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Abstract
Managing peak energy demand is a critical prob-
lem for energy utilities. The energy costs for the
peak periods form a major component of their over-
all costs. Real-time pricing mechanisms have been
explored as a means of flattening the demand curve
and reducing the energy costs. In this paper, we ex-
amine a model of ex-post real-time pricing mech-
anism that can be used by the utilities for this
purpose. In particular, we study a convex piece-
wise linear cost function that modulates the price
of energy based on the aggregate demand of the
utility. We provide a game-theoretic analysis of
the mechanism by constructing a non-cooperative
game among the consumers of a utility wherein
the cost to each consumer is decided by the pric-
ing mechanism. We formally characterize the Nash
equilibrium and other properties for two settings:
(i) consumers have full flexibility in shifting their
demand, and (ii) consumers can shift only a frac-
tion of their demand at any time to another time.

1 Introduction
Managing peak energy demand is a challenge faced by many
energy utility companies [Strbac, 2008]. The US Energy
Information Administration estimates that the peak to average
ratio across the continental US is 1.7 and rising. According
to International Energy Agency report [IEA, 2003], the cost
of energy could have been reduced by approximately 50%
by lowering demand by just 5% during the peak hours of the
California electricity crisis in 2000/2001. Although, the peak
demand period occurs for a small percentage of the overall
time, the energy purchase cost to utilities for that period forms
a significant proportion of their overall costs.

The key to peak demand management is to encourage con-
sumers to shift their consumption from peak hours to off-peak
hours [Palensky and Dietrich, 2011; Spees and Lave, 2007].
From the utility’s (energy retailer’s) perspective, the ideal sce-
nario would maintain the peak-to-average ratio at 1, i.e. uni-
form aggregate demand. Real-time pricing mechanisms have

been considered as a means of addressing the peak demand
problem [Borenstein, 2005]. In real-time pricing, the unit cost
of electricity varies with the time of day. Generally, when the
total demand (or consumption) is low, the unit cost of elec-
tricity is also low since the cost of generating this energy is
low, and vice versa. Real-time pricing, when implemented
correctly, has the potential to address the peak demand chal-
lenge by providing appropriate incentives to the consumers to
shift demand to off-peak periods [Barbose et al., 2004].

In particular, the real-time pricing mechanisms that have
been extensively studied and in-use across the world are ex-
ante. Ex-ante refers to the fact that in these mechanisms, the
price of electricity is heuristically determined before the con-
cerned time period, based on the prevailing wholesale market
prices, and communicated to the consumers by the utilities. It
is hoped that the consumers would then shift their demand for
that forthcoming time period accordingly, based on their per-
ception of the price and flexibility of consumption. The other
form of real-time pricing that has largely been left unexplored
for retail purposes is ex-post. In this, the price of electricity
for a given time period is determined after the passage of the
time period based on observations of the overall demand in
that period, without having to resort to estimates. While such
ex-post mechanisms are prevalent in the spot and reserve mar-
kets at the ISO level [Zheng and Litvinov, 2011], they haven’t
been considered for retail pricing because of the concern that
consumers may not be able to act upon and shift demand
without pricing signals delivered to them beforehand [Hos-
sain et al., 2012].

Nevertheless, in this paper, we revisit ex-post real-time
pricing mechanism for consumers (as applied by an utility)
from a game-theoretic perspective to derive important obser-
vations about consumer behaviors under such schemes, and
show the theoretical feasibility of such mechanisms. In par-
ticular, we construct a game, called as the consumption game,
wherein all the consumers of a utility are the players. We as-
sume that all the consumers are rational and intelligent and
have individual energy requirements for a time period. With
the utility acting as the game designer and aiming to reduce
its overall peak demand, the natural way to design the pricing
scheme is to set the unit cost of electricity as a function of the
aggregate consumption of all the consumers under the utility.
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This implies that the cost incurred by a consumer in any time
slot depends on the demand of other consumers in that time
slot. The goal of any consumer is to consume in such a way
that their individual electricity cost throughout the day is min-
imized while satisfying their individual energy requirements
for that day (or some such large period of time).

Specifically, we propose and study ex-post real-time pric-
ing mechanisms in the generic form — a convex K step
piece-wise linear function over the aggregate demand. Cost
functions for electricity generation and distribution are of-
ten heuristically modeled as piece-wise linear functions, that
are monotonically increasing with non-decreasing slope [Yas-
meen et al., 2012]. It is also to be noted that piece-wise linear
functions are convenient interpolation of a small number of
points of any cost curve [Aganagic and Mokhtari, 1997]. We
consider the following two settings under which we analyze
the consumption game:
Flexible Consumption Game (FC Game): In this setting, we
assume that all consumers can shift their consumption load
from one time slot to another within that period (such as a
day) without any restriction.
Partially-Flexible Consumption Game (PFC Game): This is
a more practical setting and assumes that all consumers can
only shift a fraction of their consumption load at a time slot
to any other time slot (in that period or day).

For each of the two game settings, we characterize the
equilibrium and efficient consumption profiles. Informally,
equilibrium refers to stable consumption profiles whereas ef-
ficiency refers to those consumption profiles which result in
minimum total cost. Since the cost incurred by each con-
sumer depends on the consumption by other consumers using
the real-time pricing scheme, we analyze the Nash equilib-
rium of the consumption game to understand the most likely
consumption behavior of the consumers.

In particular, for the FC game, we first show that the aggre-
gate consumption profile by all consumers would be uniform
over time under any pure strategy Nash equilibrium. We also
show the relation of the individual consumption profiles with
Nash equilibrium of the proposed game. We then formally
show that all those consumption profiles where the aggregate
consumption by all consumers is uniform turn out to be effi-
cient; however, such profiles need not be in Nash equilibrium.
For the PFC game, we are able to reproduce most of the re-
sults obtained in FC game under some mild constraints.

Thus, this paper conducts the first study of an ex-post form
of real-time pricing mechanism for end consumers in the elec-
tricity smart grid, using game theoretic analysis. In the next
section, we briefly present relevant literature pertaining to our
domain and approach. Then, Section 3 explains our game
setting and pricing function in more detail. Following that,
Section 4 and Section 5 analyse the FC game and PFC game
respectively. Section 6 concludes the paper.

2 Related Work
Demand Response (DR) is increasingly being seen as a suit-
able means for improving the efficiency of the electricity
grid [Albadi and El-Saadany, 2007]. Most DR programs seek
to achieve this goal by reducing the total consumption during

the peak demand hours, in other words, flattening the demand
curve. In our work, we explore a form of real-time pricing
which is, in fact, a price based DR program. One example
of a deployment of real-time pricing is by the Illinois Power
Company to some regions in North America [Allcott, 2009].

Nevertheless, one of the difficulties in measuring the suc-
cess of DR is to quantify the inconvenience caused to the
consumers. This boils down to the problem of modeling the
constraints on the consumption behavior of the consumers.
There are several ways of representing consumer’s prefer-
ence over the the consumption pattern [Chandan et al., 2014;
Li et al., 2011]. In our paper, we have formulated two models
which capture the consumption behavior of consumers in an
ideal set up and a more practical set up, respectively.

The main contribution of our work is that we study the
electricity pricing scheme using game-theoretic techniques,
thus following in the same path carved by several recent
works that have applied Game Theory and Mechanism De-
sign techniques to address smart grid problems, particularly
demand response [Chen et al., 2012; Kota et al., 2012;
Jain et al., 2014]. Specifically, formulation of an energy
consumption scheduling game among users is carried out
by [Mohsenian-Rad et al., 2010]. They also form two op-
timization problems based on Peak-to-Average Ratio mini-
mization and energy cost minimization and show the relation
between them. Similarly, a game theoretic approach to opti-
mize time-of-use pricing strategies is taken by [Yang et al.,
2013]. Adoption of storage from a grid perspective (with
millions of consumers), with assumption that the effect of
changes in individual strategy/consumption on the price is
negligible, has been modelled and discussed in [Vytelingum
et al., 2011]. In contrast, we focus on utilities determining the
price for their customers to reduce peaking, without the above
assumption. Thus, our work provides fundamental results for
a generic form of ex-post real-time pricing scheme.

3 Game Setting and Pricing Model
Let N = {1, 2, . . . , n} be a set of n consumers with the util-
ity. Let T be the number of discrete time slots in a day. For
instance, the value of T is 24 if we consider each hour as
one time slot. Let the consumption of the i-th consumer at
time t be yti . For each i ∈ N , we denote the daily consump-
tion profile of i-th consumer as yi = {y1i , y2i , · · · , yTi }. Let
Yi,∀i ∈ N , be the set of all possible consumption profiles
of consumer i. Also, for each i ∈ N , y−i represents the
profile of consumptions of all players except i. We assume
that total consumption by any consumer throughout the day
is always strictly positive; that is,

∑T
t=1 y

t
i > 0, ∀i ∈ N

(otherwise, she does not need energy for the day and can be
excluded). Let Y = ×i∈NYi be the set of all consumption
profiles of the consumers. We represent each element in Y as
(yi, y−i) = (y1, y2, . . . , yn).

Each consumer will have to pay the utility for her electric-
ity consumption. In fact, since we present a real-time elec-
tricity pricing scheme based on aggregate demand, the cost
to any consumer also depends on the total energy consumed
by all the consumers at that time slot. Let us denote the total
(aggregate) energy consumption by all players at time t as,
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mt =
∑n

i=1 y
t
i , ∀t = 1, 2, . . . , T .

The focus of the mechanism is to reduce peak demand
rather than overall demand in a day. Therefore, in our setting,
we consider that the overall consumption needs of a consumer
over the period of a day is fixed (although there exists flexibil-
ity regarding the time of consumption within the day). Nev-
ertheless, without any loss of generality, this period of time
needn’t be one day. It can as well correspond to a portion of
a day (e.g., just the daylight hours) or several days, and our
results still hold good. Formally, we introduce the following
assumption.
Assumption 1 Conservation of Energy Consumption: A
consumer can change her daily consumption profile accord-
ing to her own convenience; however, the sum of the energy
consumption in all those profiles for a particular day must be
same. So for each i ∈ N , there exists a constant mi such that

mi =
T∑

t=1

yti , ∀yi ∈ Yi (1)

Since the total energy consumption of each consumer on a
particular day is fixed, the sum of the energy consumption by
all consumers of the utility is also fixed for that day. We refer
to this as Conservation of Energy Consumption.
We call any consumption profile which satisfies the above as-
sumption, as a feasible consumption profile under this model.

The unit cost of electricity at any time t is determined by a
convex K-piece-wise linear function of the aggregate energy
consumption mt. Formally,

f(x;A1, · · · , AK , B, θ1, · · · , θK−1)

=


A1x+B1, if x ≤ θ1
A2x+B2, if θ1 < x ≤ θ2
. . .

AKx+BK , if θK−1 ≤ x

(2)

where A1, · · · , AK , B, θ1, · · · , θK−1 are the parameters of
this function with 0 ≤ A1 ≤ A2 ≤ · · · ≤ AK , and
B1 = B ≥ 0 and Bk = B −

∑k−1
l=1 θl(Al+1 − Al), ∀ k =

2, 3, · · · ,K. Note that x (= mt) is a real number denoting
the aggregate consumption at time t, and hence x ∈ R≥0. For
the ease of presentation, let us assume that for aK-piece-wise
linear function of this form, θ0 = 0 and θK = +∞. Clearly
θ1, · · · , θK−1 partition the positive real line R≥0 into K seg-
ments where the kth segment indicates θk−1 ≤ x ≤ θk+1,
∀k = 1, 2, · · · ,K − 1. That is, a K-piece-wise linear func-
tion has K segments. The actual values of these parameters
will be determined by the utility based on the actual gener-
ation and distributional cost of electricity. Figure 3 shows a
stylized example of a piece-wise linear function with K = 4.
Clearly for K = 1, Eq. 2 boils down to a linear function in x.
For notational convenience, we will only use f(x) instead of
f(x,A1, · · · , AK , B, θ1, · · · , θK−1) where there is no con-
fusion. Following are a few key properties of this function.

Property 1 The function f(x) is always non-negative for any
non-negative x. That is, f(x) ≥ 0, ∀x ≥ 0.

Property 2 f(x) is monotonically increasing with x.

Segment 1 Segment 2 Segment 3 Segment 4

θ1 θ2 θ3

B

(0,0)
Total consumption 

at time t

Unit cost 
of 

electricity

Figure 1: An example of a 4-step piece-wise linear function

Property 3 f(x) is convex over x.

All of these properties are valid because of the fact that
B ≥ 0 and 0 ≤ A1 ≤ A2 ≤ · · · ≤ AK . The proof of the
above properties is straightforward and can be found in the
literature on convex functions [Rockafellar, 1997]; hence, we
skip the proofs in the interest of space. Now we present few
lemmas that are useful to prove some important results later.

Lemma 1 Suppose H ≥ 0 is a constant. Then
f(x+H;A1, · · · , AK , B, θ1, · · · , θK−1)
= H̄ + f(x;A1, · · · , AK , B, θ̄1, · · · , θ̄K−1), where
H̄ = f(H;A1, · · · , AK , B, θ1, · · · , θK−1) and
θ̄1, · · · , θ̄K−1 are some parameters to f .

Proof: We present only sketch of the proof. Clearly,
the function f(x + H;A1, · · · , AK , B, θ1, · · · , θK−1) is a
shift of the function f(x;A1, · · · , AK , B, θ1, · · · , θK−1) by
H̄ . Hence if we set the new parameters as, θ̄l = 0, if
θl < H̄ and θ̄l = θl − H̄ , if θl ≥ H̄ , then f(x +
H;A1, · · · , AK , B, θ1, · · · , θK−1)
= H̄ + f(x;A1, · · · , AK , B, θ̄1, · · · , ¯θK−1).

Lemma 2 xf(x) is strictly convex.

Lemma 3 Consider 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 and x2−x1 =
x4 − x3. Then f(x2)− f(x1) ≤ f(x4)− f(x3).

Proof: Consider that x2 − x1 = x4 − x3 = δ ≥ 0. Let us
also assume that x2 belongs to kth segment and x3 belongs
to the lth segment with respect to the function f(.), where
l ≥ k, as x3 ≥ x2. Hence, f(x2)− f(x1) ≤ δAk, as x1 can
belong to the kth segment or in some lower segment. Again,
f(x4)−f(x3) ≥ δAl, as x4 can belong to the l-th segment or
some higher segment. Note that Ak ≤ Al because of k ≤ l;
hence, f(x2)− f(x1) ≤ f(x4)− f(x3).

Now the cost of electricity for consumer i at time slot t is,

Ci(yi, y−i) = A
T∑

t=1

f(mt)yti , ∀i = 1, 2, · · · , n. (3)

4 FC Game
Recall that, for the FC game, the consumption loads are
completely deferrable. That is, any consumer can shift any
amount of her consumption from any time slot to another
in that day. Moreover, as the cost of electricity at any time

2556



depends on the total consumption at that time, the cost for
each consumer will depend on the consumption of the other
consumers. Assuming the consumers are rational and intelli-
gent, each consumer seeks to minimize the cost by choosing
her consumption profile by appropriately adjusting her con-
sumption. This strategic interaction among the consumers
can be naturally modeled using game theory. Towards this
end, based on the above convex K-piecewise linear function,
we propose a non-cooperative strategic form game [Myerson,
1997; Narahari et al., 2009] as follows:
Players: The set N of the consumers are the players;
Strategies: For each consumer i ∈ N , the set of possible
consumption profiles Yi are such that they satisfy Eq. 1 (As-
sumption 1).
Payoffs: For each consumption profile (yi, y−i) ∈ Y , we
define Ci(yi, y−i) = A

∑T
t=1 y

t
if(mt) as the payoff of con-

sumer i ∈ N . Since Ci is cost, the consumers seek to mini-
mize the cost.
We represent this strategic form game as ΓC =
[N, (Yi)i∈N , (Ci)i∈N ]. This defines the FC game.

We call a consumption profile (yi, y−i) ∈ Y is in (Strict)
Nash equilibrium if for all i ∈ N and for each ȳi ∈ Yi

Ci(yi, y−i) < Ci(ȳi, y−i). (4)

We call a consumption profile (yi, y−i) ∈ Y (Strictly) effi-
cient if for each (ȳi, ¯y−i) ∈ Y∑

i∈N
Ci(yi, y−i) <

∑
i∈N

Ci(ȳi, ¯y−i). (5)

Note that for implementing such a scheme, the utility com-
pany only needs to obtain the actual consumption profiles of
each consumer, which is readily available from smart meters
[van Gerwen et al., 2006]. There isn’t any privacy concern
either because the profiles of one consumer are not revealed
to any other consumer.

4.1 Characterization of Nash Equilibrium and
Efficiency

In this section, we analyze the consumption profiles that are
in equilibrium and efficient. We present either full or sketches
of the proofs, as needed. All the notations are consistent with
the earlier sections.

Theorem 1 In any Nash equilibrium of the FC game, the to-
tal consumption by all the players is uniform1.

Proof: We prove this by contradiction. If there is no equi-
librium in this game, then the theorem is vacuously true.
Otherwise we assume that the total consumption profile
m1,m2, · · · ,mT is non-uniform. So we get two time slots
t1 and t2 such that mt1 > mt2 and consequently ∃i ∈ N
such that yt1i > yt2i . We now change the consumption profile
yi to ȳi as follows: ȳit = yti , ∀t 6= t1, t2
ȳi

t1 = yt1i − ε,
ȳi

t2 = yt2i + ε, for some ε where 0 < ε <

1By ‘total consumption of all players is uniform’, we always im-
ply the aggregate of consumption of the players is uniform over T

min(mt1−mt2

2 , yt1i ).

∴ Ci(yi, y−i)− Ci(ȳi, y−i)

=yt1i f(mt1) + yt2i f(mt2)− (yt1i − ε)f(mt1 − ε)
− (yt2i + ε)f(mt1 + ε)

=yt1i (f(mt1)− f(mt1 − ε))− yt2i (f(mt2 + ε)− f(mt2))

+ ε(f(mt1 − ε)− f(mt2 + ε))

Since f(.) is monotone increasing and mt1 > mt2 , for any
ε < mt1−mt2

2 and ε > 0, it holds that f(mt1−ε)−f(mt2+ε),
and consequently, ε(f(mt1−ε)−f(mt2 +ε)) > 0. Now from
Lemma 3, f(mt1) − f(mt1 − ε) > f(mt2 + ε) − f(mt2),
since mt2 < mt2 + ε < mt1 − ε < mt1 . This implies that
yt1i (f(mt1) − f(mt1 − ε)) > yt2i (f(mt2 + ε) − f(mt2)).
Hence, Ci(yi, y−i) > Ci(ȳi, y−i), which is a contradiction
to our assumption. Hence proved.

Note that the converse of Theorem 1 is not true.
Theorem 2 In FC game, if each player consumes uniformly,
then it is in Nash equilibrium.
Proof: We present the proof sketch here. Consider a con-
sumption profile (y1, y2, . . . , yn) such that yi is uniform for
each i ∈ N . Hence we will have, y1i = y2i = · · · = yTi =
pi, ∀i = 1, 2, · · · , n. Consequently the sum of the consump-
tion of all the players is uniform. Assume that for any time
t, the total consumption is m =

∑n
i=1 pi. Now consider the

consumption profile (zi, y−i), zi ∈ Yi of all the players where
player i plays non-uniform consumption strategy zi, zi 6= yi,
and all the remaining players play the uniform consumption
strategy. Let the total consumption by all the players except i
at any time t be m−i =

∑n
j=1,j 6=i pj .

Ci(zi, y−i)− Ci(yi, y−i)

=

T∑
t=1

ztif(zti +m−i)− Tpif(pi +m−i)

=
T∑

t=1

ztifi(z
t
i) +

T∑
t=1

ztif−i(m−i)

− Tpifi(pi)− Tpif−i(m−i)
[From Lemma 1, replacing H by m−i in Lemma 1;

and as, fi and f−i are having different parameters]

=
T∑

t=1

ztifi(z
t
i)− Tpifi(pi)

[∵ (

T∑
t=1

zti)f−i(m−i) = Tpif−i(m−i)]

>T (
T∑

t=1

(zti/T ))f(
T∑

t=1

(zti/T ))− Tpifi(pi)

[Due to Lemma 2 and Jensen’s inequality]

=Tpifi(pi)− Tpifi(pi) = 0 [∵
T∑

t=1

(zti/T ) = pi]

2557



That is, Ci(zi, y−i) > Ci(yi, y−i). Hence, the uniform con-
sumption profile (yi, y−i) is in Nash equilibrium.

Theorem 3 For K ≥ 2 (in Equation 2), FC game can be in
Nash equilibrium, even when all the players are not consum-
ing uniformly.

Proof: We prove this by constructing a specific consumption
profile wherein each player is not consuming uniformly. Let
us consider a game with 2 players and with two time slots.
That is, n = 2 and T = 2. Consider the unit cost of electricity
is calculated using a two step piece-wise linear function as:
f(x) = 2x, when x ≤ 10 and f(x) = 100x − 980, when
10 < x ≤ 19 and so on for higher values of x.

From Theorem 1, the total consumption should be uniform
in any Nash equilibrium of this game. So we need to con-
struct the example in such a way that the total consumption is
uniform, but individual consumption should be non-uniform.
Consider a profile, y11 = 7, y21 = 8 and y12 = 3, y22 = 2.
So, m1 = m2 = 10. Then total daily costs for the players
c1 = 7×20 + 8×20 = 300 and c2 = 3×20 + 2×20 = 100
respectively. We now show that this consumption profile is in
Nash equilibrium.

Let us change the consumption profile for player 1 as,
ȳ1

1 = 7 + ε and ȳ12 = 8 − ε, where 0 < ε ≤ 8, keep-
ing the consumption profile for player 2 unchanged. Note
that the total daily consumption for player 1 is same because
of ȳ11 + ȳ1

2 = y1
1 + y1

2 = 15. So, m̄1 = (10 + ε)
and m̄2 = (10 − ε). Now the total cost for player 1 is
c̄1 = (7 + ε)(100(10 + ε) − 980) + (8 − ε)2(10 − ε)
= 300 + 684ε + 102ε2 > 300 = c1. Similarly, if we in-
crease y21 and decrease y11 , the total daily cost for player 1
will increase again. Hence for any ȳ1 ∈ Y1, c̄1 > c1, when
consumption profile for player 2 is unchanged.

Similarly keeping the consumption profile for player 1
unchanged, it can be shown in the same way that for any
ȳ2 ∈ Y2, c̄2 > c2. Hence the consumption profile
((y11 , y

2
1), (y12 , y

2
2)) is in Nash equilibrium; however, both the

players are playing non-uniform strategy.
Note that, for FC game withK = 1, Theorem 3 is not valid

because it can be shown that the game is in Nash equilibrium
if and only if each player consumes uniformly.

Theorem 4 In the FC game, any consumption profile of the
players is efficient if and only if the total consumption by all
the players is uniform over time.

Proof: Claim: If the total consumption by all the players is
uniform over time, then it is an efficient consumption pro-
file. Consider a consumption profile (y1, y2, . . . , yn) such
that the total consumption is uniform. Then the total con-
sumption at any time t is same, call this value m. That is,∑n

i=1 y
t
i = m, ∀t = 1, 2, · · · , T . Also consider any con-

sumption profile (ȳ1, ȳ2, . . . , ȳn) wherein the total consump-
tion by all the players is not uniform. Then the total con-
sumption at any time t is

∑n
i=1 ȳi

t = m̄t, ∀t = 1, 2, · · · , T .
Now supposeC(yi, y−i) =

∑n
i=1 Ci(yi, y−i) is the total cost

incurred by all the players over all the time slots. Then,

C(ȳi, ¯y−i)− C(yi, y−i)

=
T∑

t=1

n∑
i=1

ȳi
tf(m̄t)−

T∑
t=1

n∑
i=1

ytif(m)

=
T∑

t=1

m̄tf(m̄t)− Tmf(m)

[∵
n∑

i=1

ȳi
t = m̄t and

n∑
i=1

yti = m]

>T (
T∑

t=1

m̄t/T )f(
T∑

t=1

m̄t/T )− Tmf(m)

[Applying Jensen’s inequality, and using Lemma 2]

=Tmf(m)− Tmf(m) = 0 [∵
T∑

t=1

m̄t = Tm]

So, C(ȳi, ¯y−i) > C(yi, y−i). This implies that the total cost
of all the players when the total consumption by them is not
uniform is strictly greater than that of a consumption profile
where the total consumption by all the players is uniform.
This proves the claim. Equivalently we can prove the con-
verse of this statement.
Corollary 1 Any Nash equilibrium of FC game is also effi-
cient, but the converse is not necessarily true.

In summary, we have shown for the FC game that under any
Nash equilibrium, the total (aggregate) consumption profile
by all consumers is uniform over time. Therefore, as Nash
equilibrium corresponds to likely behavior, the aggregate de-
mand of the utility is likely to be flat under such a pricing
scheme. We have also shown the existence of Nash equilib-
rium for this game and that it can be achieved without needing
the individual consumption profiles to be uniform over time.
This is an important result showing that Nash equilibrium
does not need to correspond to the trivial solution. Similarly,
we have shown that the aggregate level uniform consumption
profiles is also efficient. So for this game, individually best
strategies (Nash equilibrium strategies) imply aggregate level
flat consumption, which in turn implies best strategy for all
(efficient strategy). Next, we move onto the partially-flexible
consumption game (PFC game), where we seek to reproduce
the same results under minor additional conditions.

5 PFC Game
We define the expected consumption of ith consumer at time
t is the most preferred consumption of that consumer for that
time, in the absence of any real-time pricing scheme or other
direct or indirect incentives to modify her consumption be-
havior. For each i ∈ N and for each t = 1, 2, · · · , T , we
denote the expected consumption of ith consumer at time t
by expti where expti ≥ 0.

In this setup, we assume that the expected consumption of
any player at any time slot consists of two components: pri-
mary consumption and secondary consumption. In detail, pri-
mary consumption refers to that fraction of the consumption
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which cannot be shifted from some particular time slot to any
other. Similarly secondary consumption refers to loads which
can be shifted from one time slot to another provided there is
some incentive.

Now we represent the expected consumption as the sum of
primary (priti) and secondary (secti) consumption. That is,

expti = priti + secti, ∀i ∈ N, t ∈ {1, 2, . . . , T}. (6)
Let us assume that priti = riexp

t
i and thus secti = (1 −

ri)exp
t
i, where 0 ≤ ri < 1, ∀i, t. For the sake of simplicity

of our analysis, we assume that the fraction of primary con-
sumption is fixed throughout the day for a consumer. Never-
theless, even in the case of ri varying over time, similar re-
sults can be derived. Note that when ri = 1 ∀i ∈ N , it refers
to the case when the consumption profile of each consumer is
completely fixed with no secondary component. Thus, it re-
duces to a trivial scenario where each consumer has only one
strategy in their strategy set.

We now present a non-cooperative strategic form game
based on this model as follows:
Players: The set N of the consumers are the players;

Strategies: For each consumer i ∈ N , the set of possible
consumption profiles Yi are such that

yti ≥ riexpti (7)
T∑

t=1

yti =

T∑
t=1

expti (8)

∀i = 1, 2, · · · , n and ∀t = 1, 2, · · · , T
Payoffs: For each consumption profile (yi, y−i) ∈ Y , we

define Ci(yi, y−i) =
∑T

t=1 f(mt)yti as the payoff of con-
sumer i ∈ N . Since Ci is cost, the consumers want to mini-
mize the cost.

We represent this strategic form game as,
∆ = [N, (Yi)i∈N , (Ci)i∈N ]. This defines our PFC game.

Note that Eq. 8 essentially implies Assumption 1. We call
any consumption profile as feasible in this setting if it satisfies
Eq. 7 and Eq. 8. Clearly (expt1, exp

t
1, . . . , exp

t
1) belongs to

the set of feasible consumption profiles. Note that this game
is a more generic form of the FC game. Specifically, when
ri = 0 for each i ∈ N , then PFC game boils down to the FC
game model.

5.1 Characterization of Equilibrium and
Efficiency

Here we analyze the equilibrium and efficient consumption
profiles using the PFC game.
Theorem 5 Consider the set of all feasible consumption pro-
files (y1, y2, . . . , yn) such that yti > riexp

t
i when ri > 0 and

expti > 0, ∀i ∈ N . Then in any Nash equilibrium of the PFC
game, the total consumption by all the players is uniform over
time.

Proof: Due to the space constraints, we only provide the
sketch of the proof here. The method is similar to that of
Theorem 1. As before, we find time slots t1 and t2 where
mt1 > mt2 and the existence of i ∈ N such that yt1i > yt2i .
However, the condition on ε should now be

0 < ε < min{(yt1i − riexp
t1
i ),

(mt1 −mt2)

2
} (9)

This is feasible due to the assumption that yti > riexp
t
i. The

rest of the proof is on the same lines as in Theorem 1.
Let us study the significance of the assumption made in

this theorem. Clearly when ri = 0, there is no primary (non-
deferrable) component in the load of that consumer. But if
there is some primary component (implies ri > 0), and the
expected consumption of the consumer is non-zero at some
time t, then any feasible consumption at time t will always be
strictly greater than (instead of ’≥’ as defined by Eq. 7) the
primary consumption at that time. In other words, there have
to be some secondary component in any feasible consumption
at time t when expti and ri are both non-zero to ensure that
the total consumption is uniform under Nash equilibrium.

Theorem 6 Consider the set of all feasible consumption pro-
files (y1, y2, . . . , yn) such that pi > maxt(riexp

t
i), ∀i ∈ N .

Then the PFC game is in Nash Equilibrium if all the players
are consuming uniformly over time.

Proof: Again due to space constraints, we only give a
sketch. First, note that uniform consumption of each player
is a feasible consumption in this case if and only if pi >
maxt(riexp

t
i), ∀i ∈ N . The rest of the proof is similar to

that of Theorem 2.
As already described in the proof, the assumption on pi

in the above theorem ensures that individually uniform con-
sumption profiles become feasible with respect to the con-
straint in Eq. 7. Similar to Theorem 3, we can also prove2the
following theorem.
Theorem 7 For K ≥ 2, and for any ri with, 0 ≤ ri < 1,
∀i ∈ N , PFC game can be in Nash equilibrium even when
all the players are not consuming uniformly over time.
Furthermore, we relate the efficient profiles to that of aggre-
gate consumption profiles in the following theorem.
Theorem 8 Consider the set of all feasible consumption pro-
files (y1, y2, . . . , yn) such that yti > riexp

t
i when ri > 0 and

expti > 0. Also let m > maxt(
∑n

i=1 riexp
t
i), ∀i ∈ N . Then,

a consumption profile of the PFC game is efficient if and only
if the total consumption by all the players is uniform.
Proof: The proof of this theorem is similar to that of Theo-
rem 4, except that the total consumption by all the players can
be uniform only if m > maxt(

∑n
i=1 riexp

t
i).

6 Conclusion and Future Work
In this paper, we studied ex-post real-time pricing for end
consumers from a game-theoretic point of view. Our work
shows that even in the absence of advance pricing signals in
the case of ex-post schemes, it is possible to visualize con-
sumption patterns assuming that the consumers are rational
players, thus providing a viable alternative pricing scheme to
utilities. For future work, we need to investigate the human
factors such as human comfort and inconvenience involved
with electricity consumption. Including distributed user-side
generation into the model is also a promising advancement.

2In the proof of Theorem 3, we need to assume that exp1 =
(7, 8), exp2 = (3, 2), and also, 0 < ε ≤ 8(1− r1) in the third para-
graph. Following the same approach, we can show that (exp1, exp2)
is a Nash equilibrium profile in that game.
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