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Abstract
Image location prediction is to estimate the ge-
olocation where an image is taken. Social im-
age contains heterogeneous contents, which makes
image location prediction nontrivial. Moreover,
it is observed that image content patterns and lo-
cation preferences correlate hierarchically. Tradi-
tional image location prediction methods mainly
adopt a single-level architecture, which is not di-
rectly adaptable to the hierarchical correlation. In
this paper, we propose a geographically hierar-
chical bi-modal deep belief network model (GH-
BDBN), which is a compositional learning ar-
chitecture that integrates multi-modal deep learn-
ing model with non-parametric hierarchical prior
model. GH-BDBN learns a joint representation
capturing the correlations among different types of
image content using a bi-modal DBN, with a geo-
graphically hierarchical prior over the joint repre-
sentation to model the hierarchical correlation be-
tween image content and location. Experimental
results demonstrate the superiority of our model for
image location prediction.

1 Introduction
With the rising popularity of GPS-equipped mobile terminals,
the amount of geo-tagged social images is increasing rapidly.
Image location is an important type of information that could
support many applications. First, it allows users in searching
and organizing images more effectively. Second, by analyz-
ing the correlation between geolocation and image content,
we can discover the geographical knowledge about the popu-
larity of image content patterns. For example, images about
NYC might cover entirely different events compared to those
about Beijing, and the choices of tags and visual features are
different for the two cities. In addition, there are also large-
scale and ever-growing images that are not tagged with GPS
records. Hence, it is becoming increasingly important for an
effective image location prediction algorithm, i.e., predicting
where an image is taken [Serdyukov et al., 2009].

⇤The majority of this work was done while the author was af-
filiated with Computer Science and Engineering at Arizona State
University

Some approaches have been proposed for image loca-
tion prediction [Hays and Efros, 2008; Hauff and Houben,
2012]. These approaches can be roughly categorized into
three classes. In the first category, user-generated text tags
are used as a basis for location predication [Kling et al.,
2014; Laere et al., 2011; Serdyukov et al., 2009; Yin et al.,
2011]. Those approaches use a pure language model to iden-
tify the relation between text content and location. Since there
are many noisy tags and different locations have their own
characteristics of vision pattern, combining visual content
could contribute to the performance of the proposed meth-
ods. Moreover, there are a large percentage of images that
are not associated with any tags, and they cannot be geo-
located with these text-based approaches. The second class
is vision-based methods which estimate the location of query
image based on the locations of visually similar images [Hays
and Efros, 2008; Li et al., 2013; Li et al., 2009]. Due to the
variety of visual content and the “semantic gap” [Smeulders
et al.,2000; Zhang et al., 2012], exploiting visual content is
challenging. The third class of approaches combines differ-
ent types of image contents, i.e., text tags and visual content,
for landmark prediction [Crandall et al., 2009]. However, the
linear combination strategy of these approaches cannot be di-
rectly applied to social image since the text space and visual
space have inherently different structures.

Meanwhile, the distribution of image content across ge-
ographical locations presents unique characteristics. First,
some patterns of image content are popular in a large-scale
region, while the sub-regions also have their location specific
characteristics. It has been reported that these preferences
correlate hierarchically [Wu and David, 2002]. For exam-
ple, it is likely that images taken in Philadelphia and Camden
are more similar than those in Chicago. Second, social im-
ages are far from uniformly distributed over the globe. The
widely used single-level assumption by existing approaches
is affected by the problem of unbalanced sampling on geo-
graphical regions. For example, there might be many geo-
tagged images about the famous location Los Angeles but less
geo-tagged images for the adjacent location Riverside. Given
a query image from Riverside, it may be located to other
densely photographed locations by the single-level method
due to the little training images for Riverside. However, when
using the hierarchal structure, it may first locate the query
image to the super region that covers both Los Angeles and
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Riverside, which increases the chance to estimate a more ac-
curate location. This is because that images within the same
super-region may share some features and can help to repre-
sent the location Riverside better other than the little training
samples of region Riverside itself. Therefore, these charac-
teristics motivate us to arrange image content and location
preferences in a hierarchical structure and learn geographical
hierarchy features which capture the hierarchical correlation
for location prediction.

To learn the hierarchical features, it is quite challenging
due to the following reasons. First, social images contain
different modalities of content, i.e., text tags and visual con-
tent. These contents are presented in different feature space.
It needs a joint representation that correlates both modalities
and is thus ideal surrogate for learning the hierarchical fea-
tures. Second, to capture the hierarchical structure, the high-
level features should be able to express the distinctive per-
ceptual structure of a specific region. That is, a hierarchy of
super regions for sharing abstract knowledge among adjacent
regions should be learned. Third, the hierarchical structure is
implicit and not pre-defined.

To tackle the challenges, we propose to take advantage of
the hierarchical correlation between image content patterns
and locations for image location prediction. In particular, we
investigate: (1) how to learn a joint representation which cor-
relates visual content and text content; (2) how to automati-
cally learn a hierarchical structure as well as hierarchical fea-
tures that capture the hierarchical correlation between image
content patterns and locations. Our solutions to these ques-
tions result in a new architecture for image location predic-
tion. In particular, we propose a geographically hierarchical
bi-modal deep belief network model (GH-BDBN) that inte-
grates multi-modal deep models with a non-parametric hi-
erarchical prior model. The bi-modal deep model (BDBN)
is used to correlate visual content and text content through
the top hidden level, and a geographically hierarchical prior
over the top-level features of BDBN is proposed to model the
hierarchical correlation between image content patterns and
locations. The main contributions are outlined as:

• We propose a unified model to effectively integrate vi-
sual content and text content through their correlation
for image location prediction.

• We propose a compound model GH-BDBN that inte-
grates a deep learning model with a non-parametric hi-
erarchical model, which learns the hierarchical features
as well as the hierarchical structure.

• We empirically evaluate the proposed model on a real-
world Flickr dataset and elaborate the effects of each
type of content information for location prediction.

2 Problem Statement
In this section, we first introduce the notations used in the
paper and then formally define the problem we study.

Notation: In this paper, the hierarchical structure is repre-
sented by a tree. We denote by Cl

i

a node assignment of i-th
input in the lth level of the tree, where the superscript de-
notes the level of the variable indicated by the subscript, and

Figure 1: A graphical representation of GH-BDBN

other notations are defined similarly. l(i) denotes the level of
node i and ⇡(i) denotes its parent. Each geo-tagged image
x = {xp, xt, l

x

}
x2I consists of three atoms: xp 2 RD is the

visual feature vector for the visual content; xt 2 RM is the
text feature vector for the text content; l

x

is a real-valued 2-D
vector containing the latitude and longitude where the image
is taken; and I denotes the training dataset.

With the given notations, we formally define the problem
of location prediction for social image as follows:

Given a set of geo-tagged social images I in which

each image contains text features, visual features, and

geo-coordinate, we aim to automatically estimate the geo-

coordinate l
e

for query image e based on GH-BDBN.

3 Geographically Hierarchical bi-modal DBN
Usually, social images are uploaded with text descriptions
such as tags and comments. Both of the visual content and
text content relate to the location where the image was taken.
Moreover, these types of content are correlated with location
in a hierarchical structure. That is, adjacent locations always
share some common features, such as language habit and nat-
ural scenery, while each location also has its own specific fea-
tures. To model these information for image location predic-
tion, we propose a geographically hierarchical bi-modal deep
belief network model (GH-BDBN) to learn the geographi-
cally hierarchical features by incorporating the visual content,
text content and geographical information of social images. A
graphical representation of GH-BDBN is shown in Figure 1.
The bi-modal deep model is used to correlated visual content
xp and text content xt through the top hidden level h(v) which
is in turn used as the low-level features of the geographically
hierarchical model. Then, we place a geographically hierar-
chical prior over the h(v), which obtains both a layered hier-
archy of increasingly abstract features and a tree-structured
hierarchy of geographical regions.

3.1 Joint Representation of Social Image
To combine different types of image content for location pre-
diction, some methods have been proposed using a linear
combination strategy [Crandall et al., 2009]. This method
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cannot be directly applied to the problem that these contents
are represented in heterogeneous feature. Therefore, we learn
a joint representation that is expected to be a higher-level ab-
straction representation for both modalities and is thus a ideal
surrogate for location prediction.

In particular, we use the bi-modal DBN (BDBN) [Srivas-
tava and Salakhutdinov, 2012] to learn latent features from
the raw features of visual content and text content. The deep
learning model has been validated as an effective tool for fea-
ture learning and can deal with noisy data [Erhan et al., 2014;
Chen et al., 2013]. As shown in the bottom of Figure 1,
each data modality is modeled with a separate DBN which
uses a Gaussian RBM to model the distribution over the in-
put values. The two models are combined by learning a joint
level h(u) on top of them. The conditional distribution of h(u)

based on the two low levels is:

P (h(u)|h(pl), h(tl)
) = �(W(u)

p

h(pl)
+W(u)

t

h(tl)
+ b(u)

) (1)

where �(x) = 1/(1 + exp(�x)). The parameters of BDBN
can be learned approximately by greedy lay-wise training and
using contrastive divergence algorithm [Hinton et al., 2006].

To enable BDBN to express more information and intro-
duce more structured hierarchical priors, we add another level
h(v) on the top. The activities of this level units are modeled
by a conditional multinomial distribution. Specifically, h(v)

consists of M softmax units each of which is 1-of-K encod-
ing and contains a set of K weights. The kth discrete value of
the hidden unit is represented by a vector containing 1 at the
kth location and zeros elsewhere. The conditional probability
of a softmax unit of h(v) is estimated by:

P (h
(v)
k

|h(u)
) =

exp(�bv
k

+

P
j

wv

kj

h
(u)
j

)

P
k

0
exp(�bv

k

0 +
P
j

wv

k

0
j

h
(u)
j

)

(2)

In Eq. (2), all M separate softmax units share the same
set of weights, connecting them to binary hidden units at the
lower level. This means that M separate copies of softmax
units can be viewed as a single multinomial units that are
sampled M times from the conditional distribution of Eq. (2)
[Srivastava et al., 2013]. It is the same as the bag-of-words
representation. The conditional distribution of h(u)

k

based on
softmax units is estimated as following:

P (h
(u)
k

= 1|h(v)
) = �(�

X

j

W
(v)
kj

ˆh
(v)
j

+ a
(u)
k

) (3)

where ˆh
(v)
j

=

P
M

m=1 h
(v,m)
j

denotes the count for the jth

discrete value of a hidden unit.

3.2 Geographically Hierarchical Prior
Usually, image content patterns and locations are hierar-
chically correlated, and locations are not uniformly pho-
tographed. Therefore, the single-level models [Kling et al.,
2014; Li et al., 2013; Crandall et al., 2009] are not directly
adaptable to this problem. It is reasonable to arrange im-
age content patterns and location preferences in a tree struc-
ture, and thus the sparsely photographed regions can share

Figure 2: Geographically hierarchical prior over h(v)

the prior knowledge learned from the super region. Also, the
joint representation is variety for different images and thus
is unsuitable to model the more abstract knowledge of the
larger scale regions. Therefore, we employ a geographically
hierarchical prior over h(v) which is used as the low-level fea-
tures that provide a useful initial representation for all image
content patterns. Then, the high-level features are learned to
express the distinctive perceptual structure of a specific re-
gion, which is in terms of region-specific correlations over
low-level features.

Specifically, we propose a geographically hierarchical
topic model of prior over the activities of h(v). The multi-
nomial unit h(v) is referred as document, and the M samples
of h(v) represent M “words” of the document. Locations are
automatically clustered into hierarchical regions, and each re-
gion has its own distribution over topics that are modeled as
mulinomial distribution over words [Blei et al., 2003] and are
referred as our learned higher level features. A joint gener-
ative process is used to model the generation of image lo-
cation and “words” as follows: for each image, a region is
first chose, and then, its “words” and geographical location
are generated from their corresponding distributions in this
region.

Generation of Tree Structure
For simplicity, we present our hierarchical model with a
three-level tree as shown in Figure 2. Each node denotes a
region, and the parent region is a sum of the children regions.

Hierarchical regions: We use a hierarchical multivariate
Gaussian model to capture the hierarchical structure of ge-
ographical locations. Each region r has a region-dependent
multivariate normal distribution of location. To accom-
plish conjugacy of the joint prior distribution of the mean
and the covariance to the likelihood, the distribution of the
mean has to depend on the covariance. The prior dis-
tribution of the mean µ

r

is Gaussian conditioned on ⌃

r

:
µ
r

⇠ N(⇠
r

, ⇢�1
0 ⌃

r

). The prior distribution of ⌃
r

is inverse-
Wishart: ⌃

r

⇠ IW (v0, Hr

). The joint distribution of µ
r

and
⌃

r

is the Normal/inverse-Wishart distribution:

(µ
r

,⌃
r

) ⇠ N -IW (⇠
r

, ⇢0, v0, Hr

) (4)

where ⇢0, and v0 are hyperparameters, ⇠
r

and H
r

are level-
specific parameters: ⇠

r

= µ
⇡(r), Hr

= ↵⌃
⇡(r)(0 < ↵ < 1).

Latent topic �: The number of topics � is assumed to
be finite (it can be alleviated that the number is infinite).
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Each topic is a multinomial distribution on word vocabu-
lary, and is drawn from a Dirichlet distribution over words:
�

i

⇠ Dir(⌘).
Region-specific distribution of topics ✓: The distribution

over latent topics of each node is also modeled hierarchically.
It is reasonable that geographical proximity is a good prior for
similarity in region-specific distribution of topics. The Hier-
archical Dirichlet Process (HDP) [Teh et al. 2006] is used
to model this hierarchical distribution. First, we draw the
global-level ✓(0) for the global region R(0): ✓(0) ⇠ Dir(�).
At the lower level node r, ✓

r

is drawn using the parent ✓
⇡(r)

as a prior: ✓
r

⇠ Dir("✓
⇡(r)). In this way, the sparsely sam-

pled regions can share the prior knowledge of the larger-scale
region. Similarly, the topic distribution ✓d

i

of each document
i is drawn using ✓

⇡(i) of the node which generates the docu-
ment as a prior.

Prior of the tree structure
Since the tree structure is not pre-defined, we need to auto-
matically infer the distribution over the possible hierarchical
structures. We place a nested Chinese restaurant prior (nCRP)
[Blei et al., 2010] over the path of node selection in the tree.
The main building block of the nCRP is the Chinese restau-
rant process (CRP). To select a node, we define a CRP process
over the children of a parent node i:

P (Cl(i)+1
n

= j|Cl(i)+1
1 ...C

l(i)+1
n�1 ) =

⇢
nj

n�1+�

n
j

> 0

�

n�1+�

j is new
(5)

where n
j

is the number of previous observations selecting
child node j, � is the concentration parameter, and C

l(i)+1
n

=

j denotes that the nth observation selects child node j. nCRP
extends CRP to a nested sequence of partition, one for each
level of the tree. This model allows for a nonparametric prior
learns an arbitrary tree taxonomy.

3.3 Parameter Inference
We use Markov Chain Monte Carlo to infer parameters at all
levels. When the tree structure C is unknown, the inference
process alternates between fixing C while sampling the space
of model parameters, and vice verse.

Sampling HDP parameters: Given the node assignments
C and the states of h(v), we use the posterior representation
sampler to sample [Teh and Jordan, 2010]. That is, the HDP
sampler maintains µ and ⌃ of each level, topic distribution of
each level and document, i.e., ✓(0), ✓(0), ✓(1), ✓(2), ✓d, and
topic indicator variables t of words. The sampler alternates
between: 1) sampling topic indicator t

ni

for each word us-
ing Gibbs updating in the Chinese restaurant franchise (CRF)
representation of HDP; 2) updating ✓, µ and ⌃ at all lev-
els conditioned on t and C with the usual posterior of a DP
(Dirichlet Process). We use the MAP estimating method to
update µ and ⌃ for each node r:

µ
r

=

⇢0µ
⇡(r) + n

r

l
r

⇢0 + n
r

,⌃
r

=

⇢
r

+ 1

⇢
r

(v
r

� d+ 1)

H
r

(6)

H
r

= ↵⌃
⇡(r) + S

r

+

⇢0nr

(l
r

� µ
⇡(r))(lr � µ

⇡(r))
T

⇢0 + n
r

(7)

⇢
r

= ⇢0 + n
r

, v
r

= v0, Sr

=

nrX

i=1

(l
i

� l
r

)(l
i

� l
r

)

T (8)

where l
r

denotes the average value of geographical co-
ordinates in node r, and d is the dimensionality of geograph-
ical record. The posteriors over leaf node are independent,
and the inference can be speeded up by sampling in parallel.

Sampling node assignments C: Given the current instanti-
ation of ✓, µ, ⌃, for each input n we have:

(✓d
n,i

, ..., ✓d
n,T

) ⇠ Dir("✓
(2)
Cn,1

, ..., "✓
(2)
Cn,T

) (9)

l
n

⇠ N(µ
(2)
Cn

,⌃
(2)
Cn

) (10)

where T is the number of topics. Combining the above likeli-
hood terms with the CRP prior Eq. (5), the posterior over the
node assignment is estimated as follows:

P (C
n

|✓d

n

,C�n

,✓(2), l
n

,µ(2),⌃(2)
)

/ P (✓d

n

|✓(2),C
n

)P (l
n

|µ(2),⌃(2),C
n

)P (C
n

|C�n

)

(11)

where C�n

denotes variables C for all observations other
than n. When computing the probability of placing ✓d

n

and l
n

under a new node, its parameters are sampled from the prior.
Sampling hidden unit h(v): Given the states of h(v)

n

, con-
ditional samples from P (h(pl)

n

, h(tl)
n

, ...,h(u)
n

|h(v)
n

, v
n

) can be
obtained by running a Gibbs sampler that alternates between
sampling the states of units in one level independently given
the unit in the adjacent level. Conditioned on topic assign-
ments t

ni

and h(u)
n

, the states of h(v)
n

for each input n are
sampled using Gibbs condition:

P (h
(v)
ni

|h(u)
n

, h(v)
n,�i

, t
n

) / P (h(u)
n

|h(v)
n

)P (h
(v)
ni

|t
ni

) (12)

where the first term is estimated by the product of logistic
functions of Eq. (3) as following:

P (h(u)
n

|h(v)
n

) =

Y

j

P (h
(u)
nj

|hv

n

) (13)

The second term of Eq.(12) is estimated by the multino-
mial, i.e., Multi(�

tni). Since it has a conjugate prior of
Dirichlet, the parameter � can be integrated out.

Fine-tuning bi-modal DBN: Given the states of the top
level h(v), the bi-modal DBN parameters in the low levels are
fine-tuned in the same way as in contrastive divergence algo-
rithm. Fine-tuning low-level BDBN features can improve the
model by encoding the geographical information in the learn-
ing of joint representation, and thus the learned representation
is more effective to reflect the geographical information.

4 Location Prediction
Based on the results of posterior inference, it is straightfor-
ward to predict the node assignment of a query image e. That
is, we first infer the posterior over h(v)

e

on the bi-modal DBN,
and then we run the Gibbs sampler to get approximate sam-
ples from posterior over the node assignments. For calcula-
tion efficiency, we approximate the document-specific topic
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distribution by the leaf node-specific distribution ✓(2)
Ce

. Then
the posterior probability of a node assignment is:

P (h(v)
e

|C
e

,�,✓) / P (h(v)
e

|�,✓(2)
Ce

)

=

Y

j

(

X

k

P (h
(v)
ej

|�
k

,✓(2)
Ce,k

))

(14)

where the topic assignments of words can be integrated out.
By combining the nCRP prior, this likelihood can be used
to approximately infer the posterior over node assignment.
Then, we select top-m images that are most similar to the
query image from the images located in the assigned node.
The similarity between two images is estimated based on the
JSD (Jensen-Shannon-Divergence) between their probability
distributions over latent topics. Finally, the location of the
query image e is estimated as following:

l
e

=

P
g2Nm(e) Sim(g, e) · l

gP
g2Nm(e) Sim(g, e)

(15)

where N
m

(e) denotes the m most similar images.

5 Experiments
In this section, we conduct experiments to assess the effec-
tiveness of GH-BDBN. Through the experiments, we aim to
answer:

1. What are the effects of content type and hierarchy prior
on image location prediction?

2. How effective is the proposed model compared with
other methods of image location prediction?

We begin by introducing the experiment settings and then
analyze the experimental results.

5.1 Experiment Settings
We use the dataset MediaEval2012 [Rae and Kelm, 2012]
which is a community-driven benchmark and is run by
the MediaEval organizing committee to evaluate our model.
Since MediaEval2012 doesn’t includes the raw images and
some images were removed after the dataset was collected,
we download 1,020,130 raw images with their tag lists using
the links in the metadata from Flickr. We concatenated 1024-
D HOG features, 144-D color correlogram in HSV color
space, and 128-D wavelet texture to set a 1296-D represen-
tation for image’s visual content. Each dimension was mean-
centered. As the raw tags are sparse and noisy, we include a
new presentation for text content. First, we remove the stop
words and words that appear in more than 10% of the im-
ages. Word2Vec [Mikolov et al., 2013] is used to represent
each tag with a 500-D vector, which is trained on Wikipedia
articles of about 100 million words. Then, all the image tag
lists are clustered into 2000 groups based on the geographical
information using GMM algorithm, and a 2000-D geograph-
ical dictionary is obtained. Finally, each tag is represented
by a 2000-D sparse codes learned from the geographical dic-
tionary, and the tag list of each image is represented by a
2000-D feature by max pooling all the words in the list. For
BDBN, there are three levels for the vision-specific DBN, and

Figure 3: ADE of using different types of content

the numbers of units are 1296, 1000, and 800 respectively.
Since text is closer to the learned latent feature level, we use
two levels to model the text-specific DBN with the numbers
of units being 2000 and 1000 respectively. For hu and hv , we
set the numbers of units to be 1500 and 1000 respectively. We
split the dataset and use 80% for training and 20% for testing.

There is a parameter involved in the experiments, i.e., m

which denotes the number of most similar images in Eq.(15).
The effect of the parameter on location prediction will be fur-
ther discussed in Section 5.2. For quantitative evaluation, we
use average distance error (ADE) as the evaluation metric:
ADE =

P
N

i=1(
ˆl
i

, l
i

)/N , where dis(ˆl
i

, l
i

) is the Euclidean
distance between the estimated location and the true location.

We compare our approach with three groups of four ap-
proaches that are effective for location prediction based on
different types of image content. The first group of ap-
proach is the text-based LMSS (language model and simi-
larity search) [Laere et al., 2011]. It uses the text model to
first locate the region and then precisely determine the loca-
tion in this region based on text similarity measuring. The
second group of approaches are vision-based IM2GPS [Hays
and Efros, 2008] and GVR [Li et al., 2013]. They estimate
the location of query image based on the locations of visual
neighbors. The third group of approach is Mapping [Cran-
dall et al., 2009] which combines both visual feature and text
content to classify the query image into a region. We revise it
to estimate a more precise location based on the locations of
neighbor images similar to Eq.(15).

5.2 Effects of Content Type and Hierarchy Prior
In this subsection, we study the importance of image content
type and hierarchy prior, which accordingly answers the first
question asked in the beginning of Section 5.

First, we evaluate the performance of our model on predict-
ing location by using different types of image content, i.e.,
only visual content, only tags, and both of visual content and
tags, respectively. Figure 3 shows the performance of pre-
dicting location using different types of content, with various
values of m shown in the X axis and ADE of using different
types of image content shown in the Y axis. From the results
in Figure 3, we draw several observations. First, the perfor-
mance is not always proportionate to the number of similar
images used in location estimation, and the optimal choice
of m is 4. When m is too small, the influence of the falsely
selected images increases. When m is too great, the chance
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Figure 4: Evaluation of hierarchical prior

of selecting more noisy images increases. Second, location
prediction using both of visual content and tags has the best
performance, and the text content is more effective in location
prediction than visual content. This is because that, usually,
text description is more effective in conveying the semantic
content of social image than visual features. Since there are
many noisy tags and visual content is of large variety in each
geographical location, combining both text content and visual
content has a better performance than using text content only.

Then, we test whether the hierarchical prior is effective for
location prediction. The prediction without hierarchical prior
has following steps. First, we cluster the training images
based on their geo-coordinates using GMM, and each clus-
ter is labeled as a region. Then, we use the semi-supervised
classification model [Liu et al., 2011] to train a classifier on
the bi-modal DBN. To predict the location, the query image
is classified to a region, and then a precise location is esti-
mated similar to Eq.(15). To evaluate the performance on un-
balanced sampling regions, we split the geo-coordinates into
grid cells whose sizes are 50km*50km, and density degree is
used to define the number of images in a cell. Figure 4 il-
lustrates the performances of GH-BDBN and the deep model
without hierarchical prior respectively, with different degrees
of image density shown in the X axis. The dashed line de-
notes the performance of the model without hierarchical prior,
and the solid line denotes the performance of GH-BDBN. It
can be seen that GH-BDBN performs better at relatively low
densities. This is because the low density region can share
prior knowledge of the geographical neighbor regions in our
model, which decreases the effect of unbalanced sampling.
Without the hierarchical prior, the query image located in the
low density region will has a great chance to be wrongly clas-
sified to other density regions that are far away from the target
region. It can also be seen that GH-BDBN outperforms the
deep model without hierarchical prior across the board, which
demonstrates that exploiting the hierarchical correlation help
improve the performance of image location prediction.

5.3 Performance Comparison
To answer the second question asked in the beginning of Sec-
tion 5. We compare GH-BDBN with the baseline approaches.
Figure 5 shows the experimental result with the percentage of
training dataset varied from 20% to 100%, by fixing m=4.
The results show that all the performances are affected by the
volume of training data. This is because when the training
dataset is too small, the distributions of images in many loca-

Figure 5: Performance comparison of different approaches

tions are very sparse, especially in the locations that are less
frequently photographed. The performance of our model is
less sensitive to the volume of training data because we can
enrich the knowledge of the sparsely photographed region by
exploiting the knowledge of the large-scale region with ge-
ographically hierarchical prior model. Moreover, our deep
learning model is more effective to learn latent feature from
few examples. It also shows that our approach outperforms
other ones consistently. IM2GPS and GVR predict location
mainly based on the similarity between visual feature directly.
However, the visually similar images might be semantically
far away from each other. The text-based approach LMSS
performs better than the vision-based approaches. It uses a
pure text model to discover the link between image tags and
locations, which ignores the vision patterns of each location.
Therefore the performance is also affected. Mapping is better
than other three baselines since it exploits both visual feature
and textual feature. However, the linear combination strategy
is not directly adaptable to the features that belong to differ-
ent representation spaces. Our approach learns the joint rep-
resentation to correlate different types of image content, and
the geographical hierarchy features are also learned to more
effectively capture the hierarchical correlation between image
content patterns and location preferences.

6 Conclusion and Future Work

In this paper, we proposed a compositional learning archi-
tecture GH-BDBN that integrates multi-modal deep learning
models with non-parametric hierarchical prior models. Ex-
perimental results on real-world dataset demonstrate the ef-
fectiveness of GH-BDBN. The novelty of this work is to
tackle the analysis and application in geo-tagged multi-modal
data with latent feature automatically learned from a multi-
modal deep architecture with nonparametric geography hier-
archy prior. This complements the current research which
focuses on single-level model for raw data directly and ne-
glects the inherent and hierarchical relation between multi-
modal data and geolocations.

There are many potential future extensions of this work. It
would be interesting to investigate image owner’s other so-
cial information, like the micro-blogs published in the travel
and the interesting points that the owner often visit, for image
location prediction.
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