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Abstract
The Nyström sampling provides an efficient ap-
proach for large scale clustering problems, by gen-
erating a low-rank matrix approximation. How-
ever, existing sampling methods are limited by their
accuracies and computing times. This paper pro-
poses a scalable Nyström-based clustering algo-
rithm with a new sampling procedure, Minimum
Sum of Squared Similarities (MSSS). Here we pro-
vide a theoretical analysis of the upper error bound
of our algorithm, and demonstrate its performance
in comparison to the leading spectral clustering
methods that use Nyström sampling.

1 Introduction
The amount of large-scale data around us is increasing in size
very quickly. Clustering those data with respect to certain fea-
tures using computational approaches would help us interpret
them in a timely manner. Hence, development of clustering
algorithms is an active field of research [Kong et al., 2011].

In recent years, spectral clustering has become increas-
ingly popular, often outperforming alternative approaches on
a range of datasets [Chen and Cai, 2011]. However, spectral
clustering has limited applicability to large-scale problems,
due to its computational time complexity. To address this
computational challenge, a common approach is to use a low-
rank matrix approximation [Zhang and You, 2011], [Chen
and Cai, 2011]. The Nyström method is one such technique
used in a number of machine learning problems [Fowlkes et
al., 2004], [Williams and Seeger, 2001]. The method works
by first sampling a set ofm landmark points from n instances,
with m � n, to formulate an approximation for the eigen-
decomposition of the full dataset using the sampled data.

The most important step of the Nyström method is sam-
pling, because different sampled landmark points give differ-
ent approximations of the original matrix. Uniform sampling
without replacement is the most used approach for this pur-
pose [Fowlkes et al., 2004], [Cohen et al., 2014], where every
point has the same probability of being included in the sam-
ple. Alternatively, sampling can be performed using local or
global properties of the data distribution. Different versions
of non-uniform sampling have recently been suggested. For
example, in [Zeng et al., 2014] authors proposed an algorithm

that considers the similarity between the sample set and the
rest of the data points to select the landmark points. Simi-
larly, [Zhang and You, 2011] proposed an algorithm, where
points with the smallest variance between the sampled points
and the rest of the data are selected as landmark points.

In this paper, we propose ”Minimum Sum of Squared Sim-
ilarities” (MSSS), an algorithm for incremental sampling in
Nyström based-spectral clustering. MSSS considers both
variance and similarity in its sampling data, increasing the
speed of the clustering on large datasets. The algorithm starts
sampling with a fixed number of initial landmark points and
selects new landmark points one by one, such that the sum
of the squared similarities between the previously selected
points and the new point is minimized. We also discuss its
upper bound on the Frobenius norm error.

2 Related Work
Derived from spectral graph theory [Von Luxburg, 2007],
spectral clustering has a wide range of applicability, such as
in community detection [Azam and Viktor, 2013], image seg-
mentation [Fowlkes et al., 2004] and clustering of microarray
data [Higham et al., 2007].

To apply spectral clustering to large datasets, recent efforts
have been concentrating on solving issues around algorithm
scalability [Zeng et al., 2014], such as on reducing the time
cost of eigen-decomposition of a Laplacian matrix (see 3.1)
through parallel computations [Chen et al., 2011], [Wang et
al., 2014]. Another approach is to use dimension reduction
by Nyström approximation [Williams and Seeger, 2001], a
method originally designed for numerical solution of integral
equations [Sloan, 1981].

Recently, due to their demonstrated effectiveness, Nyström
approximation-based machine learning algorithms are gain-
ing popularity [Fu, 2014]. However the performance of the
approach is highly dependent on proper subsampling of the
input data to include some landmark points, points that cap-
ture the inherent complexity and variability of the full dataset.
To address this, different sampling methods have been pro-
posed, some as simple as random sampling (RS) [Fowlkes
et al., 2004], [Cohen et al., 2014]. However, although it is
straightforward to implement, RS makes an implicit assump-
tion that clusters have an equiprobable distribution, which
may be a limiting assumption for certain datasets [Fowlkes
et al., 2004].
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Two proposed alternatives use diagonal sampling [Drineas
and Mahoney, 2005] and column-norm sampling [Drineas et
al., 2006] algorithms, and are very effective. However, they
are shown to perform poorly in various test cases in compar-
ison to RS [Kumar et al., 2009b].

In [Belabbas and Wolfe, 2009] the authors developed a
weighted sampling (WS) approach using the determinant of
the kernel matrix to select landmark points, where the prob-
ability of choosing a new landmark point was in proportion
to the determinant of the similarity matrix between landmark
points. They analyzed the Nyström reconstruction error us-
ing the Schur complement [Gowda and Sznajder, 2010], con-
cluding that the larger the determinant, the smaller the er-
ror. Although the work provides a solid theoretical basis for
measuring the error levels in Nyström approximation, a main
drawback of the algorithm provided is in its time complexity.

Assuming that the potential clusters are convex, [Zhang
et al., 2008] introduced k-means based sampling (KS) al-
gorithm, as a means to select points near k-means centroids
as landmark points. Similarly, [Shinnou and Sasaki, 2008]
also pre-processed the data using k-means clustering, to se-
lect a committee of data points near centroids. Although the
latter method does not explicitly state the convexity assump-
tion, both methods perform poorly for non-convex clusters
and when clusters are grouped in certain configurations, such
as some of the test datasets shown in Figure 1.

In [Zhang and You, 2011], the authors proposed an in-
cremental sampling (IS) algorithm that first randomly sam-
ples two points from a dataset, to compute a similarity ma-
trix between the sampled points and the remaining points.
The algorithm picks the point with the smallest variance, and
then iteratively repeats the process until a desired number of
landmarks is reached. While promising, [Zeng et al., 2014]
showed that IS performs poorly on high-dimensional data, as
the variance of the Euclidean distance tends to zero. In such
cases IS may pick inappropriate landmark points for dimen-
sion reduction, hence for successful clustering.

The authors in [Zeng et al., 2014] studied how the similar-
ity between the sample set and non-sample set influences the
approximation error, and proposed minimum similarity sam-
pling (SS) for high-dimensional space clustering. However,
their result depends on the dimensionality of the dataset: SS
outperforms IS on high-dimensional data, but not on low di-
mensional data.

To address the problems raised in [Zeng et al., 2014] and
[Zhang and You, 2011], we propose a new sampling algo-
rithm, MSSS, which approximately maximizes the determi-
nant of the reduced similarity matrix that represents the mu-
tual similarities between sampled data points. We demon-
strate the performance of MSSS in comparison to leading
sampling methods using synthetic benchmark datasets, as
well as a University of California, Irvine (UCI) Machine
Learning Repository dataset.

3 Key Notion
3.1 Spectral clustering
Spectral clustering algorithms employ the first k eigenvectors
of a Laplacian matrix to guide clustering. Loosely following

the notation in [Von Luxburg, 2007], this can be outlined as
follows.

Algorithm 1 Spectral Clustering Algorithm
1: Input: Affinity matrix S ∈ Rn×n, number of clusters to

construct, k
2: Output: Clusters c1, ..., ck
3: Compute the Laplacian matrix P = D − S ; where D is

an n× n diagonal matrix defined by Dii =
∑n
j=1 Sij

4: Compute k eigenvectors u1, ..., uk corresponding to the
largest k eigenvalues of the generalized eigenproblem
Pu = λDu; and let Z ∈ Rn×k be the matrix containing
the vectors u1, ..., uk.

5: Cluster y1, ..., yn by k-means algorithm into clusters
c1, ..., ck; with yi corresponding to the i-th row of Z.

Here, S is the symmetric affinity matrix constructed using
the cosine similarity between each pairs of data points.

By analyzing the spectrum of the Laplacian matrix con-
structed over all data entries, the original data can be com-
pressed into a smaller number of representative points using
the Nyström approximation described below.

3.2 Nyström Sampling
The Nyström sampling method was originally designed to ap-
proximate the solutions of integral equations of the form:∫ 1

0

sim(x, y)φ(y)dy = λφ(x) (1)

where x, y ∈ R, φ(x) represents the eigenfunction, and
sim(x, y) denotes the similarity between x and y.

If we consider m landmark data points L = l1, l2, ..., lm
from a given dataset X = x1, x2, ..., xn with xi ∈ Rn and
m � n, then for any given point x in X , Nyström method
formulates

1

m

m∑
i=1

sim(x, li)φ̂(li) = λ̂φ̂(x) (2)

where φ̂(x) is an approximation to the exact eigenfunction,
and λ̂ is the corresponding approximate eigenvalue. Note
that, Eq.2 cannot be solved directly, as both φ̂(x) and λ̂ are
unknown.

If we denote the similarity matrix between the landmark
points by S̃ with s̃ij = sim(li, lj), and substitute x with li in
Eq.2, we can write it in matrix form,

S̃Φ̂ = mΦ̂Λ̂ (3)

where Φ̂ = [φ̂1φ̂2...φ̂m] are the eigenvectors of S̃ and Λ̂ =

diag{λ̂1, λ̂2, . . . , λ̂m} is a diagonal matrix of the correspond-
ing approximate eigenvalues.

For an unsampled point x, the j-th eigenfunction at x can
be approximated by

φ̂j(x) ' 1

mλ̂j

m∑
i=1

sim(x, li)φ̂j(li) (4)

2314



With the equation above, the eigenvector for any given
point x can be approximated through the eigenvectors of the
landmark points L [Belabbas and Wolfe, 2009].

The same idea can be applied to extend the solution of a re-
duced matrix eigenvalue problem, to approximate the eigen-
vectors of a similarity matrix. Specifically, one may approxi-
mate k eigenvectors of S by decomposing and then extending
a k × k principal sub-matrix of S.

First, let S be partitioned as

S =

[
A B>

B C

]
(5)

with A ∈ Rk×k.
Now, define spectral decompositions S = UΛUT and

A = UAΛAU
T
A ; the Nyström extension then provides an ap-

proximation for k eigenvectors in

Ũ =

[
UA

BUAΛ−1A

]
(6)

where the approximations of Ũ ≈ U and Λ̃ ≈ Λ may then be
composed, yielding an approximation S̃ ≈ S according to

S̃ = ŨΛAŨ
> =

[
A B>

B BA−1B>

]
(7)

We call S̃ the Nyström approximation to S.
We note from Eq.6 that the main computational load to

calculate this approximation is centred around the principal
sub-matrix A of dimension k < n, and hence the Nyström
extension provides a practical scalability for the spectral de-
composition, hence for the spectral clustering problem.

4 Proposition
Before we present our approach, let us consider two toy ex-
amples to motivate the proposed algorithm.
Example 1. Assume that in a given dataset X =
{x1, x2, ..., xn} the data points belong to four clusters. In
the ideal case of zero inter-cluster similarities, when three
landmark points are selected, the similarity matrix would be
S̃ = I3 where Ia is the a×a identity matrix with a = 3. Sim-
ilarly, for a fourth landmark point xi, we would ideally have
S̃∪{xi} = I4, implying that the new landmark point is again
not at all similar to the precedent landmarks points.

Suppose, however, that we have to choose between two
non-ideal landmark points, x1 and x2, such that

S̃∪{x1} =

 1 0 0 0.2
0 1 0 0.2
0 0 1 0.2

0.2 0.2 0.2 1


and

S̃∪{x2} =

 1 0 0 0.1
0 1 0 0.3
0 0 1 0.2

0.1 0.3 0.2 1


It was shown in [Zhang and You, 2011] that the larger the

determinant of the reduced dimension similarity matrix, the

smaller the error of the Nyström approximation. Hence, in
this case, one should pick x1 over x2, because det(S̃∪{x1}) is
larger than det(S̃∪{x2}).

However, the search for an optimum landmark point in-
volves repeated computation of determinants, which has a
time complexity of O(n3). Our motivation is to reduce this
to O(mn) by considering the sum of squared similarities
between a landmark candidate and the preceding landmark
data points.

In effect, by this approach we consider both the variance
and the sum of the similarities between the new and preceding
landmark data points, as proposed by [Zeng et al., 2014] and
[Zhang and You, 2011], respectively, since by definition

1

m− 1

∑
i<m

b2i = var(b) +

{
1

m− 1

∑
i<m

bi

}2

where b is the similarity vector between a new (mth) land-
mark point and the preceding (m−1) landmarks, and var(b)
is the variance of b.

In this example, this will allow us to pick x1 over x2, while
the sum of similarities would not be able to distinguish be-
tween the two choices. The variance method would similarly
pick x1 over x2.

Example 2. Expanding on the above example, let us now
consider a third candidate for the new landmark, x3, such
that

S̃∪{x3} =

 1 0 0 0.3
0 1 0 0.3
0 0 1 0.3

0.3 0.3 0.3 1


In this case, again x1 is preferable over x3, but this time
the variance method will not be able to pick between x1 and
x3, while sum of similarities and sum of squared similarities
would both prefer x1, as they should.

4.1 Theoretical analysis
Next, following the formalism of [Zhang and You, 2011] we
show that, under certain assumptions, selecting landmarks in-
crementally in a way that minimizes the sum of the squared
similarities between the new and the precedent landmark
points would maximize the determinant of the landmark sim-
ilarity matrix.

Theorem 1. For a given datasetX = {x1, x2, . . . , xn}, let S
be a real n× n, symmetric positive definite matrix, where its
entries sαβ = sim(xα, xβ) describe the similarity (in [0, 1])
between xα and xβ , with sαα = 1. Let S̃ be an optimum (m−
1)st order Nyström approximation of S, such that S̃ ' I .
Denote the landmark data points that constitute this Nyström
approximation with X̃ = {x̃1, x̃2, . . . , x̃m−1}. Then, for two
data points xp and xq in X but not in X̃ , if∑

i<m

sim2(xp, x̃i) ≤
∑
i<m

sim2(xq, x̃i)

then
det(S̃∪{xp}) ' det(S̃∪{xq})
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Therefore, the optimum new landmark data point x̃m that
minimizes

∑
i<m sim

2(x̃m, x̃i) approximately maximizes
det(S̃∪{x̃m}).

Proof. First, consider the augmented Nyström approxima-
tion, with

S̃∪{x̃m} =

 .
S̃ . b

. . . .
b> . 1

 (8)

where b = [b1, ..., bm−1]> is the vector of similarities be-
tween new landmark x̃m and the preceding landmarks x̃i, i.e.,
bi = sim(x̃i, x̃m) for i = 1, . . . ,m− 1.

To take the determinant of this augmented matrix, one can
consider two levels of co-factor expansions over column m
then by row m− 1, to give

det(S̃∪{x̃m}) = det(S̃)−
m−1∑
i=1

b2i det(S̃/i) (9)

−2
m−1∑

i,j=1∧i6=j

(−1)i+jbibjdet(M<im>,<(m−1)j>)

where M<im>,<(m−1)j> is the minor < (m − 1)j > of
M<im>, which in turn is the minor < im > of S̃∪{x̃m}, and
S̃/i is a matrix obtained by deleting the rows and columns
i ∈ 1, ...,m− 1 of the matrix S̃∪{x̃m}.

Note that, because S̃ ' I , all determinants
of the second order cofactors will be negligible,
i.e.,det(M<im>,<(m−1)j>) ' 0, and the double sum-
mation in the second line of Eq.9 will drop.

Next, due to the constructive nature of the theorem, we will
have S̃/i ' I for all i ∈ 1, ...,m− 1. Thus, we can write

max
i

∣∣∣det(S̃/i)− det(I)
∣∣∣ < ε

for some ε > 0, which puts the second term on the right
hand side of Eq.9 in some δ > 0 neighbourhood of

∑m−1
i=1 b2i ,

where δ < ε
∑m−1
i=1 b2i .

Finally, this gives us,

det(S̃∪{x̃m}) ' det(S̃)−
m−1∑
i=1

b2i .

Hence, minimizing
∑m−1
i=1 b2i approximately maximizes

det(S̃∪{x̃m}).

4.2 Minimum Sum of Squared Similarities
Our algorithm is directly deduced from Theorem 1, where
rather than finding a new landmark point that maximizes
the determinant, we find a point that minimizes the sum of
squared similarities (MSSS). The MSSS algorithm initially
randomly chooses two points from the dataset X . It then
computes the sum of similarities between the sampled points
and a subset, T , selected randomly from the remaining data

points. The point with the smallest sum of squared similari-
ties is then picked as the next landmark data point. The proce-
dure is repeated until a total ofm landmark points are picked.

Algorithm 2 The Minimum Sum of Squared Similarities Al-
gorithm

1: Input: X = {x1, x2, ..., xn}: dataset
m: number of landmark data points
γ: size of the subsampled set from the remaining data, in
percentage

2: Output: S̃ ∈ Rm×m: similarity matrix between land-
mark points

3: Initialize S̃ = I0
4: For (i=0 to i<2) do
5: x̃i = Random(X)

6: S̃ := S̃∪xi

7: X̃ := X̃ ∪ {x̃i}
8: End For
9: While i < m do

10: T = Random(X\{X̃}, γ)
11: Find x̃i = argminx∈T

∑
j<i−1 sim

2(x, x̃j)

12: S̃ := S̃∪x̃i

13: X̃ := X̃ ∪ {x̃i}
14: End While

Theorem 2. For a dataset X = {x1, x2, ..., xn}, define the
following positive definite similarity matrices:

• S: the n × n similarity matrix for the overall dataset
with a maximum diagonal entry Smax;

• S̃l: a similarity matrix with l landmark point selected
randomly from X;

• S̃m: a similarity matrix with m landmark point selected
using MSSS, with m ≤ l ≤ n; and

• Sm: the best rank-m approximation of S.

Then with some probability 1− p or more, we can write

||S − S̃m|| ≤ (m+ 1)
n∑

i=m+1

λi + ||S − Sm|| (10)

+ nSmax
4

√
64m

l

(
1 +

√
wd∗S
Smax

) 1
2

where
d∗S = max

ij
(Sii + Sjj2Sij)

and

w = − n− 1

2n− 1

2

β(l, n)
log p

with

β(l, n) = 1− 1

2 max{l, n− l}

Proof. Using the above notation, let us introduce some facts.
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Fact 1 [Belabbas and Wolfe, 2009] Let λ1 ≤ ... ≤ λn be the
eigenvalues of the similarity matrix S. Then

||S − S̃l|| ≤ (l + 1)
n∑

i=l+1

λi (11)

Fact 2 [Kumar et al., 2009a] With some probability 1− p or
higher, we can write the following inequality:

||S̃l− S̃m|| ≤ ||S−Sm||+nSmax
4

√
64m

l

(
1 +

√
wd∗S
Smax

) 1
2

(12)
Then, adding both sides of Eq.11 and Eq.12, noting that∑n
i=m+1 ≥

∑n
i=l+1, and using the Triangle inequality

||S − S̃m|| ≤ ||S − S̃l||+ ||S̃l − S̃m|| (13)

we prove Theorem 2.

5 Evaluation
We tested MSSS with two subsampling percentages, γ = 0
and 10, (MSSS and MSSS-10, respectively), and compared
its performance to the results of three state-of-the-art ap-
proaches described in Section 2: random sampling (RS), k-
means sampling (KS) [Zhang et al., 2008] and minimum sim-
ilarity sampling (SS) [Zeng et al., 2014]. Note that, we did
not compare our algorithm to WS and IS, since it was shown
earlier that SS performs better than WS and IS [Zeng et al.,
2014].

We required each algorithm to sample 1%, 2%,..,10% of
the data as landmark points, which are used by Nyström-
based spectral clustering methods to cluster the datasets.

Because sampling algorithms are sensitive to the datasets
used, and clustering algorithms contain a degree of random-
ness, we used various benchmark datasets, and repeated our
evaluations 1000 times. We measured the clustering quality
of each algorithm using their average accuracy across these
tests, also recording their standard deviations.

5.1 Clustering Synthetic Data
We evaluated algorithms on eight commonly used synthetic
datasets1 with different shapes (Figure 1), instances and num-
ber of clusters (Table 1). We note that, on these datasets, all
tested algorithms have better performance than the baseline
of random sampling.

Table 2 reports the average accuracy of each algorithm,
along with their standard deviations across 1000 tests. As
expected, the accuracies depend on the dataset. For example,
the accuracy of all algorithms in A.K Jain’s Toy problem and
PathBased1 datasets stay in the range of 50% − 60%, while
going as high as over 90% for the R15 and D31 datasets. We
can say from this observation that the A.K Jain’s Toy prob-
lem and PathBased1 datasets present difficulties to Nyström
method-based spectral clustering.

In the eight datasets, we see that overall MSSS algorithms
perform better than the baseline random sampling. MSSS

1http://cs.joensuu.fi/sipu/datasets/

Figure 1: Eight synthetic datasets used for benchmarking

Table 1: Datasets used for benchmarking
Dataset Instances Attributes Classes
Synthetic Datasets
A.K Jain’s Toy problem 373 2 2
R15 600 2 15
D31 3100 2 31
Aggregation 788 2 7
Flame 240 2 2
Zahn’s Compound 399 2 6
Pathbased1 300 2 3
Pathbased2:Spiral 312 2 3
UCI Datasets
Iris 150 4 3
Wine 178 13 3
Glass 214 9 7
Breast 699 9 2
Wdbc 569 32 2
Haberman 306 3 2
DUMD 259 5 4

gave the best results in three datasets and MSSS-10 gave the
best results in two datasets, indicating that the MSSS method
offers a flexible approach, and that tuning the γ parameter for
specific datasets might help for its optimum performance.

The results of the SS algorithm show overall better perfor-
mance compared to KS and RS sampling. SS also gave the
best performance on the R15 dataset, which has a uniform
density distribution. When the density distribution is not uni-
form though MSSS gave higher performance than SS.

5.2 Clustering Real Data
We also compared the performance of the four sampling
methods using data from University of California, Irvine
(UCI) Machine Learning Repository2. We randomly chose
seven datasets: Iris, Wine, Glass, Breast, Wdbc, Haberman
and Data User Modeling Dataset (DUMD). A brief summary
of the datasets is listed in Table 1.

The clustering accuracy results on the UCI datasets are
shown in Table 2. The results show that MSSS provided
better clustering than the other algorithms on five datasets.
Ranking the algorithms with respect to their mean accuracies,
we note that the top three performing algorithms were MSSS,
MSSS-10 and SS, in that order. Results on the UCI dataset

2https://archive.ics.uci.edu/ml/datasets.html
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Table 2: Accuracy on Datasets
MSSS MSSS-10 SS RS KS

Synthetic Datasets
A.K Jain’s Toy problem 61.06± 0.63 61.06± 0.63 61.06± 0.63 61.06± 0.63 53.79± 0.68
R15 91.53± 0.85 90.46± 0.80 91.73± 0.78 89.72± 1.20 89.71± 1.27
D31 94.79± 0.14 94.81± 0.13 94.80± 0.14 95.07± 0.30 95.07± 0.29
Aggregation 78.88± 0.98 79.03± 0.98 78.90± 0.92 74.73± 1.18 74.51± 1.30
Flame 73.69± 8.17 73.70± 8.17 73.69± 8.17 73.69± 8.17 70.91± 6.40
Zahn’s Compound 71.52± 1.98 70.35± 2.08 71.51± 1.85 65.73± 3.39 65.69± 3.67
PathBased1 62.71± 4.89 58.49± 7.15 61.86± 5.50 57.32± 4.77 56.21± 4.25
Pathbased2:Spiral 72.40± 4.34 72.27± 4.46 72.38± 4.06 71.50± 4.84 66.94± 5.20
UCI Datasets
Iris 69.06± 4.30 68.74± 4.46 68.76± 4.37 75.16± 6.70 75.86± 7.66
Wine 59.71± 4.71 60.37± 4.81 60.36± 4.67 59.59± 4.83 60.17± 5.19
Glass 72.71± 4.01 72.41± 4.04 72.10± 4.01 72.51± 4.16 71.36± 2.46
Breast 62.46± 4.09 62.50± 4.00 62.71± 4.01 58.64± 3.48 58.75± 3.50
Wdbc 50.38± 0.27 50.37± 0.27 50.37± 0.27 50.37± 0.27 50.09± 0.27
Haberman 55.33± 1.46 55.22± 1.44 55.30± 1.47 55.10± 1.39 55.19± 1.37
DUMD 58.97± 2.57 59.08± 2.40 59.07± 2.81 57.87± 3.01 57.56± 3.22

recapitulate our observation on synthetic data that γ in our al-
gorithm can be tuned according to the dataset to yield better
performance.

5.3 Comparison on Computation Time
To compare the computational time of the tested sampling
algorithms, we measured the average run times for each algo-
rithm over 1000 replicates (Table 3). Overall, we observed
that all the tested algorithms have a higher computational
time than RS, and that KS algorithm consumed much more
time compared to other algorithms. We speculate that the
poor time performance of the KS algorithm is due to the fact
that it calculates k-means clusters – a computationally expen-
sive process. The other algorithms had similar computational
times. Hence we conclude that the accuracy improvement in
MSSS is achieved with comparable computational time with
respect to the state-of-the-art sampling algorithms.

6 Conclusion
In this paper, we introduced a new sampling algorithm,
MSSS, for Nyström method-based spectral clustering. The
new algorithm is scalable; it can handle large-scale data
with computational times comparable to the state-of-the-art.
Through theoretical analyses, we provided an upper bound to
the matrix approximation error for the algorithm. In bench-
marking experiments we demonstrated the competitive per-
formance of MSSS over the current state-of-the-art.

Intriguing as these results are though, we note that the sec-
ond best algorithm on every dataset, be it synthetic or real,
was always within one standard deviation away from the top
performing algorithm. This implies that achieving perfor-
mance improvement in this problem domain is becoming in-
creasingly difficult. Yet, the MSSS algorithm demonstrates
a marginal but consistent advantage over the state-of-the art.
Further, the new algorithm comes with an important param-
eter that can be tuned for better performance over various
datasets, promising added gains if it can be optimized over
any given dataset, hence paving the way for future research.

MSSS is implemented in java, and its source code is avail-
able from: www.bcgsc.ca/platform/bioinfo/software/msss
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