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Abstract

such as wind and solar; Energy Storage, storing energy

Smart grids enhance power grids by integrating
electronic equipment, communication systems and
computational tools. In a smart grid, consumers can
insert energy into the power grid. We propose a
new energy management system (called RLbEMS)
that autonomously defines a policy for selling or
storing energy surplus in smart homes. This policy
is achieved through Batch Reinforcement Learn-
ing with historical data about energy prices, en-
ergy generation, consumer demand and character-
istics of storage systems. In practical problems,
RLbEMS has learned good energy selling policies
quickly and effectively. We obtained maximum
gains of 20.78% and 10.64%, when compared to
a Naive-greedy policy, for smart homes located in
Brazil and in the USA, respectively. Another im-
portant result achieved by RLbEMS was the re-
duction of about 30% of peak demand, a central
desideratum for smart grids.

1 Introduction

Smart grids are power grids that use information and com-
munication technology to gather data about the behavior of
suppliers and consumers, so as to improve the efficiency, reli-
ability, and sustainability of electricity production and dis-
tribution [Hammoudeh et al., 2013; Hashmi et al., 2011;
Uluski, 2010]. In this scenario, consumers can insert energy
into the power grid and participate in the energy supply man-
agement [Palensky and Dietrich, 2011]. Such new function-
alities leads to a new house concept that is integrated with
smart grids: the smart home, depicted in Figure 3.

Mlcrogeneratlon Smart Home (EMS) Power Gl‘ld

Figure 1: Components of a smart home. The Energy Man-
agement System (EMS) makes all decisions in a smart home.

Fundamental elements of smart homes are: Microgenera-
tion, providing power generation through alternative sources
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through devices such as rechargeable batteries or electric ve-
hicles; Demand Control, regulating the use of home appli-
ances, so as to reduce the energy bill; Bidirectional Power
Flow, so that the smart home can acquire or insert energy
into the power grid; and Differentiated Tariff, meaning differ-
ent electricity prices for each time of the day, thus inducing
the consumer to avoid the peak periods.

Because the price of energy and power generation through
alternative sources are variable during the day and because
the user can store energy using storage devices, the optimiza-
tion of the house energy balance faces a very complex dynam-
ics. Thus, it is necessary to develop decision-making tools
that operate as Energy Management Systems (EMS), to min-
imize the user electricity bill or to maximize the user profit in
a given period.

Indeed, in the power systems community many optimiza-
tion algorithms have been developed for EMSs. Depending
on the optimization objectives and constraints, appropriate
techniques for modeling and for policy generation can be ap-
plied. Dusparic et al. [2013] propose a multiagent approach
that uses predicted energy consumption data to manage the
energy demand of a group of houses. Their strategy, called
We-learning, consists of integrating independent Q-learning
agents, one for each house. In contrast, O’Neill et al. [2010]
present an algorithm called CAES, based on a single rein-
forcement learning agent that controls the home appliances
to smoothen the energy usage. Their objective is to operate
the appliances when the price is low and with minimum delay,
reducing energy costs up to 40%. Many proposals combine
different optimization techniques to provide a fast and robust
solution. In [Chen er al., 2013], linear programming (LP)
and Monte Carlo techniques are combined in an EMS that
has as output the usage schedule of a set of appliances. Their
approach has as its main advantage the fast solution provided
by the LP solver. Kim and Poor [2011] and Chen et al. [2012]
also propose a solution that aims at operating the home appli-
ances, which are categorized under a deadline constraint that
is defined considering the particular operation of each appli-
ance.

One of the disadvantages of these solutions is the rigid
schedule for the appliances usage; this is clearly uncomfort-
able for the end users. Scheduling is better handled by Truong
et al. [2013], who propose a system that learns the users pref-



erences, minimizing the impact on their daily habits while
reducing the energy bill up to 47%. In [Mohsenian-Rad et
al., 2010], a distributed demand-side EMS that uses game
theory (GT) is used with several users, by formulating an
energy consumption scheduling game. GT is also used by
Atzeni et al. [2013], which consider a day-ahead optimiza-
tion process regulated by an independent central unit. Shann
and Seuken [2013] promote a demand response while learn-
ing the user’s preferences over time and automatically adjust
home temperature in real-time as prices change.

In short, these previous proposals consider different ways
of dealing with the decision-making problem. Each frame-
work considers subsets of the subsystems depicted in Figure 3
to provide demand response, and it is difficult to pick one as
benchmark.

In this paper, microgeneration and storage are controlled to
supply energy, while power consumption is considered only
as additional information in our model. Consequently, we
avoid rigid schedules for appliance usage. We adopt a control
strategy that coordinates energy generation and storage in re-
sponse to prices, promoting an efficient response to demand
while ensuring the comfort of the user in deciding when to
use appliances.

Our main contribution is a new and flexible EMS, the
Reinforcement Learning-based Energy Management System
(RLbEMY), that learns an operation policy for selling or stor-
ing energy surplus in smart homes. We propose a new ap-
proach for both modeling and solving the EMS problem. The
modeling of the decision-making problem as a Markov Deci-
sion Problem (MDP) offers a novel way to take energy prices
into account. The solution by Batch Reinforcement Learning
(BRL) is effective because of smartly uses the available his-
torical data. RLbEMS was tested with real operational data
from two different places. As these data have a strong depen-
dence on location, we demonstrate that our proposed system
can be used in situations characterized by distinct levels of
uncertainty.

The remainder of this paper is structured as follows. In
Section 2, we briefly describe our mathematical framework.
Our proposal, the RLbEMS system, is described in Sec-
tion 3. In Section 4 we experimentally evaluate and analyze
the RLbEMS system and, in Section 5, we conclude and dis-
cuss future steps.

2 Theoretical Framework

An EMS is a sequential decision-making system whose aims
is to maximize the smart home long-term gain. We use
Markov Decision Processes as modeling tool, and produce
policies using a Batch Reinforcement Learning algorithm,
called Fitted Q-iteration [Ernst ef al., 2005a]. Our model and
solution pay attention to historical data on energy prices, the
current season, and energy generation, storage, and demand.
The required theoretical background is given in this section.

2.1 Markov Decision Process

Sequential decision systems evolve probabilistically accord-
ing to a finite and discrete set of states. At each time step the
system first observes the state of the process, then chooses
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and executes an action that leads it to another state, and re-
ceives a reward (as shown in Figure 2). A formalism widely
used for this is the Markov Decision Process (MDP) [Puter-
man, 1994]. Tts key concept is the Markov property: every
state encodes all the information needed to make the optimal
decision in that state.

action a(t)

Decision Maker Environment

state s(t), reward r(t)

Figure 2: The decision-maker interaction with the environ-
ment. The system observes the state s(¢), applies the action
a(t), receives the reward r(t), and observes the next state
s(t + 1), restarting the process.

Formally, an MDP is a tuple < S, A, T, R >, where [Put-
erman, 1994]: S is a finite set of states; A is a finite set of
possible actions; T': S x A x S — [0, 1] is a state transition
probability function, which defines the transition probability
from a state s(t) € S to a state s(t + 1) € S when an action
a(t) € Ais appliedin s(t); R : S x A — R is the reward
function. So, for each state transition r(t) = R(s(t), a(t)).
We define A as the admissible set of actions for state s € .S.
So, if 4 € S is the current state, the transition from 7 € S to
j € S in response to the application of the action a € A; will
occur with probability T'(i, a, j) and a reward R(, a) will be
received. Solving an MDP means finding a policy 7 that spec-
ifies which action must be executed in each state, considering
the maximization of the discounted cumulative rewards re-
ceived during an infinite time horizon.

2.2 Batch Reinforcement Learning

Reinforcement Learning (RL) [Sutton and Barto, 1998]
solves MDPs in problems where the agent has little or no in-
formation about the controlled system. Batch Reinforcement
Learning (BRL) is a subfield of RL whose main purpose is the
efficient use of collected data. Moreover, BRL tends to yield
better policies, faster than classical RL algorithms such as the
popular model-free on-line Q-learning algorithm [Watkins,
1989]. BRL is used in RL problems where the complete
amount of learning experiences is fixed and given a priori
[Ernst er al., 2005al. By taking the learning experience as a
set of transitions samples from the system, the learning mech-
anism seeks the best possible solution out of this given batch
of samples. The major benefits of this approach come from
the way it uses the amount of available data and the stability
of the learning process. The fast convergence and the use of
a predefined set of given samples are crucial for implement-
ing this technique in real problems, because we usually need
a good solution quickly and with the lowest possible process
interaction.

BRL has three specific and independent phases: Explo-
ration, Training and Execution. In the Exploration phase, the



system acquires a batch of transition samples from the en-
vironment; in the Training phase, the system learns the best
policy from this batch; and in the Execution phase the system
just applies the learned policy.

The Fitted Q-iteration (FQI) algorithm [Ernst et al., 2005a]
is one of the most popular algorithms in BRL due to its
simple implementation and its excellent results. FQI con-
verts the “learning from interaction” scheme to a series of
supervised learning problems. The FQI Training algorithm
is shown in Algorithm 1. Let F' = {(s(¢),a(t),r(t), s(t +
1)t = 1,..,n} be a batch of transition samples from
the environment. At each iteration, for each transition
(s(t),a(t),r(t), s(t + 1)), the value g , is updated. A train-
ing set T'S™ is defined, with ((s, a), a.) € TS", in which
(s,a) are the inputs and g/, is the target of the supervised
learning problem. At each iteration, a new training set is de-
fined as the last one united to the updated values, q;{a. After
that, a supervised learning algorithm is used to train a func-
tion approximator on the pattern set TS". At the end, the re-
sulting function, Q¥ , is an approximation of the Q-function
after H steps of dynamic programming. Thus, we can use a
greedy policy in FQI to define the policy 7. The obtained pol-
icy is the best one with respect to the fixed batch of transition
samples acquired from the exploration process.

Algorithm 1 Fitted Q-Iteration Algorithm
Require: Load F = {(s(t),a(t),r(t),s(t + 1)) | t =
1,.,n};
Require: Define Q°(s,a) = 0, V(s,a) € F, and ¢, €
Q" (s,a);
Require: Define H as the Horizon to be performed.
Require: Define 7S as an initially empty training set;
h=1;
while h < H do
for all (s(t), a(t),r(t),s(t + 1)) € F do
qg,a =r(t) +v MaXaeAg 41y Qh_l(s(t +1),a);
if ((s(t),a(t)),.) € TS"™! then
TS" TS — {((s(t), a(t)), )}:
end if
TS" « TS" 7 U{((s(t), alt)). @) }s
end for
%% Supervised Learning % %
Use supervised learning to train a function approximator
Q" (s, a) on the training set T'S™;
h+ h+1;
end while
%% Obtaining Policy %%
for Vs € S do ~
7(s) = argmax,ea. Q7 (s,a),Vs € S,
end for

3 The RLbEMS System for Smart Homes

Here we describe the RLbEMS system, and describe how
RLbEMS learns a selling policy through the FQI algorithm.
Finally, we describe how RLbEMS applies the learned policy
when new data from the environment are available.
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3.1 RLDbEMS as an MDP

We consider a single residence that has its own energy gen-
eration by a Solar PV System, that receives the pricing signal
in real-time, and that has batteries to store energy whenever
it is convenient, with Bjs4x as storage capacity. RLbEMS
must not sell more than the total available amount of energy
(stored and surplus energy) and must respect the battery max-
imum capacity of storage and the battery maximum charge
and discharge rate.

States

We define the MDP states using completely observable and
relevant information about the problem: the energy storage
level, the amount of energy generated, the energy consumed
by the smart home, and data on price trends. Information on
price trends consists of two indexes that represent the evo-
lution of prices and average prices in a given time window.
Considering a time window with three instants, and having
prices in instants k, kK — 1, and k — 2, we define Price interval
Ap(k) = [p(k — 2),p(k — 1),p(k)]. For each Ap(k), the
price average value, Ap(k), is defined. We also define Ay =
p(k) —p(k—1),and Ay = p(k — 1) — p(k — 2). These vari-
ables are mapped into the indexes ;0(75 np and Ap(k) ;N p
as indicated in Tables 1 and 2. The MDP state, s(k) € S,
is defined as an array composed of five variables: the power
stored in the battery, B(k); the power generated by the Solar
PV System, G(k); the power consumed by the smart home,

D(k); and the indexes of price trend, Rk_S]NDE {1,2,...,5},

and price average level, Ap(k),;yp€ {1,2,...,8}:

s(k) = [B(), G(k), D(k), p(K in 0y Bp(F) ywp)- (1)

Table 1: Price trend index.
Price Trend Index p(*kg

Z)(TSIND

A120,A2>0 As| > |A 8
Alzo,A2>0 Ao < |A 7
A1 <0,A2 >0 |A2|> Aq 6
A1<O,A220 Aol < |A 5
A1 >0,A, <0 Ao <A 4
Ay > O,AQ <0 |A2 > |Aq 3
A1§O,A2<0 Aol < |A 2
A1§07A2<0 Aol > |A 1

Table 2: Average price index.

Ap(k) Ap(k)rnp
Ap(k) > 120 5
100 < Ap(k) <120 4
80 < Ap(k) <100 3
60 < Ap(k) < 80 2
Ap(k) <60 1




Actions

Actions indicate when and how much of the surplus energy to
sell given the system state and the current season. A null ac-
tion means that no energy should be sold at a given time, i.e.,
RLbEMS must store the surplus in the battery or, if there is
no surplus, RLbEMS must not act. A null surplus means that
the energy demand is supplied by the microgeneration and
by the battery, or that the EMS must acquire energy from the
power grid to attend its demand. The discrete set of actions is
defined as:

A= {0,0-5,1,1.5,,,_,SZWAX_|_GJWAX}’ )

where GMAX is the maximum amount of energy generated,
and SMAX is the maximum amount of energy that can be
charged/discharged from the battery in each discrete instant.
We define the amount of available energy C,, (k) as:

Cu(k) = B(k) + G(k) — D(k). 3)

A subset of admissible actions is defined for each state,
taking into account the value of C,. In our model, the user
consumption changes the control action to be taken, also indi-
cating when we might sell energy to the grid. Thus, we have
three cases, all complying the limit of charge/discharge of the
battery, S MAX.

1. If C, (k) < 0, then the EMS should buy C,, (k) energy
or do nothing (if Cy, (k) = 0), and A5 = {0};

2. If Cy(k) > 0and Cy (k) < Barax, then there is surplus
and we can even store all of it; so As = {0, ..., Cy,(k)};

3. If Cu(k) > 0 and Cu(k) > Bpax, then there
is surplus and we can not store all of it; so A; =

{Cu(k) = Bprax, ..., Cu(k) }.

Reward Function

We use a reward function that reflects whether energy is sold
for a price that is above or below the average historical energy
price for the current season. That is, the reward function con-
veys the average price of all available prices for that season.
We adopt:

r(k) = R(s(k),a(k)) = a(k) x (p(k) =P), 4

where D corresponds to the average historical price, p(k) is
the price at the decision time and a € A, is the amount of
energy sold in state s € S.

3.2 FQIin RLBEMS

BRL has three independent phases: Exploration, Training,
and Execution. In the Exploration phase, RLbEMS captures
historical data of energy generation, energy consumption, and
energy price for each season of the year. Data are acquired
synchronously, i.e., there is a measurement of each variable
at each discrete instant, k. The battery energy level is initi-
ated with a random value and, using the first measure of the
historical data, the initial state, s(0), is defined. For each state
s, the set of admissible actions, A is defined, and an action
a € A, is chosen randomly and applied. After applying a(k)
in s(k), the next state s(k + 1) is reached and the immediate
reward r(k) is calculated (Equation 4); then this experience
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(s(k),a(k),r(k),s(k + 1)) is inserted in F' as a new sample
from the environment. This process runs until all historical
data are used for each season. The main result of this step is
the batch of samples, F, that is used in the Training phase to
obtain the energy selling policy.

In the Training phase, RLbEMS runs the Algorithm 1 given
in Section 2.2. This FQI algorithm aims at finding a function
that approximates the value-action function Q(s,a), Vs € S,
Va € A. Thus, the main result of this step is to produce an
approximate surface QS : S x A — (@, that maps each pair
state-action to its corresponding Q(s, a) value. By analyzing
experimental results from a benchmarking test, we chose a
Radial Basis Neural Network [Park and Sandberg, 1991] to
approximate the function Q(s, a). Here the Algorithm 1 runs
until a convergence criterion d() is met or until a fixed value
of the horizon H is reached. We define dQ = 5%, which
means that the convergence criterion is met if the estimated
Q-value for each sample of F' varies less than 5 % from one
iteration to the next. We use H = 200.

After training, RLbEMS enters the Execution phase, where
the current data determine the state of the system. Having the
current state and the energy-selling policy learned in the train-
ing phase for the current season, an action is defined and the
user profit is calculated, as Algorithm 2 describes. If the user
has purchased energy from the power grid, the energy bill is
acquired directly from the smart meter. Thus, the financial
gain is calculated for each season by subtracting the energy
bill from the total profit acquired with Algorithm 2, T'otalpr.

Algorithm 2 The RLbEMS Execution Mode

Require: Observe the current season of the year;
Require: Load the learned policy msgason;
Require: Define T'otalpr = 0.
while TRUE do
Observe the current state s(k);
a(k) < mspason(s(k))
Apply a(k);
Calculate the current profit: PR(k) = a(k) x p(k)
Totalpgr < Totalpr + PR(k);
end while

4 Experiments and Results

Two case studies were performed to evaluate the RLbEMS
performance. Given the influence of climate characteristics
and the energy price model, we conducted these case studies
in two different places, the USA and Brazil.

All tests compared RLbEMS-generated policies with a
Naive-greedy policy, which at each instant sells all energy
surplus, S7(k), by the current price:

Naive-Greedy Policy : a(k) = Sr(k), VSr(k) > 0,

with : Sr(k) = G(k) — D(k).

If Sr(k) < 0, the policy applies a null action, which means
that the generation meets the demand or that EMS must buy
energy from the grid. We also compared the RLbEMS-
generated policies with a Simple Storage Policy (SSP), which



sells the energy surplus to the grid when the price is above av-
erage, and stores surplus when the price is bellow average.

To test RLbEMS, we have gathered real historical data of
energy generation and price for Brazil and the USA. The en-
ergy consumption data were generated from real statistical
data on the usage of home appliances, available in [PROCEL,
2014]. The energy microgeneration, the energy demand and
the energy price are external variables that vary their profiles
in a long period, following a typical pattern that is related to
the season. This can be viewed in Figure 3 for the energy
price in the USA. The same behavior is observed for the en-
ergy generation and consumption, and these data are always
synchronized by day time, as stated earlier in Section 3.2.

Due to these facts, the annual historical data were divided
into four sets of data, each one corresponding to one season
of the year. After this, each database was divided into two
subsets of data: Training Data and Validation Data. For each
season, the Training Data were used in Algorithm 1 to obtain
the energy selling policy msgason, and the Validation Data
were used in Algoritm 2, when we evaluated the real gains
of applying the proposed algorithms. To perform our tests,
we simulated the RLbEMS on-line execution using the Vali-
dation Data for Brazil and the USA. As we will see, the first
one was a simplified version of the second one and was used
as a preliminary test, to confirm the benefits of the proposed
approach. Both smart homes, in Brazil and in the USA, gen-
erated their own energy with a Solar PV System and stored
energy in a rechargeable battery. The data used in this article
consider an output of a real Solar PV System. The recharge-
able battery, in both cases, uses the model proposed by Atzeni
etal. [2013], that considers as main parameters the charge and
discharge efficiency, the maximum charging and discharging
rate, rate of energy loss over time, and maximum storage ca-
pacity.

As a comparative index, we calculate the percentage in-
crease of the financial gain over each season, given by the ra-
tio of the financial gain obtained by using RLbEMS and SSP
in comparison to the Naive-greedy policy. We also calculate
the average peak reduction in each case study. The grid de-
mand has its peak reduced by RLbEMS. To calculate this, we
make a daily analysis of the energy request curve of the house
from the power grid perspective: for each day of operation,
we compare the peak demand when using the RLbEMS or
not. We record the peak reduction for each day of operation,
and calculate the average reduction for each season.

4.1 Case Study in Brazil

This case study considered a smart home located in S@o
Paulo, Brazil. The differentiated tariff implemented in Brazil
is a Time-of-Use (TOU) tariff. In this case, there are three
values of tariff during the day [Bueno et al., 2013]. This
pricing signal remains fixed during all days of the year and
concentrate major values of energy price in times when there
is a high demand of energy. The energy generation data
were acquired from a real solar power plant in Sdo Paulo,
Brazil [Berlink ez al., 2014]. The solar power plant consists
of ten modules, connected as a serial array. Each module
generates 255W on the peak of generation, resulting in a total
peak of 2.55kW. We used hourly energy generation data from

2565

August 2013 to January 2014. Given that the amount of avail-
able data is small, we chose to implement a solution with a
single policy. This decision did not affect the final result, be-
cause in this case study the pricing signal was fixed and the
energy generation did not vary too much during the seasons.

In this case study, we achieved a financial-gain growth of
20.78% and an average peak demand reduction of 39.78%.
The results achieved show that RLbEMS is feasible for the
proposed problem. In this case, the obtained policy is basi-
cally to store the surplus energy during the day when the price
is low, until the maximum capacity of the battery is reached;
when the battery is full, it sells the surplus at the current price.
In the evening, when energy is more expensive and there is no
generation, the system either uses or sells energy, with greater
profitability for the user.

4.2 Case Study in the USA

This case study was performed with the real pricing signal for
the District of Columbia, USA. These data correspond to the
Local Marginal Price (LMP), which is a Real-Time Pricing
(RTP) tariff and reflects the value of energy at a specific lo-
cation at the time that it is delivered [PJM, 2015]. This price
was also used to calculate the amount of money paid to the
consumer when he/she sells energy to the power grid. For
this test, we used the hourly pricing data of five consecutive
years (2008-2013). For the simulation, we used the Solar PV
System given by Chen et al. [2013]. We considered a system
composed of four KD200-54 P modules from the Kyocera
Solar Incorporation [Kyocera, 2015] that has 220Wp as the
peak energy generation per module. The same storage device
proposed by Atzeni et al. [2013] was used, and the energy
consumption was generated by the same statistical data men-
tioned before. Results per season are shown in Table 3.

The application of the RLbEMS policy increased the finan-
cial gain by the end of the period, resulting in an annual gain
of 14.51%. The reduction of the financial gain per season
when compared to the brazilian case was expected given that
here we used the RTP tariff and that the algorithm had to han-
dle a step level of uncertainty. However, it is worth noting
that the use of the RLbEMS system resulted in a reduction of
the average peak demand of 29.38%.

Table 3: Financial gain growth for the smart home in the
USA: The values represent the percentage increase of the fi-
nancial gain from RLbEMS and SSP policies in comparison
to a Naive-greedy policy.

Summer Autumn Spring  Winter
FQI 2.40% 2.73% -1.26% 10.64%
SSP  0.42% 1.78% 0.05%  8.75%

In Figure 4, we can see the RLbEMS execution for two
consecutive days in summer. Note that when the system is
able to identify the price trend correctly, the policy obtained
is similar to the one achieved in the first case study: RLbEMS
identifies periods of low price and stores energy to use when



uuuuu

Figure 3: Price pattern for three consecutive days of each season in the USA.

there is a peak of price. However, if this peak of price is
not high enough when compared to the low period, the policy
loses efficiency. This happens because, when the RLbEMS
stores energy, it stops selling (and profits nothing). If the price
difference between these two periods is small, the sale when
the price is (only slightly) higher does not justify the storage
of energy surplus. In this case, always selling the energy sur-
plus at the time it is generated (as the Naive-greedy policy
does), would give greater financial gain. Hence, the applica-
tion of the RLbEMS policy could lead to a result that is worse
than the application of the Naive-Greedy policy, as in spring,
for example. Comparing the obtained results with the SSP
policy we can see that the RLbEMS policy reachs a higher
financial gain, which means that the algorithm actually iden-
tifies a better time to sell/store the energy, mainly because it
considers not only the price in the decision, but also the dy-
namics of generation and consumption in the house. A fact to
note occurs in spring, when the application of the SSP policy
resulted in a greater gain for the user.

Energy Price [$/k¥h]

1
5 10 15 20 25 30 35 40 45
Time [Hour]

&
g ’r 7
w v e
0 slosm ¢ s
25 30 35 40 45
Time [Hour]
5 T T T
g 4 H EXLXLTY 4
S 0 3 1
& 20 i
g 2 . ; "
w 17 e s E 7
0 1 *a L '. il L L
20 25 30 35 40 45
Time [Hour]

Figure 4: RLbEMS execution for two consecutive days in
the USA summer: The system is able to identify lower and
higher prices, operating the surplus energy in order to achieve
a greater financial gain for a specific period.

5 Conclusion

In this paper we have described our efforts to develop effec-
tive decision-making tools for energy management in smart
homes. The specific problem is whether to sell or store sur-

plus energy. To solve this problem, a new energy manage-
ment system was proposed, RLbEMS, which employs MDPs
and BRL to maximize user financial gain. In particular,
RLbEMS learns autonomously a selling policy for each sea-
son, based on batches of historical data about energy price
curves, microgeneration, and storage energy. We also demon-
strated, through evaluation with real world data taken from
two different places, Brazil and the USA, that RLbEMS out-
performs Naive-greedy policy by up to 20.78% and 10.64%,
respectively. Another important result achieved by our sys-
tem was the reduction of the peak demand. In most cases,
RLbEMS decreases peak demand by more than 30%, an ex-
ceptional result. By using RLbEMS the user does not suffer
from restrictions regarding the use of appliances. We believe
this degree of freedom is essential so that a solution can be
accepted into the routine of end users, leading to the popular-
ization of EMS systems.

Our future work will focus on the improvement of
RLbEMS, by implementing an architecture that integrates
off-line and on-line approaches through transfer learning. In
this case, knowledge would be acquired by the application of
BRL algorithms, and it would be transferred to an adaptive
module that runs an on-line classical RL approach. Thus, the
policy obtained by the BRL algorithm would be updated in
real-time and the system would be completely adaptive.
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