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Abstract

Automatically identifying the research areas of aca-
demic/industry researchers is an important task for
building expertise organizations or search systems.
In general, this task can be viewed as text classifica-
tion that generates a set of research areas given the
expertise of a researcher like documents of publica-
tions. However, this task is challenging because the
evidence of a research area may only exist in a few
documents instead of all documents. Moreover, the
research areas are often organized in a hierarchy,
which limits the effectiveness of existing text cat-
egorization methods. This paper proposes a novel
approach, Multi-instance Learning of Hierarchical
Multi-label Classification Model (MIHML) for the
task, which effectively identifies multiple research
areas in a hierarchy from individual documents
within the profile of a researcher. An Expectation-
Maximization (EM) optimization algorithm is de-
signed to learn the model parameters. Extensive ex-
periments have been conducted to demonstrate the
superior performance of proposed research with a
real world application.

1 Introduction
In many large commercial, academic and government orga-
nizations, it is often important to identify experts in spe-
cific topics. This leads to extensive research on expert re-
trieval [Hertzum and Pejtersen, 2000; Balog et al., 2009;
2012; Rybak et al., 2014], where the goal is to uncover as-
sociations between experts and topics. Microsoft Academic
Search is one example of such an expertise retrieval system.
One important task of expert retrieval is expert profiling [Ba-
log and De Rijke, 2007; Berendsen et al., 2013], which an-
swers the question: what topics does a person know about.
In academics, expert profiling identifies the research areas of
researchers. This is essential for building expertise organi-
zations or search systems, which help build expert profiles
or determine knowledgeable people for given topics respec-
tively. In general, based on researchers’ expertise like doc-
uments of publications and research projects, we can view
this task as a multi-label text classification [Elisseeff and

Weston, 2001; Zhang and Zhou, 2005] problem that gener-
ates a set of research areas. However this task is challenging
due to its characteristics. First, the evidence of a research
area may only exist in a few instead of all documents of a re-
searcher (multi-instance learning problem). Second, research
areas are often organized in a hierarchy, which requires effec-
tive methods to deal with the label correlations (hierarchical
multi-label problem).

Multi-instance Learning (MIL) [Dietterich et al., 1997]
studies the case that each bag is composed of multiple data
instances, with the assumption that a bag is labeled positive if
at least one of its instances is positive, whereas a negative bag
only contains negative instances. In the work of [Andrews et
al., 2002], two different large margin methods have been pro-
posed, i.e., mi-SVM for instance level classification and bag
level method MI-SVM. In [Chen et al., 2006], bags are em-
bedded into a feature space spanned by all the instances. A
more recent work in [Wang et al., 2012] proposes a mixture
model approach. Most recently, the work in [Wang et al.,
2014] boosts the learning performance by adaptive knowl-
edge transfer.

In Multi-label Classification (MLC), objects are associated
with a set of labels. Recent works include RankSVM [Elis-
seeff and Weston, 2001], ML-kNN [Zhang and Zhou, 2005]
and Max-margin multi-label [Hariharan et al., 2010]. The
joint multi-instance multi-label problem [Jin et al., 2009;
Nguyen et al., 2014] has also attracted a lot of attentions.
One specific case of MLC is Hierarchical Multi-Label clas-
sification (HML) [Barutcuoglu et al., 2006; Schietgat et al.,
2010], in which labels have hierarchical structures. Hierar-
chical Max-margin Markov (HM3) Network [Rousu et al.,
2006] has been proposed to model the label hierarchy, where
it follows the framework Max-Margin Markov network (M3)
[Taskar et al., 2003].

However, none of the existing work addresses the expert
profiling task effectively, which requires a combination of
MIL and HML. This paper models the expert profiling task
as Multi-instance Learning of Hierarchical Multi-label Clas-
sification (MIHML) problem. Within this framework, we not
only incorporate the correlation between multiple research ar-
eas in a hierarchy, but also explore the association between
individual documents and research areas. In particular, the
document-area pair is modeled using Markov network under
a unified probabilistic learning framework. In this model, we
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need to find the correct research areas for each single docu-
ment as well as the optimal model parameters. This leads to a
mixed integer programming problem that cannot be solved ef-
ficiently. We propose a novel optimization method called Ex-
pectation and Maximization Hierarchical Maximum-Margin
Markov Network (EM-HM3) algorithm to solve the MIHML
problem, which optimizes over the model parameters and
instance-label assignments alternatively to obtain an optimal
solution.

To evaluate the performance of the proposed EM-HM3

method on expert profiling, we compare it to multi-label
SVM, MIMLSVM [Zhou and Zhang, 2006] and HM3 with
an extensive set of experiments with a real world expertise
database system. We demonstrate the advantage of EM-HM3

with research areas in each level of the research hierarchy,
and validate the effectiveness for different sizes of training
data. Experimental results show that our approach outper-
forms several existing MIML and HML methods, in both ac-
curacy and the ability of dealing with small training size.

2 Maximum Margin Hierarchical Multi-label
Classification

We first introduce the framework of Max-Margin Markov
(M3) Network [Taskar et al., 2003] and its Hierarchical so-
lution HM3 [Rousu et al., 2006]. Consider a data domain
X × Y , where X is a set of instances, and the label set is
Y = Y1 × · · · × Yk with Yj = {+1,−1}, j = 1, · · · , k.
We call a vector y = (y1, · · · , yk) ∈ Y a multilabel and its
component yj a microlabel. For hierarchical labels, they nat-
urally forms a Markov Network: G = (Y, E), where there is
an edge e = (i, j) between microlabels yi, yj if one microla-
bel is the parent of the other. Thus the network represents the
dependence between microlabels. For each edge e = (i, j),
the network potential is ψij(x, yi, yj) = exp(wT

e φ(x,ye)),
x ∈ X , ye = (yi, yj). The network gives a joint conditional
probability distribution:

P (y|x) =
1

Z(x,w)

∏
e∈E

exp(wT
e φe(x,ye))

=
1

Z(x,w)
exp(wTφ(x,y))

(1)

with normalizing factor Z(x,w) =
∑

y exp(wTφ(x,y)).

2.1 Max-Margin Learning
Given the training data {(xi,yi)}mi=1, we have the following
optimization problem:

argmax
w

log(
m∏
i=1

P (yi|xi; w))

= argmax
w

m∑
i=1

[wTφ(xi,yi)− logZ(xi,w)]

(2)

Unfortunately the above problem is difficult to solve di-
rectly for a general graph G. An alternative way is to max-
imize the ratio P (yi|xi; w)/P (y|xi; w), which is equivalent
to maximize the minimum linear margin: wTφ(xi,yi) −

wTφ(xi,y), and it leads to the following max-margin op-
timization problem:

min
w

1

2
||w||2 + C

m∑
i=1

ξi

s.t. wT∆φ(xi,y) ≥ `(yi,y)− ξi,∀i,y

where ∆φ(xi,y) = φ(xi,yi)− φ(xi,y), and `(yi,y) is the
value of loss function for multilabels yi and y. The dual form
can be written as:

max
α≥0

αT `− 1

2
αTKα, s.t.

∑
y

α(i,y) ≤ C, ∀i

where K = ∆ΦT∆Φ is the joint kernel matrix of the training
examples. Marginal dual methods can be applied to reduce
the size of dual variables from exponential to polynomial. For
an edge e ∈ E, and a restricted labeling ye, the marginal of
α(i,y) is defined as:

µe(i,ye) =
∑
{v∈Y}

[ye = ve]α(i,v).

We can define a decomposable loss function as `(yi,y) =∑
e∈E `e(i,ye) and a decomposable feature vector

φ(x,y) = (φe(x,yE))e∈E , which lead to a decomposable
joint kernel K(x,y; x′,y′)=

∑
e∈E φe(x,ye)

Tφe(x
′,y′e)

=
∑
e∈E Ke(x,ye; x

′,y′e). Then the original dual problem
is equivalent to the following form:

max
µ≥0

∑
e∈E

µTe `e −
1

2

∑
e∈E

µTe Keµe (3)

s.t.
∑
yE

µe(i,yE) ≤ C, ∀i, e ∈ E,

∑
y′

µe(i, (y
′, y)) =

∑
y′

µe′(i, (y, y
′)),∀i, y, (e, e′) ∈ E2

where Ee = {(e, e′) ∈ E × E|e = (j′, i), e′ = (i, j)}.
The above formula is a polynomial-sized quadratic program,
which can be solved efficiently [Rousu et al., 2006].

3 Multi-instance Maximum Margin
Hierarchical Multi-label Classification

In this section, we present the novel approach of Multi-
instance Learning of Hierarchical Multi-label Classification
based on Maximum Margin. For multi-instance learning
problems, one can always concatenate the features of mul-
tiple instances (individual documents) into a single feature
vector (a single vector of an expertise profile), and treat it as
a traditional single-instance learning task. However, this pro-
cedure fails to utilize the multi-instance structure of this prob-
lem. Moreover, in many cases, there exist some labels (e.g.,
research areas) that are only associated with certain instances
(documents) of the bag (the profile). Thus we want to explore
the intrinsic relations between multiple instances and hierar-
chical labels. Given an example bag x(i) = (x

(i)
1 , · · · ,x(i)

Ri
)

(documents of an expert) with labels yi ∈ Y (labels of re-
search areas), where x

(i)
1 , · · · ,x(i)

Ri
are the multiple instances
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in the bag, the ideal case is that we also know the exact
instance-label pair (x

(i)
j ,y

(i)
j ) for j = 1, · · · , Ri. In contrast

to MIMLBoost [Zhou et al., 2012], which takes y
(i)
j = y(i),

for j = 1, · · · , Ri, we assume that each instance contributes
different parts to the bag labels, which is illustrated in Fig 1.

3.1 Problem Formulation
We consider a set of training examples: {(x(i),y(i))}mi=1,
where each bag x(i) is a set of Ri instances {x(i)

1 ,x
(i)
2 , · · · ,

x
(i)
Ri
}, x

(i)
j ∈ X , and y(i) ∈ Y is the multilabel of the cor-

responding training bag. According to formula (1), for each
instance x

(i)
j the distribution of its multilabel can be written

as:

P (y
(i)
j |x

(i)
j ) =

1

Z(x
(i)
j ,w)

exp(wTφ(x
(i)
j ,y

(i)
j )) (4)

where Z(x
(i)
j ,w) =

∑
y
(i)
j

exp(wTφ(x
(i)
j ,y

(i)
j )) is the nor-

malizing factor. The joint probability of all the training ex-
amples is represented as:

∏m
i=1

∏Ri

j=1 P (y
(i)
j |x

(i)
j ; w). In the

joint probability, w is the model parameter which needs to
optimize. y

(i)
j (1 ≤ i ≤ m, 1 ≤ j ≤ Ri) are instance la-

bels, which are also unknown. In order to maximize the joint
probability, we have to optimize over both w and y

(i)
j :

argmax
w,y

(i)
j

log(

m∏
i=1

Ri∏
j=1

P (y
(i)
j |x

(i)
j ; w))

= argmax
w,y

(i)
j

m∑
i=1

Ri∑
j=1

[wTφ(x
(i)
j ,y

(i)
j )− logZ(x

(i)
j ,w)]

(5)

Note that the instance labels above are actually constrained as
they are highly related to the bag labels. In the task of expert
profiling, we assume that a positive research area of a profile
implies that at least one of the documents in this profile is
positive, while a negative research area of a profile means
that all its documents are negative. Based on this assumption,
we can have the following constraints on instance labels:

(y
(i)
1 , · · · ,y(i)

Ri
) ∈ Si, ∀1 ≤ i ≤ m (6)

where Si = {(y1, · · · ,yRi)|y(i) =
∨Ri

j=1 yj} and the opera-
tor
∨

denotes the boolean union operation.
The optimization problem in Eqns. (5) and (6) leads to a

mixed integer programming problem, with a feasible domain
size:

∏m
i=1 |Si|, which grows exponentially with the training

data. On the other hand, we notice that for any fixed instance
labels, the optimization problem can be solved efficiently by
max-margin method. Therefore, we can solve the optimiza-
tion problem iteratively.

3.2 Optimization
Here we apply Expectation-Maximization (EM) algorithm to
get an approximate solution of the above optimization prob-
lem. For the sake of convenience, we denote the instance
labels as Z = Z1 × · · · × Zm, where Zi = (y

(i)
1 , · · · ,y(i)

Ri
),

Bag

Bag

Figure 1: A comparison of HML and the proposed model.
The top figure shows the learning model used in HML, where
the exact instance-label pairs are unknown. The bottom figure
demonstrates the proposed model, which explores the hidden
instance-label information based on the bag labels.

∀1 ≤ i ≤ m, s.t. Z ∈ S, where S = S1 × · · · × Sm , and we
denote the bag labels as Y = (y(1), · · · ,y(m)). Then we can
write the joint probability as:

P (Y,Z|w) =
m∏
i=1

Ri∏
j=1

1

Z(x
(i)
j ,w)

exp(wTφ(x
(i)
j ,y

(i)
j )).

During the M-step in the EM algorithm, we update the wold

with wnew from:

wnew = argmax
w

∑
Z∈S

P (Z|Y,wold) logP (Y,Z|w). (7)

The above problem (7) requires us to sum over all feasible
Z, which is computational intractable as the size of feasible
Z is exponential with the training size m. It is also diffi-
cult to obtain the exact values of P (Z|Y,w) and P (Y,Z|w)

since computing the normalization factors Z(x
(i)
j ,w) =∑

y
(i)
j

exp(wTφ(x
(i)
j ,y

(i)
j )) is non-trivial.

The general EM method indicates that the parameter wnew

should be calculated based on all feasible values of instance
labels Z. However, for less likely instance labels, which
means the value of P (Z|Y,wold) is relatively small, it is un-
likely to make a big difference for selecting the wnew. More-
over, the model essentially works by focusing on the most
relevant instance labels Z, which has the highest posterior
probability P (Z|Y,wold). Therefore, a revision of the gen-
eral EM for our problem is:

1. Choose an initial parameter wold.
2. E-Step Calculate Z∗ = argmaxZ∈S P (Z|Y,wold).
3. M-Step Evaluate wnew given by wnew =
argmaxw logP (Y,Z∗|w).
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4. Check whether it satisfies the stop criterion. If not,
replace the parameter value by wold ← wnew and return
to step 2.

For M-Step, max-margin method is used to transform the
optimization problem to:

min
w

1

2
||w||2 + C

m∑
i=1

Ri∑
j=1

ξ
(i)
j

s.t. wT∆φ(x
(i)
j ,y) ≥ `(y(i)

j ,y)− ξ(i)j ,∀i, j,y

(8)

Then the marginal dual method (3) can be applied to solve the
above problem (i.e., by solving the dual variable µ).

For E-Step, we search among the domain S and find the
optimal instance labels Z∗ with highest posterior probabil-
ity P (Z|Y,wold). This is also transformed into the max-
margin framework, where we set the instance labels to min-
imize C

∑m
i=1

∑Ri

j=1 ξ
(i)
j . This is done by labeling the in-

stances based on the parameter wold. Thus the objective of
(8) decreases for the fixed wold we obtained from M-Step.
Since the objective (8) decreases after each iteration, and it
has a lower bound 0, the algorithm will converge to an local
minimal. In our implementation, we terminate the algorithm
at the iteration where the decrease of the objective is small
enough. The detailed stop criterion is discussed at the end of
this section.

E-Step is an inference problem (i.e., predicting multil-
abels) which is equivalent [Rousu et al., 2006] to solve the
following problem for each instance i:

argmax
y∈Y

gTi µ(y) (9)

where gi = `i−Kiµ is the gradient of the objective function
in (3). Here we use both the notations w and µ, but they are
equivalent since µ is the dual variable of w. We denote by
Gj = (Vj , Ej) the subtree of G rooted at the microlabel yj .
Inspired by a botton-up procedure, we define the following
two functions:

• Tyj (i, j) the best objective (9) value obtained for in-
stance i in the subtree rooted at the node j when the mi-
crolabel yj has been fixed.
• Gyj (i, e) the best objective (9) value obtained for in-
stance i in the subtree rooted by the edge e = (j, j′)
when the microlabel yj has been fixed.

These two functions are computed in the following manner:

Tyj (i, j) =

{ ∑
e=(j,j′)∈Ej

Gyj (i, e), if Ej 6= ∅
0, otherwise

Gyj (i, e) = max
yj′

ge(i, yj , yj′)µe(i, yj , yj′) + Tyj′ (i, j
′)

where ge(i, yj , yj′) is the element value of gi on the edge
(yj , yj′).

At the root, maxy Ty(i, root) gives the optimum, and
we can track back the labels based on this optimum condi-
tion. Since we have the domain constraints, we will assign
Tyj (i, j) to−∞ for all i, yj if yj = +1 while the correspond-
ing microlabel yj for the bag is −1. This way each instance i

will not be labeled positive if the corresponding bag is nega-
tive.

Then for each positive microlabel yj of each bag, if all
its instances are labeled negative at yj , we will select the in-
stance that has the minimum decrease of the objective value
(9) when changing its mircolabel yj to positive, and make yj
positive for this instance. After these procedures, the instance
labels satisfy the domain constraints.

Algorithm 1 EM-HM3 for Multi-instance Hierarchical
Multi-label Classification
Require:

Training Data: X = {x(i)
j }

m,Ri

i=1,j=1, Y = {y(i)}mi=1
Hierarchical Max-margin Multi-label classification func-
tion: w = HM3(X,Y);

Ensure:
Optimal parameter w∗.

1: Initialize instance labels Z̃: y
(i)
j = y(i), ∀i, j.

2: REPEAT:
Z = Z̃, Compute parameter: w = HM3(X,Z)
Make Tyj (i, j) = −∞ if the corresponding bag label

is negative
Update labeling Z̃: y

(i)
j = argmaxy∈Y gTi µ(y)

FOR every i in {1, 2, · · · ,m}:
IF Z̃i /∈ Si as for some microlabel yk:

∆t
(i)
j,k = gTi µ(y

(i)
j )− gTi µ(y

′(i)
j ),

where y
′(i)
j only differs from y

(i)
j in yk

Select j∗ = argminj ∆t
(i)
j,k

Adjust yk of y
(i)
j∗ to positive

WHILE (Z̃ 6= Z)
3: return w;

The EM-HM3 algorithm is presented in Algorithm 1.
Once we obtain the solution of the parameter w, for the ex-
pert profile x(i) with unknown research areas, we can acquire
the research areas y

(i)
j for each document in the profile, and

then predict research areas of the profile as y(i) =
∨Ri

j=1 y
(i)
j .

In practice, we use a different stop criterion. We notice that
the number of different microlabels between Z̃ and Z has a
decreasing trend, and after first several iterations it will fluc-
tuate around some small number. So we terminate the algo-
rithm when |Z̃ 6= Z| ≤ α|Z|. Also the optimization problem
(8) is solved by the marginal dual method which gives an ap-
proximate solution, so we terminate the algorithm when the
objective of the dual problem does not have enough increase:
˜obj − obj ≤ β ∗ obj.

3.3 Discussions
In the determining expert research areas task, there exist cor-
relations among multiple research areas, and between docu-
ments and research areas. HM3 only models the hierarchical
relations between multiple research areas, which fails to han-
dle the MIHML problem. Our EM-HM3 also explores the
correlation between documents and research areas via opti-
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Table 1: F1 value for each level of the hierarchy for different algorithms.

The value of F1 (%) with the training size 400
Methods Level 1 Level 2 Level 3 Level 4 Level 5
MLSVM 100 85.3± 0.7 56.1± 0.8 21.5± 1.4 14.8± 1.9

MIMLSVM 100 84.7± 0.8 55.2± 1.4 19.9± 1.3 15.6± 2.2
HM3 100 84.5± 0.8 56.7± 1.7 23.8± 1.1 19.4± 2.4

EM-HM3 100 84.5± 0.7 58.0± 1.5 27.1± 1.2 23.1± 2.0

mizing document based research areas under the constraint
that these research areas are consistent with the profile. This
procedure enables us to uncover the evidence inside the doc-
uments for research areas. We notice that research areas in
lower levels (levels far from the root) of the hierarchy tend to
have weaker evidence, which may only exist in very few doc-
uments, so it is more challenging to predict them correctly. In
this case, EM-HM3 achieves a boost of the accuracy in lower
levels compared with other methods.

Moreover, if training examples are insufficient, the classi-
fication models learned from the sparse information by pre-
vious MIL and HML methods will be less effective. On
the other hand, our model fully explores the problem struc-
ture using multi-instance and hierarchical multi-label learn-
ing. Therefore it achieves much better results under the situ-
ation that the number of training examples is small.

4 Experimental Evaluation
We test our algorithm with a public expertise database IN-
DURE1. In this dataset, an expertise profile describes pro-
fessional information of a researcher, including his/her back-
ground, publication list, funded projects, and theses as indi-
vidual documents. The research areas are organized by the
hierarchy of National Research Council2. For instance, bio-
chemistry, public science and neuroscience are branches of
life science, while biochemistry also has branches like molec-
ular biology and structural biology. Funding section provides
the information of funded projects; thesis section is displayed
with the abstracts of thesis documents. We extract features
from these documents by TF-IDF [Salton, 1970] weighing
method with word stemming and stop-word removal. Each
document feature is a 2,000-dimension vector.

There are 1,132 research areas and 1,930 different expert
profiles (bags), associated with 22,049 documents (instances)
in total. Labels are consistent in this dataset, that is if a mi-
crolabel is positive, then its parent is positive. We notice that
most of the research areas are only present in very few pro-
files 3. This is a common problem of tail labels in MLC. Since
this work focuses on the Multi-instance and Multi-label as-
pects rather than the zero-short learning problem [Palatucci
et al., 2009], we remove the sparse labels which are labeled
fewer than 30 times in expert profiles. The label set consists
of 87 microlabels that form a hierarchy of depth 5: one root
microlabel with 3, 8, 58, 17 microlabels in level 2 to level 5

1www.indure.org
2http://www.rackham.umich.edu/nrc/taxonomy/
3Most of the research areas are labeled fewer than 5 times.

respectively. Among the 1,930 profiles, 33.4% of them be-
long to more than one leaf node (i.e., the bottom level) of the
hierarchy. The minimum number of microlabels associated
with a profile is 2, while the maximum is 16, and the average
number is around 6.

We want to answer the following questions in the experi-
ments: 1). Whether the hierarchical multi-label classification
scheme helps to improve the performance compared to tra-
ditional multi-label methods? 2). Whether the multi-instance
scheme outperforms single-instance learning? 3). How effec-
tive is the proposed approach compared to existing methods
under different training sizes?

4.1 General Result
Since both HM3 and EM-HM3 are max-margin based
algorithms, we select multi-label SVM (MLSVM) and
MIMLSVM [Zhou and Zhang, 2006] for comparisons, both
of which have achieved excellent performances in the multi-
label classification and the multi-instance multi-label setting
respectively [Zhou et al., 2012]. MLSVM learns each re-
search area separately with the constraint that child node can
be positive only when its parent node is positive. It is imple-
mented by LIBSVM [Chang and Lin, 2011]. MIMLSVM is
an algorithm that first maps the original multi-instance to a
new feature space, f : x(i) → zi, where the dimension of zi
is a ratio γ of the training size, then applies MLSVM to learn
the classification problem {zi,y(i)}.

We use the standard information retrieval statistic F1 to
evaluate the performance, where F1 = 2PR/(P + R), and
P denotes precision, R denotes recall. In order to highlight
the differences between research areas in different levels of
the hierarchy, the results are presented in level-wise.

Linear kernel is used in all four methods to conduct
fair comparisons. Ten-fold cross validations are performed,
where the regularization parameter is tuned by maximizing
the sum of F1 values of all levels. For MIMLSVM, the ratio γ
is set to be 20%4. For EM-HM3 and HM3, we use the follow-
ing loss function: `(y,v) =

∑
j cj [yj 6= vj ] where croot = 1,

cj = cpa(j)/|sibl(j)|, in which pa(j) and sibl(j) denote the par-
ent and the set of siblings of research area yj respectively.
Since MLSVM and HM3 are not designed for multi-instance
learning, we create a feature vector for each profile by treat-
ing the affiliated documents as a single one and implement
MLSVM and HM3 by using profile features.

4We tried several γ from 20% to 50%, and it turned out that the
higher value of γ does not have a big impact on the result.
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Figure 2: The F1 value of labels in level 2 (left) and level 3
(right) varies with different training sizes: from 200 to 800.

Table 1 depicts the level-wise result of different algorithms
for a fixed training size 400, together with the standard de-
viations. It can be seen from this table that MLSVM gives
the best result for level 2, but the differences among the four
methods are very small. For the later 3 levels, EM-HM3 has
the highest F1 values, with an increasing advantage from level
3 to level 5. The reason is that for higher levels (i.e., levels
close to the root of the tree), there are fewer research areas,
which make the classification task easier than that in lower
levels (i.e., levels far from the root of the tree), so even less
sophisticated methods can achieve comparable results.

We also conduct paired t-test with significance level 0.05
on Table 1 to compare the two hierarchical multi-label meth-
ods HM3 and EM-HM3 with the other two traditional multi-
label methods MLSVM and MIMLSVM. The results show
that the former two methods significantly outperform the lat-
ter ones especially in lower levels. In hierarchical multi-label
learning, the correct prediction of parent nodes will help the
prediction on children nodes, which is consistent with our
expectation of using hierarchical multi-label learning. We
can also observe from this table that the proposed EM-HM3

approach obtains much better results compared with HM3,
which is already very competitive in levels 4 and 5. This
demonstrates the advantage of combining multiple instance
with hierarchical multiple labels against the other methods,
which only model one of these two aspects.

4.2 Result for Different Training Sizes
In this set of experiments, we further evaluate the perfor-
mance of all compared methods on different training sizes.
Usually, the classification results drop with the decreasing of
the training examples. There is also a trend that when pro-
viding massive training data, the performance gaps of various
algorithms diminish. However, a robust modeling strategy
should work with a limited amount of training data. There-
fore, we compare the proposed EM-HM3 approach to the
other three methods in this aspect by modifying the number of
training examples. Specifically, we evaluate these four meth-
ods on different training sizes from 200 to 800 examples. The
comparison results for all levels are shown in Figure 2 and
Figure 3. It can be seen from Figure 2 that, for level 2, lines
are close to each other and fluctuate between 0.840 and 0.857.
There is no evidence that the F1 values get higher with the in-
crease of the training size. Our hypothesis is that there are
only three nodes in level 2, so it is easy to classify the pro-
file into one of the three nodes even with small numbers of
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Figure 3: The F1 value of labels in level 4 (left) and level 5
(right) varies with different training sizes: from 200 to 800.

training data. In the figure for level 3, EM-HM3 achieves
the best performance, especially with training size 200. The
F1 value is 0.574, which is significantly better than 0.525 of
MIMLSVM and 0.551 of MLSVM.

It is clear that in Figure 3, lines are more distinct. From
the shapes of the graphs, we can generally have the conclu-
sion: for level 4 and level 5, EM-HM3 > HM3 > {MLSVM,
MIMLSVM}. Unlike the results for level 3 that the advan-
tage of EM-HM3 narrows to zero when providing sufficient
training data, EM-HM3 obtains strictly higher F1 value than
all other methods for labels in levels 4 and 5. And this gap be-
comes larger with the decrease of the training size. To achieve
the same performance of EM-HM3 for level 4 or 5 with train-
ing size 200, HM3 needs nearly 400 training examples, while
MLSVM and MIMLSVM require almost 600 training exam-
ples. These results indicate that EM-HM3 is much more ro-
bust with different training sizes compared to the other meth-
ods, which is consistent with our expectation. Another inter-
esting observation is that the other multi-instance algorithm
MIMLSVM does not perform well in most cases. Our ex-
planation is that for MIMLSVM there is a trade-off between
utilizing multi-instance information and preserving its feature
dimension. Since it maps multiple instances into a single bag
with the feature dimension to be a ratio (20%-30%) of the
training size, this process causes MIMLSVM a loss of infor-
mation because the feature vector is in low dimension space,
especially if multiple instances do not have enough discrimi-
nations.

5 Conclusion
This paper proposes the Multi-instance Learning of Hierar-
chical Multi-label Classification (MIHML) approach to han-
dle the expert profiling task, which aims to determine expert
research areas. In this task, we have modeled two types of
correlations. One is the correlation between multiple research
areas, which have a hierarchical structure. The other one is
the association between documents and research areas, where
the evidence of a research area may only exist in a few instead
of all documents of the profile. we propose an optimization
method based on Expectation-Maximization (EM) algorithm
to learn the model parameters. Experiments on the exper-
tise profiles from a real world dataset show that EM-HM3

outperforms traditional MIML and HML algorithms, in both
accuracy and the ability of dealing with a small training size.
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