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Abstract

In this work, we investigate the bidirectional mu-
tual interactions (BMI) between users’ activities
and user-user relationships on social networking
sites. We analyze and study the fundamental mech-
anism that drives the characteristics and dynam-
ics of BMI is the underlying social influence. We
make an attempt at a unified probabilistic approach,
called joint activity and relation (JAR), for mod-
eling and predicting users’ activities and user-user
relationships simultaneously in a single coherent
framework. Instead of incorporating social influ-
ence in an ad hoc manner, we show that social in-
fluence can be captured quantitatively. Based on
JAR, we learn social influence between users and
users’ personal preferences for both user activity
prediction and user-user relation discovery through
statistical inference. To address the challenges of
the introduced multiple layers of hidden variables
in JAR, we propose a new learning algorithm based
on expectation maximization (EM) and we further
propose a powerful and efficient generalization of
the EM based algorithm for model fitting. We show
that JAR exploits mutual interactions and benefits,
by taking advantage of the learned social influence
and users’ personal preferences, for enhanced user
activity prediction and user-user relation discovery.
We further experiment with real world dataset to
verify the claimed advantages achieving substantial
performance gains.

1 Introduction

With the advent of social networking sites such as Facebook,
an unprecedented number of users registered with these sites
to engage in interesting activities such as commenting on, lik-
ing, and resharing posts and interact with each other to share
thoughts. The exponential growth of information repositories
and the diversity of users on these sites provide great opportu-
nities and challenges for analyzing and understanding users’
behaviors as well as user-user relationships. Doubtlessly, so-
cial activity prediction and social relationship discovery have
become critical research goals in academia and industry re-
cently in the field of social network analysis, and have played
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an essentially important role in a variety of world-wide-web
applications [Wasserman er al., 1994].

Information diffuses and spreads in socially connected net-
works [Friedkin, 1982; Bakshy et al., 2012]. The widespread
social phenomenon of homophily [McPherson et al., 2001]
suggests that users socially acquainted tend to behave sim-
ilarly. The homophily social effect is also called the the-
ory of “birds of a feather flock together” — people tend
to follow the behaviors of their friends, and people tend
to create relationships with other people who are already
similar to them. This phenomenon illustrates high corre-
lation and mutual interactions between users’ activities and
user-user relations [Wang et al., 2011; Yang er al., 2011;
Yu and Xie, 2014al. Fig. 1 shows an illustrative example
of such bidirectional mutual interactions (BMI). On the one
hand (Left), the user Kate’s behavior (Like IPhone 6) can be
influenced by her friend Bob’s opinion. Since Kate and Bob
are friends, it is likely that they have the same behavior. On
the other hand (Right), Kate’s behavior could in turn impact
her relationships with others such as Bob. Suppose Kate and
Bob have similar behaviors, they tend to create the friend rela-
tionship with each other. Thus it is highly desirable to lever-
age behavioral evidences to infer social relations and at the
same time exploit relations to predict user behaviors in a uni-
fied framework.

Figure 1: Illustration of bidirectional mutual interactions
(BMI) between users’ activities and user-user relationships.

We argue that the fundamental mechanism that drives the
characteristics and dynamics of BMI is the underlying social
influence. Social influence here refers to the phenomenon
that a user follows an opinion from others, which may or
may not deviate from his own interests. The user’s ac-



tivities are not solely depend on his own preferences but
also influenced by the tastes of other people. Similarly,
the social relationship between two users depends not only
on their prior impressions to each other but also their be-
havior agreement. More specifically, we study the social
influence quantitatively as the probability that a user fol-
lows an opinion from others, for both this user’s activities
and this user’s relationships to others. Intuitively, the influ-
ences from different people are essentially different. Fur-
thermore, some people with different tastes may be very in-
fluential to a user, while some other people with very simi-
lar interests may not contribute too much to this user. No-
ticeably, our investigated social influence is fundamentally
different from social correlation between users’ behaviors
and relations [Wang er al., 2011], and trust intensities or
similarities among users and their friends [Ma et al., 2009;
2011]. Since such approaches only consider social influence
by heuristics for coarse and limited measurement.

To address the aforementioned problems, we exploit social
influence systematically and quantitatively to a user from oth-
ers. We propose a unified probabilistic framework to capture
BMI between users’ activities and user-user relationships.
The major contributions in this research are summarized as
follows.

e We study the social influence among users on social net-
working sites systematically and quantitatively, which is
the underlying mechanism of bidirectional mutual inter-
actions (BMI) between users’ activities and user-user re-
lationships. We propose joint activity and relation (JAR)
for modeling and predicting users’ activities and user-
user relationships simultaneously in a single coherent
framework.

We propose a new learning algorithm based on expecta-
tion maximization (EM) to optimize two layers of hid-
den variables jointly including influential users and la-
tent topics in the JAR model, and we further propose a
powerful and efficient generalization of the EM based
algorithm for model fitting.

We demonstrate that the learned social influence and
users’ personal preferences in the JAR model are very
useful for boosting both user activity prediction and
user-user relation discovery. We conduct a comprehen-
sive performance evaluation on real world social net-
working dataset to illustrate the validity and competi-
tiveness of our approach.

2

In this section, we propose the joint activity and relation
(JAR) model to explore several important factors contributing
to both users’ activities and user-user relationships. Besides
user preferences, an important factor that JAR captures is the
social influence. We aim to learn quantified social influence
among individuals for both users’ activities and user-user re-
lationships. We first briefly review some notations and re-
search problem formulation. We then present the JAR model
in detail.

Our Approach
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Figure 2: Graphical representation of our JAR model.

2.1 Notations and Problem Description

Let G = (V,FE) be a social network graph representing
|[V| = N users and |E| = M(E C V x V) connections
between these users. Let u and v be two different users in
the user set V', and e,,,, be the corresponding connection in £
for the user pair (u, v). Lety = {y1,y2.-- yn Hyi € V)
be activities of the N users, and let 7y, (7, € R) be the
relationship of e, from w to v. Without loss of generality,
both 7., = 7y, and 7y, # 7y, are valid settings for undi-
rected and directed networks, respectively. Let P(y|u) be the
conditional probability of user u’s activity y, and let P(v|u)
be the conditional probability of user u’s relationship 7, to
user v. The joint task of user activity prediction and user-user
relationship discovery is to find the most likely activity and
relationship for user u such that the joint conditional proba-
bility P(y,v|u) is optimized.

2.2 Joint Activity Relation

As stated in the introduction, a user u performs an activity
y probabilistically to his own tastes or the preferences from
others due to social influence. For user activities, several im-
portant factors are needed to take into consideration, includ-
ing u’s own interests and others’ possible preferences, u’s in-
dependence in performing the activity, and social influence
from others for the activity. Ultimately, the activity of u is
performed implicitly in accordance with the overall collective
interests of w’s and others’. In summary, activity performing
procedure of user u is to draw a preference from the collec-
tion based on u’s independence and others’ influence. As a
result, a preference similar to u has a higher probability to be
drawn than a different preference from others. Similarly, u
creates relationship with v probabilistically to his prior im-
pressions to v or the agreement from others. For user-user
relationships, we may conclude similar preference drawing
process which captures influence from others.

Fig. 2 shows the graphical representation of our JAR
framework, which models activity of user w (left part in the
dashed box), activity of user v (right part in the dashed box),
and user-user relationship between v and v (middle part).
Since the left and right parts have the same structure, we use



the left to illustrate user activity. To capture u’s own prefer-
ences, we introduce a set of latent topics ¢ and we correlate
activities y and their tags w with u through ¢. Each activity
is associated with a set of tags w = {wy,wa, -+, wy Hw €
W) representing the content of this activity. The latent topic
sett = {t1,2, -+ ,t;}(t € T) is introduced to capture user
u’s own interests or preferences, and also to characterize ac-
tivities y and their content w. As can be seen, the activity
y(ly € Y) (y is associated with a tag w) of user u(u € V)
is subject to u’s own preference (the latent topic t) for u’s
independent selection and the social influence s from others.
Similarly, in the middle part of Fig. 2, u’s relationship to v
is attributed to u’s own prior impression to v and the social
influence s.

Without loss of generality, the social influence variable s
represents any user directly connected to user u in the so-
cial graph G, including both u’s close friends and u’s loose
acquaintances. Let S(u)(S(u) C V) be the set of all users
directly connected to user u. The social influence from s in
S(u) to u is measured as the probability of s’s own prefer-
ences that contributes to u’s activity and/or u’s relationship
to v. It is obvious that sometimes u’s independent choice and
u’s own tastes play more important role for activity y and/or
u’s relationship to v than the social influence and preferences
from S(u). We describe the JAR model in detail as follows.
Both the activity of user v and the relationship of user u to
user v are probabilistically determined based on u’s own in-
terests or the preferences of s(s € S(u)) via social influ-
ence. We define the social influence dependency P(s|u) as
the probability of user u to be influenced by user s. For user
activity, once s is selected based on P(s|u), we randomly
draw a topic ¢ from s’s interests based on the conditional
probability P(t|s). The topic ¢ finally generates an activity
y and a tag w based on t’s activity distribution P(y|t) and t’s
content distribution P(w|t). Otherwise, we directly draw a
topic ¢ for u’s own tastes based on P(t|u). For user-user rela-
tionship, once s is selected based on P(s|u), the relationship
probability from u to v is measured as P(s|u)P(v|s). Oth-
erwise, the relationship probability from u to v is measured
based on w’s prior impression as P(v|u).

As can be seen, both user activities and user-user relation-
ships are modeled in a single coherent framework via social
influence to capture the BMI between them. We can therefore
measure social influence from S(u) quantitatively and effi-
ciently and investigate the effect of social influence for both
user activities and user-user relations.

Based on the above discussions and considerations, we
now formally define our JAR model. Recall that our goal
is to optimize the joint conditional probability P(y,v|u) for
most likely activity prediction and relationship discovery.
P(y,v|u) could be calculated as

P(y,v,u)
P(u)

o Z Z Z P(y,w,s,t,u,v).

s€S(u) teT weWw

P(y,vlu) = o P(y,v,u)

ey

Based on the JAR model, we assume that activities y and
tags w are independently conditioned on the topics ¢. Con-
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sequently the joint probability dependency P(y, w, s, t,u,v)
over all factors is decomposed as

Pl 5. ,0) = PGPl P P PO Pl

From the graphical structure of JAR in Fig. 2, we observe
that » and ¢ are independently conditioned on s, and s, y and
w are independently conditioned on ¢, Eq.(2) can be rewritten
as follows:

P(y,w,s,t,u,v) = P(ulv) P(v) [P(s|u) P(t]s)P(y[t) P(w]t)]
= P(v|u) P(u)[P(s|u) P(t|s) P(y|t) P(wlt)]

— P(olu)[P(O)P(uls) P(s) Pyl Pwl)]. @)
Since s and ¢ are hidden variables which are unobserved

in the social data, to model the probability P(y, w, s,t,u,v)

in terms of s and ¢, we transform Eq.(3) into the following

equation as

P(y7 w, S, t7 U, U)

a Zs Zt P(y7w7 Svta 'I.L,’U)
__ P@)P(uls)P(s|t) P(y|t) P(w]t)
226 2 P(&)P(uls) P(s[t) P(y|t) P(wlt)

According to Eq.(4), it is required to estimate several
model parameters of JAR, including P(uls), P(s|t), P(y|t),
P(wlt) and P(t) to calculate probabilities P(y, w, s, t, u,v)
and P(y,v,u).

In summary, JAR jointly incorporates several important
factors for simultaneous user activity prediction and user-user
relationship inference, including the distribution of social in-
fluence P(u|s) from s to u; the distribution of u’s own pref-
erence P(t|u) over the latent topics ¢; the distribution of s’s
preference P(s|t) over the latent topics ¢; the distribution of
activity P(y|t) for each topic ¢; and the distribution of gener-
ated content P(w|t) for each topic ¢.

P(s,t\u, v, va)

“4)

3 Learning

Due to the introduced multiple hidden variables s and ¢ in
JAR, we meet new challenges for optimization. We perform
detailed mathematical derivation and we propose a new and
efficient learning algorithm based on expectation maximiza-
tion (EM) to address this issue. For optimizing the parameters
in JAR, we aim to maximize the complete log-likelihood of
the social data as follows:

log P(G;0) =log > > P(s,t,u,v,y,w;0), (5
s t

where s and ¢ represent social influence variables and latent
topic variables respectively, and 6 represents all parameters of
JAR model, including P(uls), P(s|t), P(y|t), P(w|t), and
P(t).

According to Jensen’s inequality, we try to maximize the
lower bound £(0) of the log-likelihood in Eq.(5) as

£0) =" log P(s,t,u, v, y,w; )
s t

= Z Zlog [P(s,t|u, v, y,w)P(u,v, y7w)] (6)
s t

In the EM based algorithm, the E-step is to compute the
expected value of the log-likelihood objective function £(6)



with respect to the conditional distribution of latent variables
s and ¢, under the current estimate of the model parameters.
This step can be performed according to Eq.(4) and Eq. (6), in
which s and ¢ are computed simultaneously such that P(s|¢)
can be estimated in the M-step.

In the M-step, all the parameters 6§ are estimated to max-
imize £(#) in the E-step. Now we maximize £(#) with its
parameters by the Lagrangian multiplier method. For exam-
ple, take the derivation of £(6) with respect to p(u|s) for the
following equation:

0
I(P(uls))

where Lp(,s)) represents terms containing P(u|s) in the ob-
jective function £. We can therefore have

Zv’ y’w’ Zt/ P(S,t/|u7’l}/7y/,w/)
Y
Zu,v,y,w Zs,t P(Saﬂ%%%w) '

Finally the update formula of P(u|s) can be obtained as

Z?}’,y’,w/ Zt/ P(S, t/|U, ’U/, y/’ 'I_U/)
Zu,v,y,w Zs,t P(S7 t‘ua v, Y, ’LU) .

Similarly, we can derive the update formulas of P(s|t),

Lip(ulsy + A1 = P(uls))| =0, (7

A= ®)

P(uls) =

®

P(y|t), P(w|t), and P(t) as follows:
7l ! /P S,tul7’()l, /,’U}/
P(sit) = Doy 2o P55 1] y )’ (10)
Zuvywzs,t P(S’t|u7vﬁy7w)
L, P 8/ tu/ v , w'
Plylt) = 2w o 2u P8 U0y, w )7 an
Zu v,Y,Ww Zstp(s t|u ’lU)
/ , P(s' tlu, vy
Plult) = Dow iy 2w P8 Hu 0y )’ 12
Zu,vy Zs,t P(s7t‘uavaya )
R /P 8/7tu/,v’7 /7’11}/
P(t) _ Zu Ly w Zs ( ‘ Y ) (13)

Zu,v,y,w Z&rt P(Sa t|ua v, Y, w)

3.1 EM Generalization

The proposed EM-based algorithm optimizes the model pa-
rameters iteratively via E-step and M-step until converges to
a local optimum. To obtain better model fitting such that it
generalizes well on the unseen testing social data, we propose
a generalization of the EM-based algorithm, which is known
as annealing and is based on an entropic regularization term.
Following [Neal and Hinton, 1998], the EM procedure in JAR
could be obtained by minimizing a common objective func-
tion (also called the free energy) as follows:

Fy,=— 'yZP(s,ﬂum,y,w) log P(u,v,y,w|s,t)P(s,t

s,t

+ ) P(s,tlu,v,y,w)log P((s, tlu, v, y,w), (14)
s,t

where P(s,t|u,v,y,w) is the variational distribution and
~v is the control parameter called inverse computa-

tional temperature. In the case of P(s,t|u,v,y,w)

)
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P(s,t|u,v,y, w) minimizing F w.r.t. the probabilities defin-
ing P(u,v,y,w|s,t)P(s,t) amounts to the standard M-step.
It is straightforward to verify that the posteriors are obtained
by minimizing F w.rt. P(s,tlu,v,y,w) at v = 1. Essen-
tially, we modify the E-step in Eq.(4) as follows !':

[P(t)P(uls) P(s|t) P(y[t) P(w]t)]”

W) = S P als P PG PG
(15)

15(57 t‘u, v, Y,

If v = 1 it becomes the standard E-step, while for v < 1
the likelihood in Eq.(15) is discounted. We propose a held-out
data technology by first performing EM iterations and then
decreasing ~ until held-out performance deteriorates. We
now summarize the overall learning procedure of our JAR
model as follows: (1) set v <— 1 and perform EM iterations
with early stopping; (2) decrease v by v <— ny withn < 1
and perform Eq.(15); (3) as long as the performance on held-
out data improves continue to perform Eq.(15) at this -y, oth-
erwise goto (2); (4) stop when decreasing ~ does not produce
further improvements; (5) perform final iterations using both
training and held-out social data. In our experiments, we find
that this procedure accelerates the model fitting significantly.

4 Inference

4.1 User Activity Prediction

According to the JAR model, the activity of user u is proba-
bilistically determined based on u’s personal interests or the
preferences of s via social influence. This implies that both
user’s personal preference and social influence are critical to
accurate activity prediction. Thus the conditional probability
of u’s activity y can be calculated as follows:

+ (1 = @) Peocint (Y1),

where Pyjr(y|u) is u’s activity based on the personal prefer-
ence, and Pycine(y|w) is u’s activity based on social influence.
More importantly, we introduce the factor a(0 < a < 1) to
weight the probability of u’s own tastes on his activity. Thus
the probability of social influence on his activity is measured
asl—a.

Based on w’s personal preference, we directly draw a topic
t for u’s own tastes based on P(t|u) in the JAR model. Con-
sequently Pierr(y|u) can be calculated as

self ylu ZZP t|u y|t (w|t),

where P(t|u), (y\t) and P(wlt) can be computed effi-
ciently from the learned model parameters. And Pyocins(y|u)

is calculated as
Z Z Z P(su)P(t]s)P(ylt) P

Psounf y | u

P(ylu) = aPei(ylu) (16)

a7

(wlt). (18)
4.2 User-User Relation Inference

Similarly, the conditional probability P(v|u) of user u’s rela-
tionship to user v is calculated as

P(U‘U) = ﬂjjself(v‘u) + (]- - 6)PSOCin(lU‘u)7

'We omitted the detailed derivation for space.
to [Hofmann et al., 1999] for more details.

19)

Please refer



where Py¢(v|u) measures the relationship from u to v based
on u’s prior impressions to v, Picinf(v|u) measures the rela-
tionship from w to v based on social influence, and 5(0 <
B < 1) is another weighting factor. For a given social data,
Pyie(v|u) is easy to compute. And Piyocinf(v|u) can also be
computed efficiently as

Picint(v|u) = P(s|u)P(v|s) ZP(U\S)P(ULS) (20)

s

5 Performance Evaluation

5.1 Data

Our dataset is crawled from Twitter.com”, a widely used mi-
croblogging system. It is an online social networking service
that enables users to send and read short 140-character mes-
sages called tweets. Twitter rapidly gained worldwide pop-
ularity. As of December 2014, Twitter has more than 500
million users, out of which more than 284 million are active
users. This dataset is comprised of 5,275 users, 22,382 friend-
ship/followership links among them, and 120,285 tweets
posted by these users. This dataset also contains 282,450 ac-
tivities including authoring, commenting on, liking, reshar-
ing tweets. We aim to predict these activities and friend-
ship/followership relations among users.

2

5.2 Experimental Setup

Evaluation metrics. To quantitatively evaluate the proposed
model, we use Precision (P), Recall (R), and F1-measure for
both activity prediction and relation discovery. We also per-
form case study on learned social influence and personal pref-
erence to illustrate the effectiveness of our model.

Comparison methods. We compare our JAR model with
one decoupled method and two joint methods. The decoupled
method is Logistic Regression (LR) employed in [Leskovec
et al., 20101, which performs activity prediction and relation
inference independently. The two joint methods include (1)
correlation (CORR) based classifier [Wang et al., 2011] and
(2) Friendship-Interest Propagation (FIP) [Yang et al., 2011].
For the CORR method, we use Pearson correlation with opti-
mal threshold.

Methodology. We perform five-fold cross-validation on
the Twitter data, and take the average performance. For the
generalization of EM algorithm in JAR, we use 60% of the
data for initial training and 20% of the data for held-out fit-
ting each time in the cross-validation procedure, and we set
parameter 7 = 0.8 for model fitting. Thus all the models use
the same dataset for both training and testing. All the mod-
els exploit the same set of information for features, including
users’ activities and friendship/followership relations among
them. For the JAR model, the contents of tweets are used as
tags w.

For our JAR model, we set the latent topic size as
[10, 20, 30, 40, 50, 60] to investigate its effect on the perfor-
mance. For simplicity, the two weighting factors « and /3 are
set to the same values from 0.0 to 1.0, with an incremental
step of 0.1. Thus we have 11 x 6 = 66 different param-
eter settings for the JAR model. The best performances of
different parameter settings are reported to compare with the
baseline models.

https://twitter.com/
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Table 1: Comparative performance of user activity prediction

Models Precision | Recall | Fl-measure
LR 69.44 67.37 68.39
CORR 70.89 68.82 69.84
FIP 75.25 73.69 74.46
JAR (EM) 79.36 76.67 78.00
JAR (GEM) 84.68 82.97 83.82

Table 2: Comparative performance of user-user relationship

discovery
Models Precision | Recall | Fl-measure
LR 74.55 73.19 73.86
CORR 72.48 69.85 71.14
FIP 79.65 76.33 77.95
JAR (EM) 85.46 83.27 84.35
JAR (GEM) 90.82 88.83 89.81

5.3 Experimental Results

Prediction performance. Table 1 lists the performance of
user activity prediction and Table 2 lists the performance of
user-user relationship discovery, respectively. The best activ-
ity prediction performance of JAR is obtained when the topic
size is setto 50 and o = = 0.8, and the best performance of
relationship discovery is obtained when the topic size is set to
50 and a = 8 = 0.7. Compared to JAR (EM), JAR (GEM) is
the model exploring generalized EM algorithm for learning,
which accelerates the model fitting significantly. In our ex-
periments, the typical number of GEM iterations is less than
100. As can be seen, our proposed JAR model consistently
achieves better performance than baseline methods. We per-
form the paired t-test over the F-measures to verify that all
the improvements of our proposed model over the baseline
models are statistically significant.
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Figure 3: Effect of topic size and factor on the performance
of user activity prediction (Left) and user-user relationship
discovery (Right).

Effect of topic size and factor contributions. Different
topic sizes may effect the performance remarkably. To study
the effectiveness of different factors incorporated in the JAR
model, we compare the following factor configurations for
activity prediction when a = S = 0.8: (1) users’ pref-
erences (UP); (2) both users’ preferences and social influ-
ence (UP+SI); (3) both users’ preferences and activity con-
tent (UP+AC); (4) the complete JAR considering all factors
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Figure 4: Effect of o and g on the performance of user ac-
tivity prediction (Left) and user-user relationship discovery
(Right).

(UP+SI+AC). For relationship discovery, we also compare
the following configurations when o = 8 = 0.7: (a) users’
preferences (UP); (2) the complete JAR incorporating all fac-
tors (UP+SI). As shown in Fig. 3, social influence indeed im-
proves the performance. The complete JAR model consis-
tently performs the best among all configurations.

Effect of parameters o and 3. We examine the impact of
parameters « and 8 on the performance, and we fix the topic
size to 50 for both activity prediction and relationship dis-
covery. As can be seen from Fig. 4, the curves are typically
in a inverted U-shape with the optimal performance achieved
at around 0.8 and 0.7, respectively. From these curves, we
conclude that (1) both users’ preferences and social influence
contribute to users’ final decision for activities and user-user
relationships, (2) both users’ activities and user-user relation-
ships are mainly based on their own tastes, although opinions
from social influence may affect them to a certain degree.

Table 3: Examples of discovered latent topics by JAR

Topic No. | Representative Words
Topic 5 movie, theater, coffee, bar, clubs, cafe, museum, hotel
Topic 12 store, shop, grocery, service, retails, discount, clothes, food
Topic 27 job, opening, manage, employee, company, recruit, layoff, develop
Topic 33 education, university, school, course, homework
Topic 36 news, newspaper, radio, media, multimedia, broadcast, web
Topic 42 music, artist, song, mtv, play, jazz, hip-hop, rap, fashion

Case study. Both user preference and social influence can
be learned quantitatively in our JAR model. We perform case
study for a deep understanding of user activities and user-
user relationships, and Fig. 5 shows the learned user prefer-
ence and social influence from our dataset. As can be seen,
u,’s activity of liking (a tweet) is mainly based on his per-
sonal preference (0.73) rather than the social influence from
up (0.12) or u,. (0.09). The friendship relation between v, and
ug is attributed to w4 ’s prior impression (0.63) on wuo, while
the friendship between w; and usg is attributed to social influ-
ence (0.72) from u3. Moreover, Table 3 shows some exam-
ples of discovered latent topics by our JAR. These topics are
exploited by the joint distributions of activities and contents.

6 Related Work

Exploring joint models to capture mutual benefits between
relevant tasks has proven to be highly desirable in data min-
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Figure 5: Contributions of personal preference (green arrows
with probabilities) and social influence (red arrows with prob-
abilities) on user activities (Left) and user-user relationships
(Right).

ing and information extraction research communities [Yu et
al., 2009; Yu and Lam, 2010; Yu, 2010; Yu er al., 2011;
Yu and Lam, 2012]. We review some highly related ap-
proaches to joint social actions and relations emphasizing on
the differences and advantages of our approach against oth-
ers. [Yang er al., 2011] proposed joint friendship and inter-
est propagation (FIP), where the behaviors of two socially-
connected users and the friendship relations are tied and re-
inforced by each other. [Bartunov et al., 2012] proposed a
CREF based approach to user identity resolution which com-
bines user profile attributes and social linkage. More re-
cently, [Gong et al., 2014] extended the social-attribute net-
work (SAN) framework with several link prediction algo-
rithms. The SAN framework integrates network structure and
node attributes to perform both link prediction and attribute
inference. [Yu and Xie, 2014a] and [Yu and Xie, 2014b] pre-
sented a coherent unified framework for simultaneous social
action prediction and social tie discovery. All the above men-
tioned approaches only consider social influence by heuristics
for coarse and limited measurement. The social influence in
these models is not measured and captured quantitatively to
take into account core factors for prediction tasks. Thus the
effect of social influence on the performance is unclear and
largely unexplored.

Considerable work has been conducted for studying social
influence. However, most of the existing methods focus on
qualitatively study the existence of social influence in differ-
ent networks. For example, [Wang er al., 2011] investigated
high correlation between two individuals’ movement similar-
ity and their proximity in the social network. [Bond et al.,
2012] utilized a randomized controlled trial to demonstrate
the social influence on political voting behavior. [Crandall et
al., 2008] investigated the correlation between social similar-
ity and influence. For social influence quantification, [Tang
et al., 2009] presented a topical affinity propagation (TAP)
approach to quantify the topic-level social influence in large
networks. [Goyal et al., 2010] proposed a method to learn the
influence probabilities by counting the number of correlated
social actions. [Tang et al., 2013] investigated the problem
of conformity influence analysis. Despite the fundamental
difference in the social influence investigated, we have differ-
ent research goals from the above mentioned work. We learn



social influence quantitatively to capture BMI for joint and
enhanced user activity prediction and user-user relationship
discovery. We also systematically study how social influence
affect the performance.

7 Conclusions and Future Work

We propose a unified probabilistic framework JAR, which
captures social influence quantitatively and incorporates sev-
eral important factors, for modeling and predicting users’ ac-
tivities and user-user relationships simultaneously. We pro-
pose a new and efficient generalization of the EM based al-
gorithm for model learning and fitting. We show that JAR
exploits bidirectional mutual interactions and benefits, by tak-
ing advantage of the learned social influence and users’ per-
sonal preferences, for boosted user activity prediction and
user-user relation discovery. Empirical study on real world
dataset demonstrates the promise of our approach. Several
interesting issues are also analyzed and discussed. For the fu-
ture work, we play to (1) apply and test our approach on other
large-scale social network datasets, and (2) further investigate
and extend our framework to more general semi-supervised
and unsupervised learning scenarios.
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