
Abstract 
Semantic relatedness (SR) measures form the 
algorithmic foundation of intelligent technologies in 
domains ranging from artificial intelligence to 
human-computer interaction. Although SR has been 
researched for decades, this work has focused on 
developing general SR measures rooted in graph and 
text mining algorithms that perform reasonably well 
for many different types of concepts. This paper 
introduces domain-specific SR, which augments 
general SR by identifying, capturing, and 
synthesizing domain-specific relationships between 
concepts. Using the domain of geography as a case 
study, we show that domain-specific SR — and even 
geography-specific signals alone (e.g. distance, 
containment) without sophisticated graph or text 
mining algorithms — significantly outperform the SR 
state-of-the-art for geographic concepts. In addition 
to substantially improving SR measures for 
geospatial technologies, an area that is rapidly 
increasing in importance, this work also unlocks an 
important new direction for SR research: SR 
measures that incorporate domain-specific 
customizations to increase accuracy.  

1 Introduction 
Semantic relatedness (SR) measures help computers 
understand the strength of relationships between concepts. 
Due to the broad importance of this task, SR measures have 
become critical to research and applications in a wide range 
of domains (e.g. natural language processing, information 
retrieval, human-computer interaction, spatial computing, 
bioinformatics, artificial intelligence). SR measures have 
been studied for decades, with dozens of approaches to SR 
published (e.g. [Rubenstein and Goodenough, 1965; 
Gabrilovich and Markovitch, 2007; Strube and Ponzetto, 
2006; Halawi et al., 2011]). These approaches, however, all 
draw from the same general family of natural language 
processing and information retrieval techniques. 

Specifically, they apply either graph or text mining 
algorithms to a large repository of general world knowledge 
(usually WordNet or Wikipedia). 

This paper extends these general SR approaches by 
introducing and exploring the notion of domain-specific SR, 
in which domain-specific methods are used in concert with 
traditional approaches to assess the relatedness of within-
domain concepts. More specifically, we ask an important, 
but unstudied, question: if we focus on a single domain, can 
we utilize domain-specific techniques (along with 
traditional SR approaches) to improve SR estimation?  

We address this question through a case study in the 
domain of geography, an area of increasing importance to 
computer science, as well as to SR-based systems 
specifically. For instance, 13-15% of search queries contain 
place names and one-third of all queries have some 
geographic component [Jones and Purves, 2008; Parsons, 
2012; Sterling, 2012]. Thus, search technologies like the 
Google Knowledge Graph need SR to be highly accurate for 
geographic queries. Geographic SR also supports the widely 
used task of geographic named entity disambiguation 
(NED), also called toponym resolution [Leidner, 2004; 
Overell and Rüger, 2008; Moncla et al., 2014]. Many NED-
reliant systems use SR to, e.g., distinguish mentions of 
“London” (England) from those of “London” (Ontario, 
Canada).  

In the experiments reported below, we find evidence that 
domain-specific approaches to SR can be remarkably 
effective. Specifically, we show that a domain-specific 
geography-enhanced SR measure (GESR) that intelligently 
extends general SR with geography-specific signals (e.g. 
distance, containment) significantly outperforms the state-
of-the-art in general SR for within-domain SR assessment 
(Spearman’s correlation of 0.810 vs. 0.656). We also show 
that a geography-only SR measure (GOSR) that completely 
eschews the complex techniques in the SR literature and 
only uses straightforward geography-specific signals also 
surpasses the SR state-of-the-art, although by a smaller 
margin than the hybrid GESR approach.  
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Our work points to a future SR that unifies both general 
SR and the wide array of domain-specific semantic 
relatedness-like approaches that exist in a vast array of 
domains (e.g. audio signal processing, protein sequence 
comparison, co-visitation/co-purchasing patterns). Our 
results suggest that these domain-specific SR approaches 
may actually outperform the sophisticated graph algorithms, 
text mining techniques, and other technical approaches that 
have been developed in the extensive (general) SR 
literature. Our results also suggest that, when combined 
together, general SR and these domain-specific approaches 
can exceed the capability of either approach alone. 

Our findings are enabled by a novel gold standard dataset 
of relatedness estimates for pairs of places (i.e. geographic 
concepts) that we collected for this paper. These estimates 
aggregate 23,941 relatedness judgements from 913 people 
in nine countries. The 754 distinct place pairs were robustly 
selected to vary in their geographic class (country, city, 
museum, stadium, etc), spatial distance, estimated SR, and 
familiarity level. This is the first dataset of its kind, and we 
are releasing it along with a reference implementation of 
GESR to advance both geography-specific SR research and 
domain-specific SR research more generally.1 

To support extending our approach to new domains, in 
our geographic case study we outline a four-step process for 
developing a domain-specific SR algorithm. First, we align 
domain-specific datasets with Wikipedia articles. Second, 
we develop a domain-specific gold standard to evaluate SR 
performance. Third, we extract domain-specific signals that 
correlate with SR and are rooted in domain theories and 
techniques (e.g. theories and techniques from geography and 
geographic information science). Finally, we combine these 
signals using machine learning approaches (to develop our 
GOSR and GESR approaches in our case). As we describe 
each of the four steps, we highlight key generalizable 
insights that will assist future SR researchers. 

To summarize, this paper makes the following 
contributions: 
1. We introduce a geography-enhanced SR measure (GESR)  

that significantly outperforms the state-of-the-art for 
geographic concept pairs by intelligently combining 
geography-specific signals (e.g. distance, containment) 
with traditional general SR approaches. 

2. We show that a geography-only SR measure (GOSR) also 
outperforms the current state-of-the-art, but by less of a 
margin than GESR. GOSR uses only straightforward 
geography-specific signals, yet is able to more accurately 
predict SR for geographic concepts than the many 
complex SR approaches that have been proposed in the 
extensive SR research.  

3. We introduce the notion of domain-specific SR more 
generally, in which domain-specific signals (e.g. distance 
and containment for geography) are used to assess the 
relatedness of two concepts in a domain, either in 
combination with traditional (general) SR or alone. We 

                                                             
1 https://github.com/shilad/geo-sr 

outline a four-step process future domain-specific SR 
researchers can follow consisting of dataset alignment, 
gold-standard development, signal extraction, and signal 
combination. 

4. We release the first gold standard SR dataset consisting of 
geographic concept pairs (i.e. place pairs). This dataset 
consists of relatedness assessments from 913 people in 
nine countries for 754 concept pairs. 

2 Related Work 
Semantic relatedness algorithms output a single number 
(usually between 0 and 1) that summarizes the number and 
strength of relationships between two concepts [Hecht and 
Gergle, 2010]. Several extensive meta-reviews of the SR 
literature have been published [Budanitsky and Hirst, 2006; 
Zesch and Gureyvch, 2009; Zhang et al. 2013], and these 
provide a detailed overview of the various approaches that 
have been used to calculate SR.  

As noted above, all major existing SR approaches address 
the problem of general SR. That is, they attempt to estimate 
the number and strength between any two concepts in any 
domain (rather than a single domain), and they usually do 
this by applying open-domain graph or text mining 
algorithms to a large repository of general knowledge. 
Historically this repository was often WordNet, but in the 
past decade, Wikipedia has become the repository of choice 
[Zesch and Gurevych 2010]. While approaches other than 
text mining and graph algorithms have been proposed - 
most notably information theoretic approaches (e.g. 
[Resnick 1995; Pirró and Seco 2008]) operating on 
ontologies - these approaches also only consider general SR. 

Researchers have supported SR applications in specific 
domains by applying general SR algorithms to domain-
specific sources of world knowledge. For example, in the 
biomedical domain, Pederson et al. [2007] adapted 
WordNet-based SR algorithms to a medical ontology, and 
Liu et al. [2012] propose an SR algorithm that analyzes 
word co-occurrence vectors for a pair of terms and their 
ontological relatives in biomedical knowledge bases. While 
these approaches are focused on a single domain, they are 
applications of general SR; no domain-specific methods or 
metrics are utilized. A truly domain-specific biomedical 
approach  might, for example, incorporate numerical 
measures of the similarity between two drugs’ proteins (e.g. 
DNA sequence alignment) or a geometric comparison of 
their three-dimensional structures.  

The field of geographic information science (GIScience) 
has also applied general SR algorithms to domain-specific 
knowledge bases. However, for historical reasons,2 this 
work has framed SR as a comparison of classes of 
geographic entities instead of instances of those classes. For 
example, rather than considering Mississippi River and Lake 
Superior, this literature has focused on lake and river. As a 
                                                             
2 The reasons for this approach are rooted in historically important 
geographic use cases, such as geographic information retrieval 
[Jones, Alani, and Tudhope 2001] and the alignment of geographic 
ontologies [Uitermark et al., 1999]. 
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result, despite the disciplinary origins of these approaches, 
all existing GIScience SR algorithms eschew explicitly 
geographic signals and instead rely on the same high-level 
techniques leveraged in computer science, namely graph 
algorithms applied to knowledge repositories (see Ballatore 
et al. [2014] for an overview of this literature). Our work 
incorporates this class-based approach as one of many 
signals of relatedness between two geographic entities, but 
extends this approach with distance metrics and 
containment relationships specific to the geographic 
domain. As a side contribution, we also show that the best 
Wikipedia-based general SR algorithms from computer 
science significantly outperform the best existing SR 
algorithms from GIScience for the traditional class-based 
GIScience SR problem. 

Several SR researchers have analyzed the relationship 
between estimated SR and distance in Wikipedia (this 
correlation is predicted by Waldo Tobler’s well-known 
“First Law of Geography” [1970], described below). Hecht 
and Moxley [2009] found that Wikipedia articles about 
places at closer distance classes were more likely to link to 
each other. Li et al. [2014] showed that this result held with 
more robust general SR measures. Quercini and Samet 
[2014] similarly propose a general SR approach called 
SynRank, and find that given a spatial target Wikipedia 
article A, the most related other spatial articles B frequently 
fall within a 500km radius of A. All three works show that 
general SR estimates between spatial articles correlate with 
the spatial distance between articles. Our work furthers this 
line of research by modeling human perceptions of 
geographic SR using both general SR algorithms and 
domain-specific geographic signals. Notably, this approach 
was not possible in prior research because no geographic SR 
dataset with place pairs existed. 

3 Survey Methodology 
We used a web-based survey to develop a gold-standard 
dataset that captures human perceptions of the semantic 
relatedness between different geographic concepts. The 
survey gathered SR assessments from subjects; a single SR 
assessment is a relatedness rating between 0 and 4 
(inclusive) by a subject for a place pair (e.g. a rating of 4 for 
(Great Britain, United Kingdom)). Figure 1 shows the SR 
rating screen from the survey. As noted above, the use of 

SR assessments from humans is the most common way in 
which SR algorithms are evaluated [Budanitsky and Hirst, 
2006; Zesch and Gurevych, 2010]. In our data collection 
process, we followed best practices in the SR literature (e.g. 
[Pedersen et al., 2007; Radinsky et al., 2011; Halawi et al., 
2012; Sen et al., 2015]), but adapted them for the task of 
collecting geographic concepts rather than general concepts.  

After consenting to the study, subjects entered basic 
demographic information (gender, education level) and 
listed all locations where they had lived for at least one 
month. These locations were used to estimate place 
familiarity levels. Next, subjects provided 37 SR 
assessments. Subjects could indicate that they “did not 
know a place” instead of providing an SR rating. 

Subject recruitment: To encourage a wide variety of 
geographic perspectives, we surveyed crowdworkers on 
Mechanical Turk (“Turkers”) who live in the nine countries 
that account for over 90% of Mechanical Turk workers 
[Ipeirotis, 2010]:  United States, Pakistan, India, France, 
Australia, Spain, Canada, the United Kingdom, and Brazil. 
To accommodate differences in time zones, we released the 
study in ten equally spaced intervals throughout the day. All 
workers had a 98% approval rating and history of at least 
1,000 tasks. Following suggested practice (e.g. [Caverlee, 
2011]), we made sure to compensate crowdworkers in 
excess of the active US minimum wage. 

Selecting concepts: As candidate concepts, we 
considered the 3,000 most-viewed geotagged articles in the 
English Wikipedia. To remove daily variation, we 
aggregated page views for the 25th day of each of the first 
five months of 2014. We used this set of concepts because it 
strikes a balance between diversity of popularity and the 
likelihood of a subject to recognize a concept. A substantial 
portion of these concepts were major corporations whose 
geotags reflected their headquarters. We removed these 
concepts as they have an ambiguous geospatial 
interpretation, which left us with 1,985 final candidate 
concepts. To support the algorithms that follow, we 
incorporated geographic point representations of places 
from the Wikidata project, a language-neutral human-
editable database of 54M facts about 16.7M concepts 
(typically Wikipedia articles) [Vrandečić  and Krötzsch, 
2014]. Polygon representations of countries and first-order 
administrative districts (e.g. states) come from the 
NaturalEarth project [Kelso and Patterson, 2009]. 

Subjects assessed 37 pairs of concepts, with all concepts 
drawn from the 1,985 candidates. For each subject, we 
selected a random sample of concept pairs stratified along 
three dimensions: estimated SR (high, medium, low), spatial 
distance (within 100km, 500km, beyond) and geographic 
class (country, state, city, landmark, natural, and other). 

To reduce the effects of person-level variation, SR 
datasets commonly collect responses from five to twenty 
subjects for each concept pair and average them [Halawi et 
al., 2012]. While this is not difficult for general knowledge 
concept pairs such as (television, radio), it is much more 
challenging to identify ten subjects who are familiar with 
geography-specific concepts such as (South India, 

 
Figure 1: The rating interface workers on Mechanical Turk used to 
assess the relatedness of concepts. 
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Tiruchirappalli). Thus, a major challenge of our survey was 
overcoming large individual differences in geographic 
familiarity while still maintaining a reasonable level of 
diversity in concepts pairs.  

To address this problem, we developed a simple model of 
geographic familiarity through a pilot survey based on the 
distance between a concept and the closest location where a 
person had lived to the concept. In addition, once a specific 
“new” concept pair was presented for the first time, the 
survey sought to find additional respondents who were 
familiar with a concept pair. Thus, the survey introduced 
more new concept pairs to early respondents (e.g. the first 
respondent, by definition, rated all “new” concept pairs) and 
fewer new concept pairs for late respondents (e.g. any 
“new” concept pairs asked of the last respondent could, by 
definition, only receive one response). As other domain-
specific SR studies may run into similar sparsity issues, this 
adaptation could prove useful in other domains as well. 

Following best practices for Mechanical Turk [Sen et al., 
2015], the survey also included three validation concept 
pairs that attempted to identify subjects who were not 
completing the survey in good faith. The concept pairs 
consisted of one pair that was assumed to be very related 
(United Kingdom, Great Britain) and two pairs that were 
assumed to be very unrelated (Florida, Hong Kong and 
Bermuda Triangle, Minnesota). Respondents needed to 
answer all three correctly to be included in our dataset. 

Basic statistics: Out of the 1,000 survey respondents who 
provided 36,802 SR assessments, 913 subjects fully 
completed the survey with correct ratings for the validation 
concept pairs. Respondents indicated that they were not 
familiar with 19.7% of responses. Although 1,124 distinct 
concept pairs were rated by at least one subject, consistent 
with the existing SR literature's practice of aggregating 
responses from multiple subjects [Halawi et al., 2012], we 
consider the 754 concept pairs that had at least 10 known 
responses.3 To summarize, the rest of this paper analyzes 
913 subjects’ 23,941 individual responses indicated as 
familiar. These relatedness assessments covered 754 distinct 
concept pairs and averaged 1.75 on the survey's [0-4] scale. 

Domain-specific SR framework: Above we outlined the 
first two steps in the framework we proposed for domain-
specific SR development. The first step aligned domain-
specific datasets to Wikipedia articles. Wikidata (and 
similar projects like DBpedia) offers rich layers of 
structured facts about Wikipedia articles that can prove 
valuable to the alignment process. Wikidata exposes third-
party identifiers (e.g. geographic FIPS codes, PubChem 
identifiers for chemicals, ISBNs for books) and other 
structured information (e.g. containing country for 
geographic articles, scientific classifications for animals) 
that can help match datasets to Wikipedia articles. In 
addition, we used general SR itself to match text in external 
database records (e.g. NaturalEarth names) to likely articles. 
Using these two approaches, we created a simple set of rules 
                                                             
3 Other thresholds for minimum number of respondents (e.g. 5 and 
20) did not change our results meaningfully. 

that performed the alignment with high precision.4 This 
approach can be generally applicable in other domains. 

This section also described the second step in the 
framework, which involved collecting a gold standard from 
crowdworkers to train and evaluate domain-specific SR 
metrics. In addition to following established SR best 
practices [Pedersen et al., 2007; Radinsky et al., 2011; 
Halawi et al., 2012; Sen et al., 2015], we selected a 
stratified sample that focused on highly related concept 
pairs crucial to many real-world applications. We also 
collected information about each respondent’s level of 
domain expertise by asking their level of familiarity with 
each concept, as it has been shown to substantially affect SR 
judgements [Sen et al., 2015]. Finally, we used Wikipedia 
page views statistics to identify a set of candidate concepts 
that struck a balance between being reasonably well known 
and diverse. By following these practices, domain-specific 
SR researchers can develop robust gold standards that meet 
the needs of real-world applications. 

4 Signals for Geospatial SR 
This section describes all relatedness signals used in this 
paper. We first introduce the geography-specific signals we 
use in the GOSR (geography-only SR) and GESR (hybrid 
geography-enhanced SR) models and we highlight the 
theoretical motivation for each signal. We next discuss our 
implementation of state-of-the-art general SR, as well as our 
implementation of the type of general SR studied in the 
geography community.  

Containment (contain): Previous research has suggested 
that human geographic perceptions of relatedness 
incorporate containment relationships [Janowicz et al., 
2015]. As such, we encoded geospatial containment 
relationships among the three most prominent classes of 
spatial entities in our data: countries, states, and points of 
interest (POIs). Table 1 shows all possible containment 
relationships (c = contains; dc = does not contain).  We 
define the relationship such that a class cannot contain itself 
(e.g. a point cannot contain a point) and, as such, 
relationships along the diagonal are only “dc”. The lower 
right cells are empty because concept A and concept B can 
be swapped if the scale of B is larger than A (e.g. B is a 
country and A is a point). The nine possible relationships in 
Table 1 are encoded using nine binary dummy variables. 

Great-arc distance (arc): Tobler’s First Law of 
Geography (TFL) states that “everything is related to 

                                                             
4 We manually verified all NaturalEarth polygon alignments. 

 Concept B 

Concept A 

 POI state country 
country c / dc c / dc dc 

state c / dc dc  
POI dc   

Table 1: The 9 containment classes used by the containment 
metric. Concepts A either contains concept B (c) or does not 
contain concept B (dc) . 
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everything else, but near things are more related than distant 
things” [Tobler, 1970]. TFL predicts that spatial entities that 
are closer together on the surface of the Earth will be more 
related. Thus, we include as a signal the great-arc distance 
between the point representations of two places (i.e. the 
distance between them in meters).  

Ordinal distance (ordinal): While TFL predicts that 
closer places are in general more related, the spatial 
heterogenity of human populations (i.e. the variations in 
population density across the surface of the Earth) is 
thought to serve as a moderating factor in this relationship 
(e.g. [Li et al., 2014]). Consider two concepts A and B that 
are 100 km apart. One might expect A and B to be more 
related for a concept A located in an extremely rural location 
(e.g. Patagonia) compared to an A located in a highly urban 
area (e.g. Buenes Aires). We model these relationships 
through a non-parametric ordinal distance metric. Given 
concepts A and B, the ordinal distance from A to B is the 
rank of B in A's distance-ordered neighbor list. For example, 
if B is the 10th nearest neighbor to A, ordinal(A, B) = 10. 

Countries between (countries): A large body of social 
science literature has provided strong evidence of the 
reduction of cultural, religious, and economic ties that 
occurs due to geopolitical boundaries such as country and 
province borders (i.e. ‘border effects’) (e.g. [Fellman et al., 
2007; Singh and Marx, 2012]). This suggests that, in 
aggregate, two concepts that lie in the same country will be 
more related than two concepts that do not. We 
operationalize this signal by determining the number of 
countries that separate two geographic concepts. If concepts 
A and B lie in the same country, countries(A, B) = 0, and if 
A and B lie in neighboring countries, countries(A, B) = 1. In 
other cases, the shortest country path between two concepts 
is used. 

States between (states): Same as countries, but for first-
order general administrative districts (e.g. states). 

General SR (general-SR): To capture the state-of-the-art 
in general SR, we created a machine-learning ensemble that 
combines several well-known general SR approaches. Each 
approach draws upon Wikipedia as a knowledge base, 
mapping a concept pair (A, B) to two articles (C, D), and 
then examining the relationship between C and D's category 
structure, link graphs, and text. We used the 
implementations of each SR algorithm provided by Sen et 
al.’s WikiBrain toolkit5 [2014] combined in a linear 
ensemble to achieve state-of-the-art performance.6 The SR 
ensemble includes: (1) Milne and Witten's [2008] SR 
algorithm, which calculates the overlap in the links to and 
from A and B, (2) Strube and Ponzetto's WikiRelate [2006], 
which measures the shortest distance between A and B in 
Wikipedia's category graph, and (3) Gabrilovich and 

                                                             
5  http://wikibrainapi.org 
6 The linear ensemble achieved a Spearman’s correlation of 0.76 
on WordSim353 [Finkelstein et al., 2001]. This slightly lower 
correlation compared to some other published results is the result 
of our use of cross-validation in evaluation (not commonly used in 
SR), which yields lower, but more robust results. 

Markovitch’s Explanatory Semantic Analysis [2007], which 
assesses the relationship between articles that mention A and 
B using a text mining-style approach.  

Geographic class-level general SR (class-SR): We 
include an improved approach to the traditional class-based 
general SR methods (Section 2) developed in GIScience. As 
noted above, existing GIScience approaches estimate 
SR(Mississippi River, Lake Superior) using geographic 
classes: general-SR(river, lake). While GIScience has 
primarily applied ontology-based general SR algorithms, we 
applied the general SR ensemble described above, and 
found it yielded better results (Spearman’s correlation of 
0.813 vs 0.737) on the most recent class-level Geographic 
SR dataset [Ballatore et al. 2013, 2014]. To our knowledge, 
this is the first attempt to apply modern Wikipedia-based SR 
algorithms to geographic class-based SR. To incorporate 
this feature into our analysis, we assigned classes to all 754 
concepts using a procedure similar to Ballatore et al. 
[2014].7 

Additional implementation details: We log transformed 
the four distance metrics (arc, ordinal, countries, states) 
because they exhibited right-skewed distributions. All 
features and metrics exhibited 100% coverage for the 754 
concept pairs except for countries-between (96.8% 
coverage) and states-between (94.4%) due to the nature of 
continents and the oceans that surround them. For missing 
data, we impute the maximum values for each distance 
metric. 

Domain-specific SR framework: The above section 
described the third step of domain specific SR development, 
which extracted domain-specific signals. Our case study 
introduced new signals that drew upon geographic theory. 
While some domains may take this theory-driven approach, 
many domains offer existing similarity or association 
metrics. For example, DNA similarity could enhance SR for 
protein sequences in the bioinformatics domain just as we 
used containment and distance in the geography domain. 
The same could apply to existing metrics that compare beats 
per minute, instrumentation, or chordal structure in the 
domain of music analysis, and metrics that compare the 
visual elements of movies in the film domain, and so on. 

5 Results 
5.1 Individual features and metrics 
To evaluate each individual signal, we adopted the SR 
community's standard practice of calculating Spearman's 
rank correlation over all 754 concept pairs between the 
output of general SR, domain specific signals, and the 
average human assessment for the pair. Table 2 shows the 
correlation matrix between the gold-standard (human), the 
                                                             
7 As in [Ballatore et al., 2013], we assigned geographic classes to 
each place from OpenStreetMap’s Semantic Network. OSM’s 
search tool Nominatim was used to provide an initial value for the 
class. We manually verified the results and adjusted the classes 
when no OpenStreetMap feature existed, an incorrect feature was 
returned by the initial search, or the initial class was not listed in 
the OSM Semantic Network. 
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two existing SR approaches (general-SR and class-SR) and 
the four distance metrics (arc, ordinal, countries, states).  

  The correlations between human SR assessments and 
each approach (row 1) provide important insights into the 
predictive power of each signal. While general SR exhibits 
the strongest correlation with human judgements (σs 
=0.656), both states (σs =-0.608) and ordinal (σs =-0.643) 
nearly match the widely established approach. Interestingly, 
arc, the mostly widely-used measure of geographic distance, 
shows lower correlation with human judgements than the 
density-sensitive ordinal and the boundary-aware states. 
This finding provides the strongest evidence thus far that 
custom domain-specific SR algorithms that incorporate 
relatively simple domain-specific relationships can 
substantially enhance SR performance. 
 Surprisingly, class-SR, the traditional GIScience 
approach to SR, shows the lowest correlation with human 
judgements of all the approaches we consider (σs =0.052). 
While this does suggest that the standard GIScience 
approach has limited applicability outside of the class-based 
SR problem, this finding deserves additional study. For 
example, class-based SR may be more effective for rare (or 
“tail”) concepts that have little general knowledge 
describing them. 

5.2 Geography-only and Geography-enhanced SR 
Table 3 lists the accuracy of machine learning ensembles 
combining the six signals defined earlier. We used gradient-
boosted trees [Ganjisaffar, Caruana, and Lopes 2011] as 
implemented in the scikit-learn machine learning library 
with seven-fold cross-validation. However, we note that a 
much simpler multiple linear regression also showed similar 
results with small (0.01 to 0.02) decreases in correlations 
compared to gradient-boosted trees. The paired non-

parametric approach to SR significance testing described in 
Sen et al. [2015] finds that differences in σs >= 0.02 
between all pairs of ensembles are significant at p < 0.05 
and differences of σs >= 0.04 are significant at p < 0.01. 

General SR, with a correlation of 0.656 (row 1), is 
significantly outperformed by both geography-only SR 
(GOSR, rows 2 and 3, σs=0.693 or 0.748), and geography-
enhanced SR (GESR, row 8, σs=0.810). Row 2 shows that 
GOSR – which incorporates none of the complex 
approaches used in modern SR and only uses geographic 
signals like distance and containment – outperforms state-
of-the-art SR (σs=0.693 v. 0.656). Including class-SR in the 
ensemble raises GOSR’s performance to 0.748. These 
findings point to the power of domain-specific SR 
approaches alone, showing that a combination of domain-
specific signals can achieve a correlation that is 
substantially better than sophisticated general SR baselines. 

Rows 4 through 8 show the stepwise results for building 
GESR using a forward search that iteratively adds the 
strongest feature. The single addition of the ordinal distance 
metric to general SR increased the correlation from general 
SR’s 0.656 to 0.743.  Interestingly, the addition of the 
ordinal distance metric was significantly more powerful 
than the addition of the arc distance metric, which only 
boosted correlation to 0.723 (not shown in table). Further 
signal additions showed incremental improvements, 
yielding an accuracy of σs = 0.810 for the full GESR model.  

Figure 2 provides a higher-level view of GESR by 
showing a simplified descriptive multiple regression model 
that achieves an accuracy of σs = 0.77. The terms on the left 
show regression coefficients for the numeric geographic 
signals in the model (states, ordinal, and general SR), while 
the table shows values for the nine levels of the categorical 
containment variable introduced in Table 1. For example, 
consider the relationship between concept A=Japan and two 
possible concepts B={Kyoto, Buenos Aires} (upper left cell 
in table). The containment offset for (Japan, Kyoto) will be 
+1.68 (upper diagonal), while the containment offset for 
(Japan, Buenos Aires) will be -0.27. The effects of POI 
containment shows a strong positive SR signal at both the 
state level (+0.77) and country level (+1.68). Overall, we 
see that many predictions from geographic theory (boundary 
effects, distance, and containment) hold true in this context.  

5.3 Descriptive Comparison of SR Algorithms 
To provide deeper insights into the differences between 
general and domain-specific SR, we analyzed the concept 
pairs that exhibited the biggest differences between general 
SR and GESR. Table 4 shows 10 exemplars from the 20 

 σs general 
SR 

class 
SR 

Domain-Specific SR  

ordinal contain states arc countries  

1 0.656 X       SR 
2 0.693   X X X X  GOSR 
3 0.748  X X X X X X N/A 
4 0.743 X  X     

 
 
GESR 

 

5 0.772 X  X X    
6 0.788 X  X X X   
7 0.801 X  X X X X X 
8 0.810 X X X X X X X 

Table 3: Accuracy of different SR, GESR, and GOSR algorithms. 

 human general-
SR class-SR arc ordinal countries states 

human 1.000 0.656 0.052 -0.543 -0.643 -0.212 -0.608 
general-SR 0.656 1.000 0.373 -0.356 -0.456 -0.205 -0.426 

class-SR 0.052 0.373 1.000 0.145 -0.126 -0.051 -0.105 
arc -0.534 -0.356 0.145 1.000 0.860 0.326 0.738 

ordinal -0.643 -0.456 0.126 0.860 1.000 0.242 0.733 
countries -0.212 -0.205 -0.051 0.326 0.242 1.000 0.411 

states -0.608 -0.426 0.105 0.738 0.733 0.411 1.000 

Table 2: Correlation between signals of geographic relatedness. 

Figure 2: Simplified descriptive multiple-regression GESR model. 
The lefthand terms show coefficients for three distance metrics,
while the righthand table shows containment coefficents. 
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pairs with largest disagreements. We normalized numerical 
values by converting them to within-column percentiles. 
GESR outperforms general-SR for 18 of the 20 pairs — 
often substantially so. Inspecting the list, it appears that the 
domain-specific methods we have developed can avoid 
significant errors experienced by the general approach. 

Several pairs clearly indicate GESR’s ability to 
understand containment relationships at the country and 
state level (rows 1, 2, 8, 9). General SR also appears to 
overestimate the relatedness of entities in the same class.  
For example, it predicts both Louisiana v Oklahoma (both 
U.S. states), and Oman v Sri Lanka (both countries) to be 
related. Domain-specific SR incorporates the geographic 
distance between these entities, deeming them (like humans) 
to be mostly unrelated. Interestingly, this result suggests that 
general SR may overestimate the importance of the class-
based relationship targeted by traditional Geographic 
approaches to (general) SR. 

Rows 8, 9, and 10, which compare the state Ohio, the 
Rock and Roll Hall of Fame (located in Cleveland, Ohio) 
and Oberlin College (located in Oberlin, Ohio),  provide 
insight into the strengths and weaknesses of both 
algorithms. Humans (and GESR) seem to identify the 
containment relationship between Ohio and the two 
landmarks as important, while general SR does not. 
However, despite the spatial proximity of Oberlin College 
and the Rock and Roll Hall of Fame (approximately 50 km), 
humans deem them to be largely unrelated, confusing our 
domain-specific algorithm. This example may point to 
differences in performance for places that are considered 
primarily geographic (e.g. states, countries, cities, etc.) and 
those that have other dominant characteristics (e.g. 
museums, educational institutions, athletic stadiums, etc). 
While GESR performs better for concepts that are perceived 
as “primarily geographic”, general SR's focus on non-
geographic features may allow it to better understand other 
places. This data point suggests that one area for 
improvement lies in algorithms that capture and use the 
perceived level of “domain specificity” for a concept.  

5.4 Domain-Specific SR Framework 
The above section described the fourth and final step of our 
domain-specific SR development process, which used 

machine learning techniques to combine domain-specific 
and general SR signals into a final SR metric using machine 
learning best practices. We specifically compared general 
SR, domain-only SR (GOSR), and domain-enhanced SR 
(GESR). We also identified a minimal set of signals that 
approached maximum performance. These points of 
comparison will assist application developers seeking to 
understand the costs and benefits associated with different 
implementation choices for domain-specific SR. 

6 Discussion and Conclusion 
This paper introduces domain-specific SR and, through a 
case study in geography, shows that it can significantly 
outperform state-of-the-art general approaches to SR. 
Indeed, the new domain-specific geographic signals we 
introduce significantly outperform state-of-the-art general 
SR algorithms by themselves, without the use of any of the 
traditional SR techniques (e.g. graph and text mining 
algorithms), although best performance is achieved when 
traditional (general) SR and domains-specific SR are 
combined. To support future research in geographic SR and 
domain-specific SR more broadly, we have released a new 
evaluation dataset8 that contains SR judgements from 917 
participants in nine countries about 754 distinct concept 
pairs — the first dataset of its kind. 

While we focused on the domain of geography, our 
domain-specific approach offers promise for many other 
domains. The four steps we proposed and examined (dataset 
alignment, gold-standard development, signal extraction, 
signal combination) should support future domain-specific 
SR development. A critical next step in domain-specific SR 
involves re-running our experiments in a number of new 
domains. This work will be important for understanding the 
variation in improvement one can obtain with domain-
specific SR. Our geographic analyses serve as a proof-of-
concept case study, albeit one that has applied value through 
its consideration of a domain that is significant for SR-based 
systems.  

One major potential benefit of domain-specific SR not 
considered here is that domain-specific signals are not 
dependent on a general knowledge repository’s (e.g. 
Wikipedia’s) coverage of a given content area. As such, an 
SR measure that uses only domain-specific signals like 
GOSR will be able to calculate SR equally accurately for 
well-known concepts (i.e. places) and very obscure concepts 
(i.e. places), which is not true of state-of-the-art general SR. 
This makes domain-specific SR potentially preferable for 
applications that frequently consider “long tail” concepts. In 
addition, state-of-the-art general SR is subject to biases in 
the content coverage of their underlying knowledge 
repositories (e.g. along cultural and gender lines [Hecht and 
Gergle, 2010; Lam et al. 2011]), something that may be 
more avoidable in domain-specific approaches like GOSR. 
Future work should examine these phenomena more closely. 

                                                             
8 https://github.com/shilad/geo-sr 

Entity 1 Entity 2 Human GESR SR 
1. Ajanta Caves India 85.6 94.0 4.3 
2. Epcot Florida 94.3 83.4 26.2 
3. Juilliard School Queens 42.8 49.6 1.7 
4. Bill Gates's house Mount Rainier 31.8 42.7 4.5 
5. Louisiana Oklahoma 28.7 37.1 73.9 
6. Oman Sri Lanka 0.5 35.9 72.8 
7. Leicester Southampton 37.2 51.2 89.0 
8. Ohio Rock and Roll Hall of Fame 82.3 78.7 22.4 
9. Oberlin College Ohio 73.1 83.2 46.1 
10. Oberlin College Rock and Roll Hall of Fame 9.3 48.1 11.2 

Table 4: Concept pairs that show the greatest difference between 
domain-specific (GESR) and general SR estimates. 
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Our work also has implications specifically for the many 
GIScience applications that model relationships between 
objects. We show that the best Wikipedia-based general SR 
algorithms outperform the best GIScience general SR 
algorithms on the class-based SR problem historically 
studied in GIScience. More critically, we move beyond this 
class-based approach to introduce (and provide an 
evaluation dataset for) the problem of geographic concept 
SR. This problem, following the computer science SR 
literature, focuses on class instances rather than classes. 
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