
Distance-Bounded Consistent Query Answering∗

Andreas Pfandler1,2 and Emanuel Sallinger1
lastname@dbai.tuwien.ac.at

1Vienna University of Technology, Austria
2University of Siegen, Germany

Abstract
The ability to perform reasoning on inconsistent
data is a central problem both for AI and database
research. One approach to deal with this situation
is consistent query answering, where queries are
answered over all possible repairs of the database.
In general, the repair may be very distant from the
original database. In this work we present a new
approach where this distance is bounded and analyze
its computational complexity. Our results show that
in many (but not all) cases the complexity drops.

1 Introduction
The ability to perform reasoning on inconsistent data is a cen-
tral problem both for AI and database research. An important
scenario in this area is when a database is augmented with a
set of integrity constraints (ICs), typically specified in some
logical formalism. In this scenario, it might well happen that
the database becomes inconsistent w.r.t. the constraints.

Following Bertossi [2006], there are several reasons for a
database to become inconsistent w.r.t. a given set of integrity
constraints: (i) The database system may not be able to
maintain a given class of ICs. (ii) Adding constraints may lead
to inconsistency in existing data. (iii) The constraints are not
intended to be hard constraints, but rather as soft constraints
that are only considered when a user makes a query. (iv) Data
from different sources is integrated into a single database.

This shows that, although it would be desirable to limit
the attention to consistent databases only, there is a need for
methods to give reasonable answers to queries even on in-
consistent databases. One approach to deal with inconsistent
databases is consistent query answering introduced by Are-
nas et al. [1999]. In this approach, queries are evaluated
over all repairs of the database, which gives the consistent
answers. A repair is a database that is consistent with the
constraints and has a subset minimal edit distance to the orig-
inal database. For surveys on this line of research we refer
to the work of Bertossi [2006], Chomicki [2007], the mono-
graph of Bertossi [2011], and for recent work to [Arenas and

∗Supported by the Austrian Science Fund (FWF): P25518,
P25207, and Y698, and the German Research Foundation (DFG): ER
738/2-1.

Bertossi, 2010; Kolaitis and Pema, 2012; Fontaine, 2013;
Greco et al., 2014; Wijsen, 2014]. Although we will focus on
database-related constraint classes, we note that similar con-
cepts have gained recent attention in the area of description
logics (see e.g. [Ortiz, 2013]).

For consistent query answering, two fundamental problems
arise: In REPAIR CHECKING (RC), we want to check whether
a given database R is indeed a repair of a given database D
w.r.t. the constraintsC. In CONSISTENT QUERY ANSWERING
(CQA), we want to evaluate whether a conjunctive query Q
holds in all repairs R. The computational complexity of these
problems has been intensively studied [Calı̀ et al., 2003a;
2003b; Staworko and Chomicki, 2010; ten Cate et al., 2012;
Arming et al., 2014]. In these studies it turned out that for
many interesting constraint languages the problem of CQA
is of high computational complexity (e.g., ΠP

2 -completeness
for functional dependencies) or even undecidable (e.g., for the
well-known class of existential rules – also called tgds), which
imposes a severe obstacle to practical applications. It turns
out that the reason for this high complexity is in many cases
related to the fact that the distance to the original database
may grow arbitrarily large.

In this work, we introduce a bounded version of RC and
CQA, where an additional bound on the distance (i.e., number
of changes) to the original database is given. This step is
motivated by the fact that inconsistencies are often limited to
a small portion of the data in the typically large database. In
addition, this new approach is interesting because it usually
gives lower complexity bounds on other CQA formalisms. For
the bounded case all considered constraint classes become
decidable and in many cases the complexity drops. There
are, however, possibly surprising cases where the complexity
increases. We illustrate the usefulness of our approach in the
following example.
Example. Let the database contain the facts

D = {Comp(c1),Emp(e1, d1, c1), . . . ,Emp(el, d1, c1),

Emp(el+1, d2, c1), . . . ,Emp(em, d2, c1)}.
The constraints for this example are given by

C = {Comp(c) ∧ Emp(e, d, c)→ Dep(d, c)},
which states that whenever there is an employee working at a
company in a certain department, this department must also
be associated to this company.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2262

FO

∨-tgd

tgd

LAV tgd

ID

full ∨-tgd

full tgd

UC

denial

egd

FD

key

IC L b-RC RC∗ b-CQA CQA∗
FO PSPACE NH3 PSPACE PSPACE NH10 undec
∨-tgd DP2 H5 ΠP

3 ΠP
3 H11 undec

tgd DP2 N6 ΠP
3 ΠP

3 N12 undec
LAV tgd DP NH7 DP ΠP

2 H13 NP
ID in P H8 in P ΠP

2 N14 NP
UC DP H4 ΠP

2 DP-ΠP
2 H15 coNEXP-PNE

full ∨-tgd DP ΠP
2 DP-ΠP

2 coNEXP-PNE

full tgd DP N9 DP DP-ΠP
2 N16 EXP-coNEXP

denial DP DP DP-ΠP
2 ΠP

2

egd DP N9 DP DP-ΠP
2 N16 ΠP

2

FD in P H8 in P NP H17 ΠP
2

key in P in P NP N18 ΠP
2

Figure 1: Left: Hasse diagram of the hierarchy of IC languages. Right: Complexity of b-RC and b-CQA shown in this paper and
known results for RC and CQA marked by ∗ (cf. [Arming et al., 2014]). All results denote completeness results, except when
given in the form lower - upper bound. Triangles refer to results for lower (N) and upper (H) bounds shown in this paper.

Observe that D 6|= C and that there are three repairs for
this instance. First, we can delete all employees, resulting in
R1 = {Comp(c1)}. Second, we can create two departments,
which yields R2 = D ∪ {Dep(d1, c1),Dep(d2, c1)}. Third,
we can delete the company, resulting inR = D\{Comp(c1)}.
A closer look at the repairs reveals that their nature is quite
different. There are applications where R1, i.e., deleting all
employees, is too radical. Yet, in the classical setting of CQA,
R1 is considered equally good as R2, i.e., solving the incon-
sistency by inserting two departments.

Notice that deleting the whole database always fulfills the
constraints (for all classes of constraints considered in this
work). Hence, for many instances there is a repair that deletes
large fractions of the database in order to obtain consistency.
This can, however, be an undesired repair, as a large part of
the information of the original database is lost. This changes
also the behavior for queries: Asking whether there is at least
one employee in any repair is answered with no for CQA, but
with yes if we admit only repairs with at most two changes.

One might argue that a way to overcome these problems is to
consider cardinality minimal repairs only. There are, however,
instances for which this restriction is too strong and excludes
reasonable repairs. In the above example, this restriction
would only allow repair R3, i.e., deleting the company. Yet,
this is rather short-sighted as in many scenarios repair R2,
i.e., adding two departments, is also a reasonable repair. Also
considering only the top-k repairs, can be disadvantageous, as
even small values for k can include repairs with a very high
distance to the original database.

Furthermore, notice that there is a problematic asymmetry
between insertions and deletions: While the number of pos-
sible deletions is bounded by the input size, the number of
insertions needed to obtain consistency might be arbitrarily
large. This effect is also the root for various undecidability
results known for CQA.

Contributions. We introduce a natural version of RC and
CQA where the distance to the original database is bounded.
This new notion leads to more natural answers in certain sce-
narios, as discussed in the example above, whereas it preserves

the nice properties of CQA.
We give a detailed complexity analysis (of the combined

complexity) for twelve important constraint classes and show
that in many cases the complexity drops. For instance, the
complexity drops from undecidable to ΠP

3 for disjunctive tgds
and from ΠP

2 to NP for functional dependencies. This shows
that the bound captures an important source of complexity. In-
terestingly, there is the notable case of LAV tgds and inclusion
dependencies where the complexity increases from NP to ΠP

2 .
For an overview on the results see Figure 1.

2 Preliminaries
We assume familiarity with the basics of complexity theory
and logic. Recall that a Boolean conjunctive query is a first-
order formula of the form ∃xR1(x1) ∧ · · · ∧Rn(xn) where
xi ⊆ x and Ri are (not necessarily distinct) relation symbols.
Furthermore, similarly to the class DP, the class DP2 contains
all problems that consist of the conjunction of two independent
problems from ΣP

2 and ΠP
2 . Unless stated otherwise, we use n

to denote the size of the input.
Consistent query answering. Given a set of ICs C and a
database instance D, a repair of D w.r.t. C is a database
instance R which satisfies C and which differs minimally
from D. Difference and minimality can be defined in several
ways. We follow the approach of [Arenas et al., 1999] where
repairs are obtained from the original database by insertion and
deletion of tuples and minimality means that the symmetric set
difference ∆(D,R) is minimal w.r.t. subset inclusion. More
formally, let ∆(D,R) = (D \ R) ∪ (R \ D). Then R is a
repair of D w.r.t. C if R |= C and there is no instance R′ with
R′ |= C and ∆(D,R′) (∆(D,R).

The idea of consistent query answers is that even from an
inconsistent database instance D, we can derive consistent
information, namely those answers to a query that one would
obtain over every repair R of D. More precisely, the set of
consistent answers to a query Q for a given database D and
ICs C is defined as

⋂
{Q(R) | R is a repair of D w.r.t. C}.

The following two decision problems are crucial to deal
with inconsistent data. In the REPAIR CHECKING (RC) prob-

2263

lem, we are given databases D and R and a set of constraints
C, and the question is whether R is a repair of D w.r.t. C. In
the CONSISTENT QUERY ANSWERING (CQA) problem, we
are given a database D, a set of constraints C, and a Boolean
conjunctive query Q, and the question is whether Q is true in
all repairs of D w.r.t. C.

Constraint classes. We now introduce the considered IC
languages. The left part of Figure 1 shows their relationship.

Besides domain independent first order (FO) sentences, all
languages studied in this paper arise from restrictions on for-
mulas of the form ∀x (ϕ(x) ∧ β(x) →

∨n
i=1 ∃yi ψi(x, yi))

where ϕ, ψi are conjunctions of database atoms and β a
quantifier-free formula using only built-in (i.e. comparison)
predicates. To ensure safety, we require that every variable in
x must occur in some atom in ϕ.

We call such a constraint full, or a universal constraint
(UC), if it contains no existential quantifiers. A disjunctive
tuple-generating dependency (∨-tgd) has empty β, while a
tuple-generating dependency (tgd) additionally has n = 1. A
local-as-view (LAV) tgd is a tgd where ϕ is a single atom, and
an inclusion dependency (ID) is a LAV tgd where also ψ1 is a
single atom. A denial constraint is of the form ∀x¬(ϕ(x) ∧
β(x)) and can be thought of as a universal constraint with
empty right hand side. An equality-generating dependency
(egd) is a denial constraint where β is a single inequality. A
functional dependency (FD) is an egd where ϕ consists of
two atoms over the same relation symbol. We recall that key
constraints are a special case of FDs.

Connections to OBQA. Before introducing our new approach
to CQA in the next section, we want to illustrate the con-
nection between CQA and ontology-based query answering
(OBQA), which has seen a lot of attention in the description
logics (DL) community over the last decade (see, e.g., [Ortiz,
2013]). In OBQA, a query is evaluated over a knowledgebase
– that is a database (i.e., an ABox) together with an ontology
(i.e., a TBox). Similarly to the database setting, the problem
of inconsistency also arises in OBQA. In fact, inspired by
the work on CQA, the concept of AR-semantics was intro-
duced by Lembo and Ruzzi [2007] (and later given the name
AR-semantics by Lembo et al. [2010]) to deal with inconsis-
tencies. This topic has found a lot of attention as witnessed
by a number of publications related to DLs [Bienvenu, 2012;
Bienvenu and Rosati, 2013; Bienvenu et al., 2014; Lembo et
al., 2012] and recently also related to existential rules (i.e.,
tgds) [Lukasiewicz et al., 2015].

Technically, there are a lot of similarities between CQA and
AR-based OBQA, but also subtle yet important differences.
The key difference is in what the term “inconsistency” means
and how inconsistencies can be repaired: In CQA, a database
D is inconsistent w.r.t. a set of constraints C, if database D
violates at least one constraint from C. Such an inconsistency
can be repaired by adding or deleting tuples from D. A query
Q is now directly evaluated over all repairs.

In OBQA with AR-semantics, “inconsistency” means that
the knowledgebase, that is the ABox together with the TBox,
does not have a model. Through modifying the ABox, such
an inconsistency can only be repaired by removing tuples, not
by adding tuples. Note that adding a tuple to the ABox only

decreases the number of possible models, but may never make
an inconsistent knowledgebase consistent. Thus we now have
a number of repaired knowledgebases, consisting of modified
ABoxes and unmodified TBoxes. A query Q is now evaluated
over these repaired knowledgebases as typical in OBQA, i.e.,
by checking whether the ABox together with the TBox entails
queryQ. Implicit in this step is the addition of tuples as forced
by the TBox.

Altogether, both CQA and AR-based OBQA consider ad-
ditions and deletions of tuples, but in different phases. CQA
considers additions and deletions when computing repairs,
whereas AR-based OBQA considers only deletions when com-
puting repairs, but implicitly allows additions during query
evaluation. A subtle but crucial difference between both set-
tings arises from the required minimality of changes. That
is, it can make a difference whether minimality is required of
additions and deletions at the same time (as in CQA) or for
deletions alone (as in OBQA with AR-semantics).

Yet, if we restrict ourselves to certain classes of purely
negative constraints, these two formalisms coincide. In this
work, we consider several important kinds of negative con-
straints, such as denial constraints, equality-generating depen-
dencies (egds) and functional dependencies (cf. the hierarchy
of constraints shown in Figure 1). Note that while egds and
functional dependencies are usually given with equalities in
the conclusion (and thus, syntactically, do not look like neg-
ative constraints), they can be equivalently formulated with
inequalities in the antecedent and ⊥ as the conclusion.

3 New Approach and Overview of Results
Motivated by the discussion presented in the introduction,
we now introduce bounded variants of RC and CQA. The
only modification compared to the original version is that
|∆(D,R)| is bounded by a fixed b.

b-REPAIR CHECKING (b-RC)
Instance: Databases D and R and a set of constraints C.
Question: Is R a repair of D w.r.t. C s.t. |∆(D,R)| ≤ b?

b-CONSISTENT QUERY ANSWERING (b-CQA)
Instance: A database D, a set of constraints C, and a
Boolean conjunctive query Q.
Question: Is Q true in all repairs R of D w.r.t. C where
|∆(D,R)| ≤ b?

While there is always at least one repair for CQA, this is not
necessarily the case for b-CQA (as the repair candidate might
exceed the bound b). In case that there are no repairs, we fix
the answer to b-CQA as “no”.

Note that there are several complexity measures that can
be investigated for these problems (as database, constraints
and/or query can be considered to be fixed). In this work, we
focus on the combined complexity, as it gives an upper bound
for all of these complexity measures.

Before we move on to the complexity analysis of particular
classes of constraints, we present two results on the general
relationship of the bounded and unbounded case.

2264

Proposition 1. b-RC and b-CQA for a class of constraints C
is at least as hard as model-checking for class C.

Proof. To see this, let b = 0. Hence, there is only one possible
repair R = D. For bounded repair checking, it is easy to see
that the answer is yes in case that D |= C and no in case that
D 6|= C. That is, it is exactly the model checking problem
for D and C.

For b-CQA, we first note that since the only possible repair
is R = D, the minimality check of b-CQA is trivially true.
It only remains to be checked whether D |= C and D |= Q.
QueryQ can be constructed to be trivially fulfilled, i.e., we add
to database D an additional atom R(c) where R is a relation
symbol not yet occurring in D, the value c is arbitrary, and we
ask the query ∃xR(x). Thus also b-CQA comes down to the
model checking problem of D and C.

Proposition 2. b-RC for a class of constraints C is at most as
hard as RC for class C.

Proof. We show this result by presenting a reduction from b-
RC to RC. First we check whether |∆(D,R)| ≤ b. In this case,
it is sufficient to pass the b-RC instance to the RC problem.
Otherwise, we return a trivial no-instance as the size bound
is violated. Observe that this procedure can be carried out in
LOGSPACE.

These two results will turn out to be very useful as they allow
us to directly build upon the results known for CQA and RC.
Overview of results. In the sections that follow, we will
present a complexity analysis (of the combined complexity)
of the b-RC and b-CQA problem for a wide variety of classes
of integrity constraints. For an overview we refer to Fig-
ure 1. If we compare b-RC with RC, it turns out that b-RC is
never harder than RC. In contrast, if we compare b-CQA with
CQA, the picture is different. For FO constraints, ∨-tgds, and
tgds CQA is undecidable, but moving to b-CQA, we obtain
PSPACE-completeness for FO, and ΠP

3 -completeness for ∨-
tgds and tgds. The reason for this change is that in these cases,
hardness is caused by a very large (in general, unboundedly
large) difference between the repair and the original database.

The case of LAV tgds and ID constraints is possibly sur-
prising, as the complexity increases from NP to ΠP

2 when we
move from CQA to b-CQA. This is because for CQA, it is
possible to limit the attention to a unique repair Ru, which is
obtained through deletions only. Since for CQA a query Q is
true in all repairs if and only if it is true in Ru, both problems
can be solved in NP (implicit in [Arming et al., 2014]). How-
ever, for b-CQA this trick does not always work, since it might
be that Ru exceeds the bound b, and thus is no repair at all.

In all other cases the complexity stays the same or drops.
Notice that in the cases where a tight classification for CQA
was open [Arming et al., 2014], we do not have matching
upper and lower bounds for b-CQA either, but we can show
that the complexity is guaranteed to drop.

4 Bounded Repair Checking
We start our complexity analysis by studying b-RC. From
Proposition 2 we know that b-RC is at most as hard as RC, but
we will show that in many cases the complexity actually drops.

Proposition 3. b-RC for FO is PSPACE-complete.

Proof. Note that in the work of Arming et al. [2014] it was
shown that RC is PSPACE-complete. Hence, by Proposition 1
(taking into account that model-checking for FO is well known
to be in PSPACE) and by Proposition 2 we obtain that b-RC
is also PSPACE-complete.

We now move from first-order constraints to universal con-
straints and show that repair checking can be solved by two
calls to an NP-oracle.

Theorem 4. b-RC for UCs is in DP.

Proof. We show this by reduction to SAT/UNSAT which is
known to be DP-complete. We need to show that we can
encode an arbitrary b-RC instance into a SAT/UNSAT instance,
i.e., a pair of formulas (ϕ,ψ) such that ϕ 6|= ⊥ and ψ |= ⊥ if
and only if the b-RC instance is a yes-instance.

Encoding the check whether R |= C into ψ is straight-
forward as model-checking for UCs is coNP-complete (cf.
[Pichler and Skritek, 2011]). Let the formula encoding this
check be denoted by ψC . What remains to be shown is how to
encode the minimality check of R. More precisely, we need
to show that ∆(D,R) is subset minimal, i.e., there is no other
R′ with R′ |= C and ∆(D,R′) (∆(D,R). To this end,
we consider instances Ri, which are induced by a strict sub-
set of ∆(D,R). Because ∆(D,R) is of size at most b there
are at most 2b − 1 such instances. Hence we can enumerate
these R1, . . . , R2b−1 in polynomial time (as b is fixed). Recall
that model-checking for UCs is coNP-complete. Therefore,
Ri 6|= C can be decided in NP. For each Ri, we create a
formula ϕi that is satisfiable if and only if Ri 6|= C. W.l.o.g.
we assume that the variables of all ϕi, with 1 ≤ i ≤ 2b − 1,
are disjoint. Taken together, the instance for SAT/UNSAT is
given by (ϕ :=

∧2b−1
i=1 ϕi, ψ := ψC).

Next, we show that for ∨-tgds and tgds the complexity in-
creases by one level.

Theorem 5. b-RC for ∨-tgds is in DP2.

Proof. The membership proof for this problem is similar to
the proof of Theorem 4. The important difference is, however,
that model-checking for ∨-tgds is ΠP

2 -complete (cf. [Pich-
ler and Skritek, 2011]). Thus the formula needed to en-
code whether R |= C is an ∀∃-QBF, namely ∀x∃y ψ′(x, y).
For each smaller repair Ri, we need to verify that Ri 6|=
C. This done by creating a ∃∀-QBF, ∃xi ∀yi ϕi(xi, yi),
that is valid if and only if Ri 6|= C (again assuming
w.l.o.g. that the formulas ϕi do not share any variables.)
We obtain an ∃-QSAT2/∀-QSAT2 instance (which is clearly
DP2-complete) by putting the QBF together accordingly:
(ϕ := ∃x1 · · ·x2b−1 ∀y1 · · · y2b−1

∧2b−1
i=1 ϕi(xi, yi), ψ :=

∀x∃y ψ′(x, y)).

Theorem 6. b-RC for tgds is DP2-hard.

Proof. We show this by a reduction from the ∃-QSAT2/∀-
QSAT2 problem, which is clearly DP2-complete. Since model-
checking for tgds is ΠP

2 -complete (cf. [Pichler and Skritek,
2011]), we will actually reduce from the problem where we

2265

are given two databases D1, D2 and two sets of tgds C1, C2.
The question is whether D1 6|= C1 and D2 |= C2. W.l.o.g.
we assume that D1 and D2 as well as C1 and C2 do not share
any symbols. We construct the b-RC instance for b = 1 as
follows. For C1 (C2) we create a set of tgds C ′1 (C ′2) that is
obtained from C1 (C2) by adding g′ (g) to the body of each
tgd. Let now D := D1 ∪D2 ∪ {g, g′}, R := D \ {g′}, and
C := C ′1 ∪ C ′2. It is now easy to verify that R is a repair if
and only if D2 |= C ′2 (otherwise R |= C would not hold) and
D1 6|= C ′1 (otherwise R′ = C would also be a repair and as a
consequence R would not be minimal). Furthermore, notice
that |∆(D,R)| = 1 ≤ b.

The remaining three results can be shown by building upon
results from the literature.

Proposition 7. b-RC for LAV tgds is DP-complete.

Proof. Note that membership can again be obtained by Propo-
sition 2 and the result for RC [Arming et al., 2014]. Hardness
can be shown similarly to the hardness proof of Arming et
al. [2014] (cf. the full version of the paper).

Proposition 8. b-RC for FDs and IDs is in P.

Proof. As RC for FD and ID constraints is in P [Arming et
al., 2014] this holds by Proposition 2 also for b-RC.

Proposition 9. b-RC for full tgds and egds is DP-hard.

Proof. Hardness can be shown similarly to the hardness proofs
of Arming et al. [2014] (cf. the full version of the paper).

5 Bounded Consistent Query Answering
We now move to the study of b-CQA. Here we will see that in
many cases the complexity drops compared to CQA. In particu-
lar, the undecidable cases become decidable. Yet interestingly,
for LAV tgds and IDs, the complexity actually increases.

For first-order constraints, we see that the complexity for
b-CQA and RC coincides.

Theorem 10. b-CQA for FO is PSPACE-complete.

Proof. As mentioned earlier, model-checking for FO is
well known to be PSPACE-complete. Hence hardness for
PSPACE follows by Proposition 1. Membership in PSPACE
can be seen as follows. First, notice that the representation of a
single addition/deletion is always of polynomial size (observe
that the maximum arity is trivially bounded by the size of
the input). Hence, the largest set ∆(D,R) is of size at most
O (b · n). Therefore, also each repair R is of size polynomial
in the input. We can now use the following procedure to decide
the problem. We guess a repair candidate and verify whether
it is a repair, i.e., whether it fulfills the FO constraints and that
there is no “smaller” repair. Notice that the number of smaller
repairs is also polynomial as b is fixed. For each of the repairs
obtained in this way, we ensure that the query Q is fulfilled.

In more detail, we iterate over all repair candidates R (of
polynomial size) and verify whether the FO constraints C are
satisfied. If this is the case, we look for a “smaller” repair
candidateR′ such that ∆(D,R′) (∆(D,R) andR′ |= C. In

case R does not satisfy the constraints or there is a smaller re-
pair candidateR′, we dropR and continue with the next repair
candidate until all candidates have been considered. Other-
wise, we check whether repair R satisfies the query Q (this
can be done in PSPACE, as model checking for conjunctive
queries is known to be in NP). If no repair exists or a repair
R 6|= Q, the procedure returns no. Otherwise, if no choice ofR
yields such a counterexample, the procedure returns yes.

Note that in contrast to the above result, CQA is undecidable
for first-order constraints. The same holds for ∨-tgds and
tgds, where the complexity even drops to the third level of the
polynomial hierarchy.
Theorem 11. b-CQA for ∨-tgds is in ΠP

3 .

Proof. This follows from a naive guess and check algorithm,
together with the fact that model-checking for ∨-tgds is ΠP

2 -
complete. We can simply guess a repair candidate R, because,
as argued in the proof of Theorem 10, the largest set ∆(D,R)
is of size at most O (b · n). For each candidate we check
whether it fulfills constraints C, which can be done by a call
to a ΠP

2 -oracle. Then, we verify that R is indeed minimal and
hence a repair, by iterating over all smaller repair candidates
R′ with ∆(D,R′) (∆(D,R) (at most 2b − 1 many) and
verify thatR′ 6|= C by a call to a ΣP

2 -oracle. Finally, it remains
to be checked whether R |= Q, which is done by a single call
to an NP-oracle (as model checking for conjunctive queries is
known to be in NP). If this is the case, the procedure continues
until all repair candidates have been considered, which means
that it can terminate with answer yes. Otherwise, or if no
repair exists, the procedure terminates with no.

In some of the following proofs, we make use of the following
notation. Let ϕ be the 3CNF formula

∧
i(li1 ∨ li2 ∨ li3). We

denote by ϕ∗ the conjunction
∧

i c(l
∗
i1, l
∗
i2, l
∗
i3) where l∗ij = x

if lij is the positive literal x and l∗ij = x, if lij is the negative
literal ¬x. For example, [(x ∨ ¬z ∨ y) ∧ (¬z ∨ y ∨ ¬y)]∗ =
c(x, z, y) ∧ c(z, y, y). Furthermore, let ĉ := {c(x, y, z) |
x, y, z ∈ {0, 1}} \ {c(0, 0, 0)}.
Theorem 12. b-CQA for tgds is ΠP

3 -hard.

Proof. We proceed by a reduction from ∃QSAT3 to the co-
problem of b-CQA. Let the instance of ∃QSAT3 be a QBF of
the form ϕ = ∃x1 · · ·xk ∀y1 · · · yl ∃z1 · · · zm ψ, where ψ is a
propositional formula over x1, . . . , xk, y1, . . . , yl, z1, . . . , zm
in 3CNF. We set b = 2 and construct the instance of the
co-problem of b-CQA as follows.

D = ĉ ∪ {True(1),False(0),V (0),V (1),Neg(0, 1),

Neg(1, 0)} ∪ {Neg i(0, 1),Neg i(1, 0) | 1 ≤ i ≤ 3} ∪
{Truei(1),Falsei(0),Vi(0),Vi(1) | 1 ≤ i ≤ 3}

Q = False(f) ∧ c(f, f, f)

Let C be given as the set of the following formulas:
1. True(v)→ ∃x1 · · ·xkX (x1, . . . , xk)

2. X (x1, . . . , xk) ∧
∧

1≤i≤k

Neg(xi, xi) ∧
∧

1≤i≤l

Neg(yi, yi)→

∃z1 · · · zm
∧

1≤i≤m

Neg(zi, zi) ∧ ψ∗

2266

3. {X (x1, . . . , xi, . . . , xk)→ V (xi) | 1 ≤ i ≤ k}
4. {Neg i(x, y)→ Neg(x, y),Neg(x, y)→ Neg i(x, y),
Ri(x)→ R(x),R(x)→ Ri(x) |
1 ≤ i ≤ 3,R ∈ {True,False,V }}

First, notice that due to the constraints in block (4) of C
(together with the distance bound b) it is not possible to insert
or delete any facts over the relations True , False , V , and Neg ,
as fulfilling these constraints would immediately exceed the
bound b. Also, removing facts from the relation c(·, ·, ·) is of
no help, as this relation occurs only in the head of a tgd.

Taking a closer look at the constraints, we notice that there
are only two types of repair candidates. Type (i): A single
fact X(x1, . . . , xk) is added, where x1, . . . , xk ∈ {0, 1} by
block (3) of C; or Type (ii): Where type (i) is extended by
adding the fact c(0, 0, 0), which is the only missing fact of
this relation as ĉ is already present in D.

We now argue why we only need to consider these two
types of repair candidates. Notice that a fact over relation
X must be inserted in any repair, as this is enforced by the
constraint (1) in C (and the fact that True 6= ∅ always holds,
as discussed before). Furthermore, a repair will only contain
the insertion of a single fact over relation X . Otherwise this
would contradict the minimality of the repair, as constraint (1)
is already satisfied by the first fact over X and adding second
fact over X makes blocks (2) and (3) of constraints harder to
satisfy rather than easier. For type (ii), observe that adding the
fact c(0, 0, 0) is optional and provides a backdoor to satisfy
the constraint (2) vacuously. A repair candidate of type (ii)
will only be minimal if for the given fact over relation X the
second constraint cannot be fulfilled without this backdoor.
We now claim that ϕ is true if and only if there is a repair R
that does not contain c(0, 0, 0), and as a consequence R 6|= Q.

Below, we give the intuition why this correspondence in-
deed holds. The intended meaning of the constraint (2) is to
model the QBF ϕ unless the backdoor fact c(0, 0, 0) is inserted
in the repair. That is, for an assignment to the xi variables
(represented by the X relation in the repair) and for any assign-
ment to the yi variables (in the body of this constraint) there is
an assignment to the zi variables such that ψ (represented by
ψ∗) is satisfied. The constructed instance of the co-problem
of b-CQA is a no-instance (i.e., for any repair R it holds that
R |= Q) if c(0, 0, 0) is contained in all repairs. Therefore, we
know that for any assignment to the xi variables (represented
by the X relation), there exists some assignment to the yi
variables such that there was no way to satisfy the formula
ψ since otherwise c(0, 0, 0) would have been dispensable in
some repair. Thus, ϕ must be false.

Conversely, assume that ϕ is false. Then we know that for
all assignments to the xi variables there is an assignment to the
yi variables such that any assignment to the zi variables makes
ψ false. Therefore, for any assignment to the X relation in the
repair, the repair will violate constraint (2) unless c(0, 0, 0)
is also contained in the repair to enable the backdoor. As a
consequence, for any repairR, it holds thatR |= Q, and hence
the constructed instance of the co-problem of b-CQA is indeed
a no-instance.

In the next two results, we see the only cases where the com-

plexity increases when we move from CQA to b-CQA.

Proposition 13. b-CQA for LAV tgds is in ΠP
2 .

Proof. The membership proof is analogous to the proof of
Theorem 11, with the difference that model-checking for LAV
tgds is coNP-complete. This is the reason why the complexity
drops by one level in the polynomial hierarchy.

Intuitively, an explanation for this increase of complexity is
the following. In the case of CQA, it suffices to limit the
search to a single unique repair Ru, which can be obtained by
using deletions only. Then we only need to check whether Q
is true in Ru, to decide whether a query Q is true in all repairs.
However, this trick does not work for b-CQA as Ru might be
excluded from the repairs for exceeding the bound b, and as a
consequence make the inspection of further repairs necessary.

Theorem 14. b-CQA for IDs is ΠP
2 -hard.

Proof. We establish this result by a reduction from ∃QSAT2,
which is well-known to be ΠP

2 -complete, to the co-problem
of b-CQA. An instance of ∃QSAT2 is given by a QBF of the
form ϕ = ∃x1 · · ·xk∀y1 · · · yl ψ, where ψ is a propositional
formula in 3DNF over x1, . . . , xk, y1, . . . , yl. Let b = 1 and
χ ≡ ¬ψ, which is known to be in 3CNF since ψ is in 3DNF.
The instance of the co-problem of b-CQA is given as follows.

D = ĉ ∪ {Neg(0, 1),Neg(1, 0),V (0),V (1)}
C = {V (v)→ ∃x1 · · ·xkX (x1, . . . , xk),

Neg(x, y)→ V (x),Neg(x, y)→ V (y),

X (x1, . . . , xi, . . . , xk)→ V (xi) | 1 ≤ i ≤ k}

Q = χ∗ ∧
∧

1≤i≤l

Neg(yi, yi)

Notice that, since b = 1, it is not possible to delete both
Neg(0, 1) and Neg(1, 0) from D. Therefore, it is ensured by
the constraints with the body Neg(X,Y) that only an insertion
can be used to obtain a repair. This insertion will be a fact
of the form X (x1, . . . , xk) where x1, . . . , xk ∈ {0, 1}, which
is ensured by the first constraint together with the last group
of constraints. Now observe that there is a repair R such that
R 6|= Q if and only if there is an assignment – expressed by
the inserted fact of the form X (x1, . . . , xk) – such that there is
no assignment to the variables y1, . . . , yl where χ is satisfied,
or equivalently, ψ is unsatisfied. In other words, (D,C,Q) is
a no-instance (witnessed by a repair R such that R 6|= Q) if
and only if ϕ is a yes-instance.

We continue our investigation with universal constraints.

Proposition 15. b-CQA for UCs is in ΠP
2 .

Proof. Since model-checking for UCs is coNP-complete,
membership can be seen by analogous arguments as in the
proof of Proposition 13.

The next result shows a lower complexity bound, i.e., DP-
hardness, for egds and full tgds.

Theorem 16. b-CQA for egds and full tgds is DP-hard.

2267

Proof. We first show the result for egds. Let G1 = (V1, E1)
and G2 = (V2, E2) be two undirected graphs. Since 3-
COLORABILITY is NP-complete, it is DP-complete to de-
cide whether G1 is 3-colorable and G2 is not. We now present
a reduction to b-CQA for egds. To this end, we construct a
b-CQA instance for b = 0 as follows.

D = {C (1, 2),C (1, 3),C (2, 1),C (3, 1),C (3, 2),

True(1),False(0)}

C = {True(t) ∧ False(f) ∧
∧

(i,j)∈E2

C (i, j)→ t = f}

Q =
∧

(i,j)∈E1

C (i, j)

Because b = 0, the only repair candidate is R = D. Since
the head of the only constraint in C can never be satisfied,
the constraint can only be fulfilled if its body is not satisfied
for any assignment to the variables. This is, however, only
the case if G2 is not 3-colorable. Similarly, the query is only
satisfied by the repair R if G1 is 3-colorable. For full tgds, it
suffices to replace the head t = f in C by X(t).

Finally, we investigate the complexity of functional depen-
dencies and key constraints, yielding the lowest complexity
results in our study of b-CQA.

Theorem 17. b-CQA for FDs is in NP.

Proof. We show this by reduction to SAT. The basic idea
of this result is to solve parts of the problem already as a
preprocessing step in the transformation phase. Observe that
whenever a set of FDs is violated, it never helps to add facts.
Hence, the only way to become consistent with FDs is to delete
facts. The number of database instances that can be obtained
by deleting facts from the input database D is bounded by∑b

i=1

(
n
i

)
≤ b ·nb, which is polynomial since b is fixed. Thus,

also the number of repair candidates that need to be considered
is bounded, say by the integer u. Therefore, we can enumerate
all repair candidates (including the original database) R =
{D,R1, . . . , Ru} in polynomial time and check whether the
FDs are satisfied by the elements ofR. As we are interested
in the set of subset-minimal repairs only, we construct the
set Rmin ⊆ R of minimal repairs. Notice that this can also
be done in polynomial time. It remains to check for each
repair Rmin ∈ Rmin whether Rmin |= Q, where Q is the
conjunctive query that has to hold for all repairs.

After this preprocessing step, we create a propositional
formula that is satisfiable if and only if Q is satisfied by all
subset-minimal repairs in Rmin . Since, as discussed earlier,
model-checking for conjunctive queries is NP-complete, we
have that for any repair R and any conjunctive query Q, there
is a propositional formula JR |= QK that is satisfiable if and
only if R |= Q. Therefore, we can construct a single proposi-
tional formula ϕ :=

∧
Rmin∈Rmin

JRmin |= QK to perform the
check. Taken together, we can decide the problem after poly-
nomial preprocessing, by deciding a single SAT instance.

Proposition 18. b-CQA for key constraints is NP-hard.

Proof. Recall that model-checking for conjunctive queries is
NP-complete. Hence, even if C = ∅ and b = 0, the check
whether D |= Q holds, dominates the complexity and leads to
hardness for NP.

6 Conclusion
In this work, we have introduced natural variants of RC and
CQA, called b-RC and b-CQA, where the distance of a repair
to the original instance is bounded by some fixed b. As dis-
cussed in the introduction, there are settings where answering
queries over repairs of bounded distance can lead to more
natural solutions. In our complexity analysis, we have shown
that complexity drops in many, but not all cases, and that
all problems are decidable even if they were undecidable for
CQA. Thus, our approach is not only natural, but also has
better computational properties than CQA in many cases. We
think that these theoretical results, in which we pinpoint the
sources of hardness, can support the development of tools for
RC and CQA. Furthermore, these results can inspire the study
of related formalisms, e.g., CQA where only a certain fraction
(e.g., one quarter) of the database may change.

Extending this study to related formalisms and to perform
a parameterized complexity analysis are interesting tasks for
future work. In this work, we have considered a fixed bound b
on the distance to the original database as this is the strongest
restriction, and therefore most likely to give tractability or at
least results for lower complexity classes. Nevertheless, it
would be interesting to consider weakening this restriction.
Exploring other notions of complexity such as data complexity
is also on top of our agenda. Furthermore, it would be desir-
able to obtain matching complexity bounds for all considered
constraint classes.

References
[Arenas and Bertossi, 2010] Marcelo Arenas and Leopoldo

Bertossi. On the decidability of consistent query answering.
In AMW 2010, volume 619 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2010.

[Arenas et al., 1999] Marcelo Arenas, Leopoldo Bertossi,
and Jan Chomicki. Consistent query answers in incon-
sistent databases. In PODS 1999, pages 68–79. ACM Press,
1999.

[Arming et al., 2014] Sebastian Arming, Reinhard Pichler,
and Emanuel Sallinger. Combined complexity of repair
checking and consistent query answering. In AMW 2014,
volume 1189 of CEUR Workshop Proceedings. CEUR-
WS.org, 2014.

[Bertossi, 2006] Leopoldo Bertossi. Consistent query answer-
ing in databases. ACM SIGMOD Record, 35(2):68–76,
2006.

[Bertossi, 2011] Leopoldo Bertossi. Database Repairing and
Consistent Query Answering. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[Bienvenu and Rosati, 2013] Meghyn Bienvenu and Ric-
cardo Rosati. Tractable approximations of consistent query
answering for robust ontology-based data access. In IJCAI
2013, pages 775–781. AAAI Press, 2013.

2268

[Bienvenu et al., 2014] Meghyn Bienvenu, Camille Bour-
gaux, and François Goasdoué. Querying inconsistent de-
scription logic knowledge bases under preferred repair se-
mantics. In AAAI 2014, pages 996–1002. AAAI Press,
2014.

[Bienvenu, 2012] Meghyn Bienvenu. On the complexity of
consistent query answering in the presence of simple on-
tologies. In AAAI 2012, pages 705–711. AAAI Press, 2012.

[Calı̀ et al., 2003a] Andrea Calı̀, Domenico Lembo, and Ric-
cardo Rosati. On the decidability and complexity of query
answering over inconsistent and incomplete databases. In
PODS 2003, pages 260–271. ACM Press, 2003.

[Calı̀ et al., 2003b] Andrea Calı̀, Domenico Lembo, and Ric-
cardo Rosati. Query rewriting and answering under con-
straints in data integration systems. In IJCAI 2003, pages
16–21. Morgan Kaufmann, 2003.

[Chomicki, 2007] Jan Chomicki. Consistent Query Answer-
ing: Five Easy Pieces. In ICDT 2007, volume 4353 of
Lecture Notes in Computer Science, pages 1–17. Springer,
2007.

[Fontaine, 2013] Gaëlle Fontaine. Why is it hard to obtain a
dichotomy for consistent query answering? In LICS 2013,
pages 550–559. IEEE Computer Society, 2013.

[Greco et al., 2014] Sergio Greco, Fabian Pijcke, and Jef
Wijsen. Certain query answering in partially consistent
databases. PVLDB 2014, 7(5):353–364, 2014.

[Kolaitis and Pema, 2012] Phokion G. Kolaitis and Enela
Pema. A dichotomy in the complexity of consistent query
answering for queries with two atoms. Information Pro-
cessing Letters, 112(3):77–85, 2012.

[Lembo and Ruzzi, 2007] Domenico Lembo and Marco
Ruzzi. Consistent query answering over description logic
ontologies. In RR 2007, volume 4524 of Lecture Notes in
Computer Science, pages 194–208. Springer, 2007.

[Lembo et al., 2010] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico F. Savo.
Inconsistency-tolerant semantics for description logics. In
RR 2010, volume 6333 of Lecture Notes in Computer Sci-
ence, pages 103–117. Springer, 2010.

[Lembo et al., 2012] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico F. Savo.
Inconsistency-tolerant first-order rewritability of DL-Lite
with identification and denial assertions. In DL 2012, vol-
ume 846 of CEUR Workshop Proceedings. CEUR-WS.org,
2012.

[Lukasiewicz et al., 2015] Thomas Lukasiewicz, Maria Van-
ina Martinez, Andreas Pieris, and Gerardo I. Simari. From
classical to consistent query answering under existential
rules. In AAAI 2015, pages 1546–1552. AAAI Press, 2015.

[Ortiz, 2013] Magdalena Ortiz. Ontology based query an-
swering: The story so far. In AMW 2013, volume 1087 of
CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[Pichler and Skritek, 2011] Reinhard Pichler and Sebastian
Skritek. The complexity of evaluating tuple generating

dependencies. In ICDT 2011, pages 244–255. ACM Press,
2011.

[Staworko and Chomicki, 2010] Sawomir Staworko and Jan
Chomicki. Consistent query answers in the presence of
universal constraints. Information Systems, 35(1):1–22,
2010.

[ten Cate et al., 2012] Balder ten Cate, Gaëlle Fontaine, and
Phokion G. Kolaitis. On the data complexity of consistent
query answering. In ICDT 2012, pages 22–33. ACM Press,
2012.

[Wijsen, 2014] Jef Wijsen. A survey of the data complexity
of consistent query answering under key constraints. In
FoIKS 2014, volume 8367 of Lecture Notes in Computer
Science, pages 62–78. Springer, 2014.

2269

