinds of scores into the same scale, the
quantitative measure on proposals is done by simply adding
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two scores up. For the first and last frame, we only use ap-
pearance score due to the incapability of optical flow compu-
tation. To reduce the computational cost, 100 proposals with
the highest scores in each frame are selected for the next step.

3.2 Proposal Clustering
Given the pool of scored object-like regions, our goal in this
step is to group different regions into different categories
based on class information. Dataset-oriented feature selection
method can always achieve good results, however, it will nar-
row the application scope as well. To alleviate this dilemma,
we only use two features in our method, color histogram for
appearance and optical flow histogram for motion.

Firstly, we define color and optical flow similarity (dis-
tance) between two proposals rm and rn as follows:

Xc = exp(− 1

µc
χ2

color(rm, rn)),

Xf = exp(− 1

µf
χ2

flow(rm, rn)),
(4)

where Xc ∈ Rdc and Xf ∈ Rdf denote the χ2-distance be-
tween color and optical flow histograms of rm and rn, re-
spectively. µc and µf are the means of the all distances for
color and optical flow histograms. Instead of combining them
directly to form an affinity matrix, we make a simple but ef-
fective feature selection to determine whether or not to use
the optical flow feature. The intuition is that the estimated
optical flow map is not as robust as the color feature. Fur-
thermore, the slight movement in the background could have
a significant impact on finding foreground objects, especially
when the foreground object has a relatively small movement
or even no movement. Instead of giving the same weight on
optical flow and color, we set a binary threshold λ to turn
optical flow feature on/off.
Proposal Outlier Removal

The proposal generation method [Endres and Hoiem,
2010] used in the first step not only focuses on accurate
object-like region prediction, but also focuses on region di-
versity, which means for each frame it gives a pool of object-
like region candidates. So overlap between region candidates
happens. In this case, the similarity between the overlapped
proposals will have relatively high scores using our proposed
measurement Eq. (4). It is the fact that the overlapped pro-
posal covering both foreground object and background hap-
pens a lot, but not stable across the frames. We consider these
proposals as ”outliers”. Obviously, removing these outliers
will benefit the clustering result. Here, we concatenate two
featuresXc andXf to get theX = [Xc;Xf ] ∈ Rd×N , where
d = dc+df denotes the new feature dimension for the outlier
detection step, and N is the total number of proposals.

The intuition of low-rank representation is to find the new
representation Z of original data X with intrinsic rank. In-
spired by the fact that intrinsic rank of “clean” data is always
small, we enforce the rank of Z in the objective following the
previous works [Liu et al., 2010] as

min
Z

rank(Z), s.t. X = XZ. (5)

(a) (b) (c)

Figure 3: Block property illustration with example case
“chicken”. (a) shows the similarity matrix before clustering
(without grouping similar object together). Both (b) and (c)
show the similarity matrix after clustering. (c) is the k-means
result of (b), serving as the input for spectral clustering. Two
blocks indicate cluster turtle and chicken respectively.

Recently, l2,1-norm has been testified its efficiency on fea-
ture selection and outlier detection [Nie et al., 2010,Liu et al.,
2010], with its definition as follows:

‖E‖2,1 =
∑n
j=1

√∑n
i=1 |E|2ij . (6)

Compared with lp-norm (p = 1, 2,∞), l2,1-norm can well
characterize the sample-specified outliers, since it is per-
formed to select features across all points with joint sparsity.
Then Eq. 5 can be rewritten as:

min
Z,E

rank(Z) + β‖E‖2,1, s.t. X = XZ + E, (7)

where β is the trade-off parameter balancing the two terms.
Because of the discrete nature of the rank function, the Eq.(8)
is difficult to solve. As a good surrogate of rank function,
trace norm ‖ · ‖∗ is often used due to its convexity. Then the
objective can be rewritten as:

min
Z,E
‖Z‖∗ + β‖E‖2,1, s.t. X = XZ + E. (8)

The above convex optimization problem can be solved by
several off-the-shelf methods. In this paper, exacted Aug-
mented Lagrange Multiplier (ALM) method is applied [Bert-
sekas, 1982] to iteratively optimize Z and E.

After removing the outliers, we then define the similarity
matrix W using the clean color feature X̃c and optical flow
feature X̃f by

W = X̃T
c X̃c + λX̃T

f X̃f , (9)

where X̃c = Xc − Ec and X̃f = Xf − Ef . λ is the binary
threshold defined above. The similarity matrixW has a prop-
erty of block-diagonal by putting the proposals within the
same cluster together, as shown in Figure 3. Proposals within
the cluster have higher similarity (white); the correlation be-
tween two clusters has a lower similarity (black). The sizes
of two blocks are not the same. In fact, the perfect clustering
result should have the same size in this case, as the video se-
quence shown in Figure 3 is “chicken” from dataset MOViCS,
and both chicken and turtle exist in all frames. Thus, by se-
lecting one best proposal for each frame, both of the block
sizes should be equal to the frame number. However, this
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ideal case rarely happens due to the following reasons: (1)
there always exist some similar proposals (for most cases,
they are parts of the foreground objects) considered as in-
liers. In this “chicken” case, the lower right block represents
chicken, the upper left block represents turtle. As we can see
clearly from Figure 3(c), the two block sizes are not the same,
representing the different number of proposal “chicken” and
“turtle”.

As we obtain the similarity matrix W , to speed up the
clustering step, k-nearest neighbour algorithm is used before
performing spectral clustering. By applying the basic graph
knowledge, the normalized Laplacian matrix L is defined as
L = IN − D−1/2WD−1/2, where IN is the identity matrix
with N -dimension and degree matrix D is the diagonal de-
gree matrix with its elements determined by the correspond-
ing row sums of W .

With L, we can achieve the semantic segmentation with
multiple classes. For simplicity, we illustrate our idea on the
case class number k equals 2. For a given proposal y, we
consider it as foreground when y is set to 1 and as background
when set to -1. Thus, our problem can be formulated as,

minyTLy, s.t. yTD1/21N = 0, y = {−1, 1}N , (10)
where 1N denotes the N -dimensional vector of all ones. Fol-
lowing the classical spectral clustering methods [Ng et al.,
2001]. This objective function can be solved by using singu-
lar value decomposition (SVD).

4 Experimental Result
In this section, we make a quantitative evaluation on the
proposed method and other baselines. Since we focus on
graph-based model, the state-of-the-arts of graph-based im-
age cosegmentation (ICS) [Joulin et al., 2012] and graph-
based video segmentation (VS) [Zhang et al., 2013] are se-
lected as baselines. The evaluation is performed on two pub-
lic video databases containing multiple foreground objects.
To demonstrate the effectiveness of the outlier detection part,
we consider two versions of our method, i.e. Ours-1 denotes
our model without outlier detection, and Ours-2 denotes our
model with outlier detection.

4.1 Dataset
In order to evaluate the performance of multi-class fore-
ground object segmentation, many traditional video segmen-
tation databases are not suitable, because they mainly focus
on one moving object segmentation task, such as database
SegTrack [Tsai et al., 2010], GaTech [Grundmann et al.,
2010] or Persons and Cars Segmentation Database [Zhang
et al., 2013]. However recently, video cosegmentation works
provide the source databases for evaluating the semantic seg-
mentation, since these works focus on foreground segmenta-
tion with different object labels.

In this work, we select two open public datasets, MOViCS
[Chiu and Fritz, 2013] and ObMiC [Fu et al., 2014], where
MOViCS is the first benchmark for multi-class video coseg-
mentation task. It has 4 different video cases with a total
of 11 video clips, including “chicken”, “lion”, “giraffe”, and
“tiger”. All the foreground objects with the same class are
assigned by the same label.

Table 1: Results of intersection-over-union metric on datasets
MOViCS and ObMiC.

Datasets ICS VS Ours-1 Ours-2

MOViCS

chicken 0.467 0.518 0.605 0.654
lion 0.596 0.405 0.613 0.646

giraffe 0.419 0.139 0.422 0.441
tiger 0.424 0.669 0.688 0.698

ObMiC

dog 0.362 0.294 0.418 0.454
person 0.459 0.168 0.477 0.516

monster 0.509 0.139 0.546 0.570
skating 0.138 0.123 0.144 0.211

Average 0.422 0.307 0.489 0.524
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Figure 4: Experimental results of intersection-over-union
metric on dataset MOViCS (left) and ObMiC (right).

Dataset ObMiC also contains 4 sets of videos. Each has
two video clips. Different from MOViCS only containing an-
imals, ObMiC extends the object to people and cartoon fig-
ures. Compared with MOViCS, ObMiC is more challenging
due to the following reasons: (1) scale, most foreground ob-
jects in MOViCS are relatively large (except “chicken” case),
which is less sensitive to the bad proposal generation; (2)
Slight motion, objects in ObMiC have less movements, which
might result in the failure of optical flow feature.

4.2 Comparison
As the graph-based video segmentation method, one of our
baselines is the state-of-the-art video segmentation from
Zhang et al. [Zhang et al., 2013]. In addition, ICS can be
tailored to the video segmentation work without taking the
spacial-temporal information into account. Thus, we also
make a comparison with the state-of-the-art ICS [Joulin et al.,
2012]. Specifically, an important parameter of ICS which
needs tuning is the class number. In the experiments, this
number is set in the range of [4, 8]. In VS, two key parame-
ters of GMM model and MRF model are tuned in the range of
[0.1, 2]. For all methods, we run the publicly available code
and report the best performance.

To make a quantitative evaluation, we use “intersection-
over-union” metric used in PASCAL challenge and previous
works [Chiu and Fritz, 2013]. It is well defined to measure
the segment region on both precision and recall rate as,

M(S,G) =
S ∩G
S ∪G

, (11)

where S stands for a set of segments andG is the groundtruth
annotation. Following the common clustering performance
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Table 2: Results of F-measure on datasets MOViCS and Ob-
MiC.

Datasets ICS VS Ours-1 Ours-2

MOViCS

chicken 0.625 0.649 0.703 0.751
lion 0.727 0.567 0.740 0.765

giraffe 0.582 0.415 0.621 0.635
tiger 0.608 0.731 0.807 0.845

ObMiC

dog 0.571 0.505 0.609 0.647
person 0.663 0.395 0.671 0.709

monster 0.710 0.363 0.750 0.773
skating 0.393 0.349 0.362 0.434

Average 0.610 0.497 0.658 0.695
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Figure 5: Experimental results of F-measure on dataset
MOViCS (left) and ObMiC (right).

measurement criteria, we assign the class label to the seg-
ments with the best matching to groundtruth.

We present the comparison result of intersection-over-
union metric on both datasets in Figure 4. The correspond-
ing visualizations of all methods are shown in Figure 1 and
Figure 6, respectively. By observation, several conclusions
can be drawn: (1) Our-2 performs the best. (2) Compared
with Our-1, Our-2 with outlier detection has a modest im-
provement, indicating the effectiveness of the low-rank based
robust graph construction part. (3) For most multi-class ob-
jects cases, i.e. “lion and zebra” and “giraffe and elephant”
in MOViCS and all the cases in ObMiC, ICS performs better
than VS. This is because VS fails to consider the multi-class
objects scenario, which is a common scene in real-world.
Take “giraffe and elephant” as example in Figure 1, VS cuts
both the giraffe and elephant out with same label. Moreover,
similar to many other previous video segmentation methods
which only segment one foreground object, VS only gives
the results of “zebra” in “zebra and lion” case. (4) All the
methods perform bad for the case “skating” in ObMiC. Two
possible reasons may explain this: (a) the foreground ob-
jects (skaters) are relatively small, which easily results in a
large false positive; (b) The female skater has different ap-
pearances for her upper body and lower body, which is diffi-
cult to segment. The statistics of performance measured by
intersection-over-union metric are tabulated in Table 1. We
highlight the highest score using bold font. It is deserved to
note that for MOViCS, our method improves the performance
of each case by 26.25%, 8.39%, 5.25% and 4.33%, respec-
tively. For ObMiC, we boost the performance by 25.41%,
12.42%, 11.98% and 52.9%, respectively. On average, the
performance bar is raised by 24.17%.

Note that although intersection-over-union metric is a good
measurement on segmentation results, it is weighted more
by recall than precision. To make a wholesome evaluation,
F-measure is used as a complementary measurement. Com-
pared with the groundtruth, the F-measure with different pa-
rameters γ is calculated as:

Fβ =

(
1 + γ2

)
Precision× Recall

γ2 × Precision + Recall
. (12)

We set γ2 = 0.3 following Achanta et al. [Achanta et al.,
2009] to weigh precision more than recall. Figure 5 shows
the comparison results between our method and other meth-
ods. We can observe the same trend showing that our method
performs the best. The exact F-measure result numbers are
shown in Table 2. On average, our method outperforms ICS
by 13.93% and VS by 39.84%, respectively.

5 Conclusions
We have proposed a semantic graph-based video segmen-
tation method by clustering the objects of different classes
into separate groups. To make a robust graph representation,
we have analyzed the cause of outliers and modeled them
with l2,1-norm regularizer under low-rank constraint. With
the “clean” representation, spectral clustering is used to get
the different foreground object groups. The experimental re-
sults demonstrate that our method outperforms state-of-the-
art image cosegmentation and graph-based video segmenta-
tion baselines on the existing datasets MOViCS and ObMiC.
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