
Learning to Rap Battle with Bilingual Recursive Neural Networks

Dekai Wu and Karteek Addanki
Human Language Technology Center

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

{dekai—vskaddanki}@cs.ust.hk

Abstract
We describe an unconventional line of attack in our
quest to teach machines how to rap battle by impro-
vising hip hop lyrics on the fly, in which a novel re-
cursive bilingual neural network, TRAAM, implic-
itly learns soft, context-dependent generalizations
over the structural relationships between associated
parts of challenge and response raps, while avoid-
ing the exponential complexity costs that symbolic
models would require. TRAAM learns feature vec-
tors simultaneously using context from both the
challenge and the response, such that challenge-
response association patterns with similar structure
tend to have similar vectors. Improvisation is mod-
eled as a quasi-translation learning problem, where
TRAAM is trained to improvise fluent and rhyming
responses to challenge lyrics. The soft structural re-
lationships learned by our TRAAM model are used
to improve the probabilistic responses generated by
our improvisational response component.

1 Introduction
Improvising rap responses in the face of freestyle challenges
is a highly creative endeavor that demands numerous levels of
artistry. The response should of course be somehow salient to
the challenge lyrics, but a wide range of different types of
salience are allowable. At the same time, the response lyrics
should flow fluently, yet allowing for stylistic ungrammati-
cality, disfluencies such as stuttering, and slang constructs.
Moreover, a response containing some metrical and/or syn-
tactic structures that parallel those in the challenge are highly
appreciated. On top of this, aesthetic responses should usu-
ally rhyme not only at the ends of the lines, but also frequently
at different points in middle of lines, especially near key end-
points of metrical substructures.

Learning to improvise such rap responses presents an even
more challenging AI problem. All of these preferences or
biases are soft; none are hard and fast rules. More impor-
tantly, the choices influence and constrain each other; in other
words, they are highly context dependent.

This context dependence poses, for traditional symbolic
machine learning and language processing models, nasty
combinatorial complexity issues in the hypothesis spaces, for

both the response generation search and the model learning
search. To tackle this, we propose instead to shift to a radi-
cally different approach, that allows soft sets of multiple sim-
ilar hypotheses to be simultaneously entertained by represent-
ing them using a single compositional distributed vector. As
with conventional neural networks, since similar vectors tend
to represent similar association patterns between challenge
and response parts, any single vector represents a neighbor-
hood of similar hypotheses.

Conventional neural nets, however, do not support any way
of encoding or learning vectors capable of capturing all of the
structurally complex types of preferences and biases we face
in this task. We therefore propose instead to use a recursive
bilingual neural network, that can be seen as a generalized
form of recursive auto-associative memory or RAAM [Pol-
lack, 1990]. Our bilingual generalization is essential because
RAAM only models a single language (just like symbolic lan-
guage models do)whereas to capture association patterns be-
tween the challenge language and the response language, we
need to model relationships between two languages.

Under our proposed approach, improvisation is modeled
as a quasi-translation task in which any given challenge is
“translated” into a response. This is translation, or transduc-
tion, in the mathematical sense, as in formal language theory;
it is of course not translation in the linguistic sense.

2 Related work
Our TRAAM recursive bilingual neural network builds on
different aspects of a spectrum of previous work. A large
body of work exists on learning distributed representations
for modeling recursive structure, but mostly in monolingual
setting. Even in applications to machine translation or cross-
lingual modeling, the typical practice has been to insert neural
network scoring components while maintaining older model-
ing assumptions like bags-of-words/phrases, “shake’n’bake”
translation that relies on heuristic based phrase extraction and
model tuning using feature weights in contrast to our fully
integrated model. We survey representative work across the
spectrum.

2.1 Monolingual related work
RAAM approaches have been successfully used to model
monolingual compositional structure given their flexibility
and the ability to learn task-specific representations. Stolcke

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2524

and Wu [1992] present a Unification RAAM model which
learns a distributed representation to perform unification on
the distributed vector representations of hierarchical feature
structures. Socher et al. [2011] use monolingual recursive au-
toencoders for sentiment prediction and report performance
improvement; this was perhaps the first use of a RAAM style
approach on a large scale NLP task, albeit monolingual.

Distributed vector representations have long been used for
n-gram language modeling; these continuous-valued models
exploit the generalization capabilities of neural networks, al-
though there is no hidden contextual or hierarchical structure
as in RAAM. Bengio et al. [2003] shows that a feed-forward
neural network based language model can be trained effi-
ciently and outperforms symbolic approaches. More recently,
the probabilistic NNLMs of Mikolov et al. [2010], use simple
recurrent neural networks (RNNs or SRNs) of Elman [1990],
where hidden layer representations are fed back to the input
to dynamically represent an aggregate of the immediate con-
textual history and achieve state-of-the-art performance.

Lee et al. [2009] use convolution neural networks to rep-
resent hierarchical tree structure using vector representations.
Collobert and Weston [2008] use a convolution neural net-
work layer quite effectively to learn vector representations
for words which are then used in a host of NLP tasks such
as POS tagging, chunking, and semantic role labeling.

2.2 Bilingual related work
The majority of work on learning bilingual distributed vector
representations has not made use of recursive approaches or
hidden contextual or compositional structure, as in the bilin-
gual word embedding learning of Klementiev et al. [2012] or
the bilingual phrase embedding learning of Gao et al. [2014].
Schwenk [2012] uses a non-recursive neural network to pre-
dict phrase translation probabilities in conventional phrase-
based SMT systems.

Attempts have been made to generalize the distributed vec-
tor representations of monolingual n-gram language mod-
els, avoiding any hidden contextual or hierarchical structure.
Working within the framework of n-gram translation models,
Son et al. [2012] generalize left-to-right monolingual n-gram
models to bilingual n-grams, and study bilingual variants of
class-based n-grams. However, their model does not allow
tackling the challenge of modeling cross-lingual constituent
order, as our model does; instead it relies on the assumption
that some other preprocessor has already managed to accu-
rately re-order the words of the input sentence into exactly
the order of words in the output sentence.

Similarly, generalizations of monolingual SRNs to the
bilingual case have been studied. Zou et al. [2013] gener-
alize the monolingual recurrent NNLM model of Mikolov
et al. [2010] to learn bilingual word embeddings using
word alignments, and demonstrate that the resulting embed-
dings outperform the baselines in word semantic similar-
ity. Compared to our model, however, they only learn non-
compositional features, with distributed vectors only repre-
senting biterminals (as opposed to biconstituents or bilingual
subtrees), and so other mechanisms for combining bitermi-
nal scores still need to be used to handle hierarchical struc-
ture, as opposed to seamlessly being integrated into the dis-

tributed vector representation model. Devlin et al. [2014]
obtain translation accuracy improvements by extending the
probabilistic NNLMs of Bengio et al. [2003], which are used
for the output language, by adding input language context
features. Unlike our model, neither of these approaches sym-
metrically model the recursive structure of both input and the
output languages.

A few applications of monolingual RAAM-style recur-
sive autoencoders to bilingual tasks have also appeared. For
cross-lingual document classification, Hermann and Blun-
som [2014] use two separate monolingual fixed vector com-
position networks, one for each language. One provides the
training signal for the other, and training is only on the em-
beddings. Li et al. [2013] use a monolingual recursive au-
toencoder for predicting reordering in an ITG model using
the context vector generated using the recursive autoencoder.
Only input language context is used, unlike our model which
can use both input and output language contexts equally.

3 TRAAM
TRAAM is a bilingual generalization of the monolingual re-
cursive autoassociative memory model of Pollack [1990] and
serves as our bilingual recursive neural network used in im-
provising hip hop lyrics. TRAAM implicitly learns soft,
context-dependent generalizations over the structural rela-
tionships between the corresponding parts of the challenges
and responses in our training data and unlike symbolic mod-
els, our model does not incur the exponential cost of model-
ing sensitivity to context. As improvisation is modeled as a
translation problem, our neural network model is a distributed
representation of a transduction grammar and is ideally suited
to be the translation model.

3.1 Why use transduction grammars?
Stochastic transduction grammars have been highly success-
ful for translating from one human language to another, but
mathematically, they simply model structural relationships
between two sequential representation languages, and thus
provide an excellent framework for modeling the relation-
ship between challenge languages and response languages.
An Inversion Transduction grammar or an ITG [Wu, 1997] is
a subset of the syntax directed transduction grammars [Lewis
and Stearns, 1968] and contains transduction rules that gen-
erate both input and output language subtrees and have been
used successfully across a spectrum of NLP tasks. The sub-
trees are generated by recursively combining smaller bispans
(chunks of aligned input and output segments) into larger bis-
pans. The alignment between these subtrees is restricted to
be only straight or inverted, thus permitting reordering in the
input and output language tokens. Although ITGs can accom-
modate transduction grammar rules with different categories
of nonterminals, ITGs with just a single undistinguished
nonterminal (known as Bracketing Inversion Transduction
Grammars or BITGs) have shown to have high coverage in
cross-lingual tasks [Zens and Ney, 2003; Saers et al., 2009;
Addanki et al., 2012]. Further, using BITGs enables us to
model our input and output in the same natural language (En-
glish) without any linguistic assumptions. The left half of the

2525

Figure 1, shows a BITG parse tree with the inverted align-
ments represented by a horizontal dash and each bispan is
represented using a 4-tuple s, t, u, v which corresponds to
the input segment with tokens es, es+1, . . . , et and the out-
put segment with tokens fu, fu+1, . . . , fv . We show some
examples of the transduction grammar rules learned from our
data below.

A→ [AA] , A→ 〈AA〉, A→ singin/dancing, A→ angels/top

In the context of our task, rap battling, we would like to
generate responses that are fluent and rhyme with the chal-
lenge and not merely generation of coherent lyrics. For this
purpose, we use ITGs so as to capture the correspondences
between the challenge and the response lines using transduc-
tion rules. By correspondences, we refer to rhyming, allitera-
tion and the context of the challenge-response pair. Our goal
is to learn these correspondences in a completely unsuper-
vised manner, without using any language specific resources.
Simpler models such as WFSTs are restricted by their as-
sumption of monotonicity of bilingual relationships and fail
to capture interesting relationships captured by ITGs. For
example, ITG constraints on our training data not only cap-
tured rhyming associations such as A stop/drop, A his-
tory/mysteries, A big/figs, but also context specific relations
such as A big/pac (referring to the artists Notorious B.I.G and
2Pac). Data inspection revealed that a number of these asso-
ciations were a result of non-monotonic alignments between
the input and output languages.

While most previous approaches, even in more structured
domains, employ an uninformed model to generate fluent out-
put and make use of specialized knowledge resources to en-
sure output compatible with the constraints of the problem
being modeled [Barbieri et al., 2012; Jiang and Zhou, 2008],
we attempt to extract as much task-specific knowledge as pos-
sible from our training data. Further, our model can be easily
extended to employ task-specific resources such as rhyming
dictionaries or heuristics such as phoneme matching.

3.2 Distributed representations are sensitive to
context

Our TRAAM model learns the distributed representations
that parallel the structural composition of a BITG. Figure
1 shows a biparse using a bracketing inversion transduc-
tion grammar (BITG) and the corresponding network of the
TRAAM model. However, unlike the single undifferentiated
nonterminal of a BITG, the feature vectors in effect repre-
sent soft categories of cross-lingual relations. Our model
can integrate elegantly with the transduction grammar for-
malism enabling one to augment the symbolic models with
distributed, soft, context-dependent generalizations over the
input and output languages.

In our recursive neural network, each bispan s, t, u, v is
represented using a feature vector vstuv of dimension d and
similar to BITGs, feature vectors of larger bispans are re-
cursively generated from smaller bispans using a compressor
network (represented by C in Figure 1). The compressor net-
work takes two feature vectors of dimension d (correspond-
ing to smaller bispans), along with a single bit corresponding
to straight or inverted order and outputs a feature vector of

Figure 1: Symbolic model (left) and the corresponding
TRAAM model (right)

dimension d (corresponding to the larger bispan). The recon-
struction network (represented by R in Figure 1) provides the
loss function which can be used to train the representations of
the bitokens and weights of the networks as explained in the
next section.

The loss function defined by the neural network is a contin-
uous valued function whose output varies on the input feature
vectors. However, unlike the BITG, which can only guarantee
a fixed probability for all straight or inverted combinations,
the neural network model can facilitate for more complex
interactions such as nonlinear interactions using compressor
and reconstructor networks. As the output feature vector is
dependent on the bispan being dominated, the neural network
model is more sensitive to context than a BITG model. For
the BITG model to have the same context-dependent behav-
ior as the neural model, the continuous valued function needs
to be emulated using different nonterminal categories such
that both straight and inverted combinations of each pair of
nonterminals, can have a different value. This would cause
the number of nonterminals and hence the number of model
parameters to explode making reliable parameter estimation
extremely hard.

3.3 Training algorithm
We assume a “translation lexicon” (corresponding to the as-
sociations of words between challenges and responses), as
one of the inputs to train our model. We obtain this lexicon
by training a BITG in a completely unsupervised fashion on
our training data [Saers et al., 2009]. The lexical rules in the
grammar provide us with a translation lexicon. The transduc-
tion grammar also enable faster training, as exhaustively con-
sidering all possible alignments between the challenge and
response makes it expensive to train our neural network.

Initialization
Each entry in the translation lexicon is associated with a pair
of feature vectors, corresponding to the input and output lan-
guage segments respectively. Using the terminology of trans-

2526

duction grammars, we refer to the pair of input and output
language segments in the translation lexicon a biterminal.
The feature vector for the biterminal is a concatenation of the
input and output language vectors. In the case, where a trans-
lation lexicon is unavailable, the model can be naively trained
assuming that all the tokens in the input sentence translate to
all the tokens in the output sentence. We assume that each of
the vectors are of dimension d/2 and are initialized randomly
such that their magnitude is 1. For all the segments e and f
such that e/f exists in the translation lexicon:

ve = [ve1 , . . . , ved/2
]

vf = [vf1 , . . . , vfd/2]

Given a sentence pair, we will need to initialize the chart
such that for each bispan s, t, u, v a feature vector vstuv of di-
mension d by concatenating the feature vectors vest and vfuv

corresponding to the input and output segments respectively.

vstuv = [vest ;vfuv
]

where ; represents the concatenation operator for the feature
vectors. The feature vectors for larger spans are generated
recursively from the smaller spans using the compressor net-
work, the details of which are described in the next section.

Recursion
Our model generates the feature vectors for larger bispans
recursively from smaller bispans using both input and out-
put language contexts simultaneously. However, similar to
monolingual RAAM models we would also like to keep the
dimensionality of the feature vectors fixed irrespective of the
length of the bispan. Hence when two smaller bispans com-
bine, we need to “compress” two feature vectors of dimen-
sion d corresponding to both the bispans, to one feature vec-
tor of dimension d. The compressor network serves this pur-
pose and provides the necessary language bias by forcing the
network to capture the generalizations while reducing the di-
mensions of the input vectors. As the bispans can combine
in straight or inverted fashion, an additional bit of input cor-
responding to the permutation order is also fed into the com-
pressor. We use a single layer with a nonlinear activation
function (tanh) similar to the monolingual recursive autoen-
coder [Socher et al., 2011] as shown below.

vstuv = tanh(W1[1;vsSuU ;vStUv]+b1)
|tanh(W1[1;vsSuU ;vStUv]+b1)|

vstuv = tanh(W1[0;vsSUv;vStuU]+b1)
|tanh(W1[0;vsSUv;vStuU]+b1)|

The feature vector for the larger span is the output of the
activation layer of the compressor network, whose inputs are
the feature vectors of smaller bispans and the first bit of the
input is set depending on whether they combine in straight or
inverted order. The vectors are normalized at each stage to
prevent the model from reaching a degenerate optimum of ar-
bitrarily small vectors. The bispans are combined recursively
in a bottom-up manner till the feature vector corresponding to
the entire bisentence is obtained. In order to reduce the train-
ing time, we use the Viterbi biparse from a BITG to provide
the tree structure for our training.

One of the goals of our model is to capture: (1) the con-
text of the smaller bispans as efficiently as possible in the

larger bispan, and (2) the reordering information i.e., the or-
der in which the bispans combine recursively. While the com-
pressor network can realize these goals, we need to train our
model so that the learned parameters realize this objective as
well as possible. Therefore, we use a reconstructor network
which attempts to reconstruct the permutation order and the
feature vectors of the children from the feature vector of a
bispan. As our reconstructor network, we use a single layer
network with a nonlinear activation function (tanh) as shown
below. Note that the equation below assumes that the original
feature vectors were combined in a straight permutation order
but the converse is also fairly straightforward.

[o′;v′
sSuU ;v′

StUv] = tanh(W2vstuv + b2)

v′
sSuU and v′

StUv are the reconstructed feature vectors
corresponding to the respective bispans and o′ is the recon-
structed permutation order. The reconstructed feature vectors
and permutation order are used to compute the loss function
which ensures that our trained model achieves the objective
stated above. Each internal node in the biparse tree recon-
structs the output and the permutation order of its children
using the reconstructor network (represented by R) as shown
in the Figure 1.

The parameters of the model are the weight and bias matrix
of W1 and b1 of the compressor network, and the weight and
the bias matrix of the reconstructorW2 and b2 and the feature
vectors of the input and output segments in the translation
lexicon. These parameters are estimated by minimizing the
loss function described in the next section.

Gradient computation
Our objective of training is such that the model captures the
context and the permutation order of the children as effi-
ciently as possible. We define the loss function as the sum of
the normalized reconstruction error at all the internal nodes in
the biparse tree. The loss function is defined as a linear com-
bination (with the linear weighting factorα) of the L2 norm of
the reconstruction error of the children and the cross-entropy
loss of reconstructing the permutation order. We define the er-
ror at each internal node corresponding to the bispan s, t, u, v
generated by the straight combination is shown below and the
equation for the inverted combination follows similarly.

Estuv = α
2 ‖[v

′
sSuU ; v′StUv]− [vsSuU ; vStUv]‖2 + (1− α)log(1 + o′)

The global objective function J is the sum of the error
function at all internal nodes in the biparse trees, averaged
over the total number of sentences T in the corpus. A regular-
ization parameter λ is used on the norm of the model parame-
ters θ, to avoid overfitting. As the bisegment embeddings are
also a part of the model parameters, the optimization objec-
tive is similar to a moving target training objective and we use
backpropagation with structure [Goller and Kuchler, 1996] to
compute the gradients efficiently. L-BFGS algorithm is used
in order to minimize the loss function.

J =
1

T
ΣstuvEstuv + λ‖θ‖2

2527

3.4 Decoding algorithm
Our decoding algorithm is similar to decoding with an ITG
model and makes use of the BITG we use in training. How-
ever, the major distinction is that each translation hypothe-
sis computes an additional feature score which is the inverse
of the reconstruction error of the feature vectors its children
when fed through the compressor network. The feature score
along with the transduction grammar and LM score is used
to score each hypothesis using a weighted linear combina-
tion. The feature score enables us to generate a more fine
grained score instead of a single value (as in case of gram-
mar score for BITGs) for each straight and inverted combina-
tion of the hypotheses, enabling the parses preferred by our
TRAAM model to rank higher. Without re-defining the entire
decoding algorithm for ITGs, we just define the parts that are
relevant in computing the feature score.

Initialization
For each input span fst, we initialize the set of translation hy-
potheses using the grammar rules that match the input span
i.e., all grammar rules X → e/f where f = fst. The fea-
ture vector vstyz of the translation hypothesis of the span fst
is initialized as the feature vector from our model where the
bisegment matches e/f , y and z are the first and last N − 1
tokens of e, and N is the order of the language model used.

Recursion
The recursion step is similar to that of Wu [1996], with the ad-
ditional step of computing the feature score, using the recon-
struction error of each hypothesis combined. The grammar
score, LM score and the feature score are combined using a
weighted linear combination to give each hypothesis a score.

1. When two hypotheses hskyY and hktZz corresponding
to spans (s, k) and (k, t) combine we compute the fea-
ture score for their combination as follows:

(a) If the combination is according to a straight rule
then the feature score τstyz corresponding to the
combined hypothesis hstyz
i. vstyz = compressor ([1; vskyY ; vktZz])

ii. [p′; v′skyY ; v′ktZz] = reconstructor (vstyz)

iii. τstyz =
1

‖ [v′skyY ; v′ktZz]− [vskyY ; vktZz] ‖
2

(b) Else then the feature score τstZY corresponding to
the combined hypothesis hstZY
i. vstZY = compressor ([0; vskyY ; vktZz])

ii. [p′; v′skyY ; v′ktZz] = reconstructor (vstZY)

iii. τstZY =
1

‖ [v′skyY ; v′ktZz]− [vskyY ; vktZz] ‖
2

Reconstruction
Reconstruction is similar to the Viterbi decoding mentioned
in Wu [1996] except for the inclusion of the feature scores in
computing the score of each hypothesis.

4 Experiments
We used freely available user generated hip hop lyrics on the
Internet to provide training data for our experiments. The

Table 1: Percentage of acceptable (i.e., either good or accept-
able) responses on fluency and rhyming criteria.

model fluency (acceptable) rhyming (acceptable)
PBSMT 43.53% 9.02%
TRAAM 60.39% 42.74%

processed corpus contained 22 million tokens with 260,000
verses and 2.7 million lines of hip hop lyrics. As human eval-
uation is expensive, a small subset of 85 lines was chosen as
the test set to provide challenges for comparing the quality of
responses generated by different systems. We followed the
evaluation scheme proposed by Addanki and Wu [2014] as it
achieved very encouraging inter-evaluator agreements despite
the high degree of subjectivity of the evaluation task. The
output of both the baseline and our model, was given to three
independent frequent hip hop listeners familiar with freestyle
rap battling for manual evaluation. They were asked to evalu-
ate the system outputs according to fluency and the degree of
rhyming. They were free to choose the tune to make the lyrics
rhyme, as the beats of the song were not used in the training
data. Each evaluator was asked to score the response of each
system on the criterion of fluency and rhyming as being good,
acceptable or bad.

4.1 TRAAM model training
We use the TRAAM bilingual recursive neural network
model discussed earlier along with a token based transduction
grammar model trained on around 200,000 lines of challenge
response pairs. The challenge response pairs were selected
using a rhyme scheme detection module proposed in Ad-
danki and Wu [2013]. We use the translation lexicon from the
trained transduction grammar along with the biparses to train
our neural network model. Both these models are then used
to improvise the responses using a 4-gram language model
which was trained on the entire training corpus using SRILM
[Stolcke, 2002]. The weights of the feature scores were deter-
mined empirically observing the performance on a small sub-
set of the test data. In order to evaluate the performance of an
out-of-the-box phrase-based SMT (PBSMT) system toward
this novel task of generating rhyming and fluent responses, a
standard Moses baseline [Koehn et al., 2007] was also trained
in order to compare its performance with our TRAAM model.

5 Results
In this section, we present the results of human evaluation
on the improvised responses of our model and demonstrate
that our TRAAM model does provide better quality responses
compared to a phrase based SMT baseline.

5.1 Phrase-based SMT baseline performs poorly
Table 1 shows the average fraction of sentences rated good
and acceptable for each model. Compared to the phrase-
based SMT (PBSMT) baseline, our TRAAM model pro-
duces significantly higher percentage of good and acceptable
rhyming responses. Surprisingly, despite being a token based
model, our model outperforms the segmental PBSMT model
even on the criterion of fluency. These results indicate that

2528

Table 2: Examples of challenges and responses generated.

challenge picture on the quota its time to roll
TRAAM ya for a quarter i mind and soul
PBSMT on the odor time to roll
challenge thug deep in my soul that got me bugged
TRAAM love you on the control the drugs
PBSMT thug in my soul that got me
challenge nights of 51 jipped be light on this cash
TRAAM in the concrete mics you right in the ass
PBSMT and be light on this ass
challenge what would i do
TRAAM just me and you
PBSMT what would you do
challenge we get rid of the child
TRAAM and the number and a wild
PBSMT we get of the

our TRAAM bilingual neural network model captures enough
context to generate fluent responses, significantly augmenting
the performance of a token based model.

5.2 Challenge-response examples
Table 2 shows some of the challenges and the corresponding
responses of our model and the PBSMT baseline. Our model
produces responses comparable in fluency to the segmental
PBSMT model despite being a token based model. While PB-
SMT model produces responses which are too similar to the
challenge, our model improvises responses which rhyme bet-
ter (shown in boldface). As seen from examples, our model
frequently produces responses that rhyme words not only at
the end, but also in the middle of challenges, indicating that
it captures structural associations more effectively than the
phrase-based model.

6 Conclusion
Teaching machines to rap battle is a quest that encapsulates
numerous interacting levels of improvisational artistry in a
complex, structured AI learning challenge. We have de-
scribed an unconventional line of attack in which a recur-
sive bilingual neural network, TRAAM, sidesteps the expo-
nentially complex hypothesis space needed by existing suit-
able symbolic learning models for both the improvisational
response generation search and the model learning search,
by instead using compositional distributed vector represen-
tations in which a single vector implicitly represents an en-
tire neighborhood of multiple similar association patterns be-
tween corresponding structural aspects of challenges and re-
sponses. The fact that challenge-response association pat-
terns that are structurally similar tend to have similar vectors
allows training to learn soft, context-dependent generaliza-
tions over all kinds of structural challenge-response associ-
ations patterns, from concrete to abstract patterns, and from
short to long patterns.

Our approach is unlike conventional approaches to poetry
in being completely unsupervised, making zero use of any
linguistic or phonetic features in spite of an extremely un-
structured and noisy domain. Modeling improvisation as a

quasi-translation learning problem means that for any chal-
lenge, the machine must learn on its own what kinds of im-
provised responses would be fluent, salient, rhyming, and of
similar metrical and syntactic structure. The distributed fea-
ture vectors that encode challenge-response association pat-
terns are learned simultaneously by our TRAAM network,
using context from both the challenge and the response. The
soft structural relationships learned are used to improve the
probabilistic responses generated by our improvisational re-
sponse component, as judged by human rap listeners.

Acknowledgements
This material is based upon work supported in part by the
Defense Advanced Research Projects Agency (DARPA) un-
der BOLT contract nos. HR0011-12-C-0014 and HR0011-
12-C-0016, and GALE contract nos. HR0011-06-C-0022
and HR0011-06-C-0023; by the European Union under
the FP7 grant agreement no. 287658; and by the Hong
Kong Research Grants Council (RGC) research grants
GRF620811, GRF621008, GRF612806, FSGRF13EG28,
and FSGRF14EG35. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
DARPA, the EU, or RGC.

References
[Addanki and Wu, 2013] Karteek Addanki and Dekai Wu.

Unsupervised rhyme scheme identification in hip hop
lyrics using hidden Markov models. In 1st International
Conference on Statistical Language and Speech Process-
ing (SLSP 2013), Tarragona, Spain, 2013.

[Addanki and Wu, 2014] Karteek Addanki and Dekai Wu.
Evaluating improvised hip hop lyrics - challenges and ob-
servations. In Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente
Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk,
and Stelios Piperidis, editors, Ninth International Confer-
ence on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland, may 2014. European Language Re-
sources Association (ELRA).

[Addanki et al., 2012] Karteek Addanki, Chi-Kiu Lo,
Markus Saers, and Dekai Wu. LTG vs. ITG coverage
of cross-lingual verb frame alternations. In 16th Annual
Conference of the European Association for Machine
Translation (EAMT-2012), Trento, Italy, May 2012.

[Barbieri et al., 2012] Gabriele Barbieri, François Pachet,
Pierre Roy, and Mirko Degli Esposti. Markov constraints
for generating lyrics with style. In 20th European Confer-
ence on Artificial Intelligence, (ECAI 2012), pages 115–
120, 2012.

[Bengio et al., 2003] Yoshua Bengio, Rjean Ducharme, Pas-
cal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of Machine Learning Research,
3:1137–1155, 2003.

[Collobert and Weston, 2008] Ronan Collobert and Jason
Weston. A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning.

2529

In 25th International Conference on Machine Learning,
ICML ’08, pages 160–167, New York, NY, USA, 2008.
ACM.

[Devlin et al., 2014] Jacob Devlin, Rabih Zbib, Zhongqiang
Huang, Thomas Lamar, Richard Schwartz, and John
Makhoul. Fast and robust neural network joint models for
statistical machine translation. In 52nd Annual Meeting of
the Association for Computational Linguistics, 2014.

[Elman, 1990] Jeffrey L Elman. Finding structure in time.
Cognitive science, 14(2):179–211, 1990.

[Gao et al., 2014] Jianfeng Gao, Xiaodong He, Wen-tau Yih,
and Li Deng. Learning continuous phrase representations
for translation modeling. In 52nd Annual Meeting of the
Association for Computational Linguistics (Short Papers),
2014.

[Goller and Kuchler, 1996] Christoph Goller and Andreas
Kuchler. Learning task-dependent distributed represen-
tations by backpropagation through structure. In Neural
Networks, 1996., IEEE International Conference on, vol-
ume 1, pages 347–352. IEEE, 1996.

[Hermann and Blunsom, 2014] Karl Moritz Hermann and
Phil Blunsom. Multilingual models for compositional
distributed semantics. In 52nd Annual Meeting of
the Association for Computational Linguistics, volume
abs/1404.4641, 2014.

[Jiang and Zhou, 2008] Long Jiang and Ming Zhou. Gener-
ating Chinese couplets using a statistical MT approach. In
22nd International Conference on Computational Linguis-
tics (COLING 2008), 2008.

[Klementiev et al., 2012] Alexandre Klementiev, Ivan Titov,
and Binod Bhattarai. Inducing crosslingual distributed
representations of words. In 24th International Confer-
ence on Computational Linguistics (COLING 2012). Cite-
seer, 2012.

[Koehn et al., 2007] Philipp Koehn, Hieu Hoang, Alexandra
Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. Moses: Open source toolkit for
statistical machine translation. In Interactive Poster and
Demonstration Sessions of the 45th Annual Meeting of the
Association for Computational Linguistics (ACL 2007),
pages 177–180, Prague, Czech Republic, June 2007.

[Lee et al., 2009] Honglak Lee, Roger Grosse, Rajesh Ran-
ganath, and Andrew Y Ng. Convolutional deep belief net-
works for scalable unsupervised learning of hierarchical
representations. In 26th Annual International Conference
on Machine Learning, pages 609–616. ACM, 2009.

[Lewis and Stearns, 1968] Philip M. Lewis and Richard E.
Stearns. Syntax-directed transduction. Journal of the
Association for Computing Machinery, 15(3):465–488,
1968.

[Li et al., 2013] Peng Li, Yang Liu, and Maosong Sun. Re-
cursive autoencoders for itg-based translation. In EMNLP,
pages 567–577, 2013.

[Mikolov et al., 2010] Tomas Mikolov, Martin Karafiát,
Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Re-
current neural network based language model. In IN-
TERSPEECH 2010, 11th Annual Conference of the Inter-
national Speech Communication Association, Makuhari,
Chiba, Japan, September 26-30, 2010, pages 1045–1048,
2010.

[Pollack, 1990] Jordan B Pollack. Recursive distributed rep-
resentations. Artificial Intelligence, 46(1):77–105, 1990.

[Saers et al., 2009] Markus Saers, Joakim Nivre, and Dekai
Wu. Learning stochastic bracketing inversion transduc-
tion grammars with a cubic time biparsing algorithm. In
11th International Conference on Parsing Technologies
(IWPT’09), pages 29–32, Paris, France, October 2009.

[Schwenk, 2012] Holger Schwenk. Continuous space trans-
lation models for phrase-based statistical machine transla-
tion. In COLING 2012: Posters, pages 1071–1080. Cite-
seer, 2012.

[Socher et al., 2011] Richard Socher, Jeffrey Pennington,
Eric H Huang, Andrew Y Ng, and Christopher D Man-
ning. Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Conference on Empirical
Methods in Natural Language Processing, pages 151–161.
Association for Computational Linguistics, 2011.

[Son et al., 2012] Le Hai Son, Alexandre Allauzen, and
François Yvon. Continuous space translation models with
neural networks. In 2012 conference of the north american
chapter of the association for computational linguistics:
Human language technologies, pages 39–48. Association
for Computational Linguistics, 2012.

[Stolcke and Wu, 1992] Andreas Stolcke and Dekai Wu.
Tree matching with recursive distributed representations.
In AAAI 1992 Workshop on Integrating Neural and Sym-
bolic Processes —The Cognitive Dimension, 1992.

[Stolcke, 2002] Andreas Stolcke. SRILM – an extensible
language modeling toolkit. In 7th International Confer-
ence on Spoken Language Processing (ICSLP2002 - IN-
TERSPEECH 2002), pages 901–904, Denver, Colorado,
September 2002.

[Wu, 1996] Dekai Wu. A polynomial-time algorithm for sta-
tistical machine translation. In 34th Annual Meeting of the
Association for Computational Linguistics (ACL96), pages
152–158, Morristown, NJ, USA, 1996.

[Wu, 1997] Dekai Wu. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora. Com-
putational Linguistics, 23(3):377–403, 1997.

[Zens and Ney, 2003] Richard Zens and Hermann Ney. A
comparative study on reordering constraints in statistical
machine translation. In 41st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL-2003), pages
144–151, Stroudsburg, PA, USA, 2003. Association for
Computational Linguistics.

[Zou et al., 2013] Will Y Zou, Richard Socher, Daniel M
Cer, and Christopher D Manning. Bilingual word embed-
dings for phrase-based machine translation. In EMNLP,
pages 1393–1398, 2013.

2530

