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Abstract

As cloud computing gains in popularity, under-
standing the patterns and structure of its loads is
increasingly important in order to drive effective
resource allocation, scheduling and pricing deci-
sions. These efficiency increases are then associ-
ated with a reduction in the data center environ-
mental footprint. Existing models have only treated
a single resource type, such as CPU, or memory,
at a time. We offer a sophisticated machine learn-
ing approach to capture the joint-distribution. We
capture the relationship among multiple resources
by carefully fitting both the marginal distributions
of each resource type as well as the non-linear
structure of their correlation via a copula distribu-
tion. We investigate several choices for both mod-
els by studying a public data set of Google data-
center usage. We show the Burr XII distribution
to be a particularly effective choice for modeling
the marginals and the Frank copula to be the best
choice for stitching these together into a joint dis-
tribution. Our approach offers a significant fidelity
improvement and generalizes directly to higher di-
mensions. In use, this improvement will translate
directly to reductions in energy consumption.

1 Introduction
In 2013, US data centers used about 91 billion kWh [NRDC,
2013], showing a 50% increase since 2006. This number is
2.2% of the 4 trillion kWh consumed in total, and is equal to
the amount of energy used by 5.6 million average US house-
holds [EIA, 2015]. This consumption growth is expected to
continue, with another 50% increase in the next five years
[NRDC, 2013]. This will require construction of an addi-
tional 16 500 MW power plants, and result in 100 million
metric tons of CO2 pollution per year. While the need for
such facilities will not abate, much can be done to reduce the
energy required. Recent work has shown that considerable
energy can be saved by using heterogeneous processor types
in data centers [Guevara et al., 2014], and then assigning pro-
cesses to be run on the most energy-efficient resources for
handling them by sophisticated resource allocation methods

[Lubin et al., 2009; Beloglazov and Buyya, 2010; Beloglazov
et al., 2012].

However, such methods are only as good as the demand
models that drive them, and the models in the literature han-
dle only single resource types, not the full joint distribution of
demand. Having high fidelity demand models is critical if the
enormous rise in data center energy usage is to be curtailed.

Analyzing the characteristics of workloads is a long-
studied problem with application to load balancing, system
availability, failure, and process behavior. The literature cov-
ering this topic originates in the 1960s. In some of the earli-
est such studies, Rosin [1965] and Walter and Wallace [1967]
study data for more than 10, 000 jobs run at the University
of Michigan Computing Center. They find that the shape of
CPU process time is skewed and used a simple exponential
distribution to model it. Such work continued into the 1970s,
for example Agrawala et al. [1976] presented three simple
models of system workload. A large literature in the high
performance computing literature has also addressed demand
modeling [Li et al., 2004].

Most of this work has focused on one specific attribute of
demand (e.g., CPU time, memory usage, or I/O operations).
To the best of our knowledge there is no existing work on
the joint distribution of resource usage. We believe that there
is important structure in the correlation between different at-
tributes of demand, and that therefore an understanding the
nature of the joint distribution will significantly improve al-
location, scheduling and pricing algorithms among other uses
for such models, which in turn will yield a significant positive
environmental impact due to reduced energy usage.

Accordingly, in this paper, we develop a multivariate
model for computational resource usage. Moreover, as part
of our model we propose to use a more flexible distribution,
the Burr XII, as our model of univariate demand. We will
show that this model has significantly more power to capture
real-world usage patterns than the models used to date in the
literature. Having modeled the individual attributes, we then
combine them into a multi-attribute model through the ma-
chinery of copulae [Sklar, 1959].

Copulae are an elegant way to build and fit complex joint
distributions that have been used to great effect in finance, but
which have not been used in computational demand model-
ing. By employing this method we have been able to accu-
rately handle an otherwise-intractable modeling problem. In
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this work, we focus on the bivariate case, specifically cap-
turing the joint demand for CPU and memory, typically the
two most important resource types. We then validate our ap-
proach based on a public data set from Google [Reiss et al.,
2011] that contains 29 days of workload data from a large
production cluster. Using this data, we examine a large num-
ber of models from the family we propose, and demonstrate
the effectiveness of a particular model that combines Burr XII
marginals with the Frank copulae. The proposed model can
be directly generalized to more resource types, though we are
limited by our data in doing so here. In this paper we use
machine learning and computational statistics to model data
center usage, offering the following contributions:

• A novel application of the Burr XII distribution to mod-
eling the distributions of individual workload attributes
(Section 2.2).
• The first demand models that capture the joint distribu-

tion over multiple attribute types, built by applying cop-
ula methods to our marginal models (Section 2.3).
• An application of these new tools to a large Google data

set (Section 3).
• Validation of this approach by employing a parametric

bootstrapped Kolmogorov-Smirnov test on both the uni-
variate and multi-variate data (Section 5)

2 Theory and Models
Here we provide the machinery needed to create multi-
attribute models and apply them to our setting.

2.1 Preliminaries
Given a set of size d of correlated random variables Xi,∀i ∈
D = {1, ... , d}, we define the joint cumulative distribution
function (CDF) as F (~x), as the probability that Xi ≤ xi ∀i ∈
D where ~x ∈ Rd. We then define the joint probability density
function (PDF) in the usual way as:

f(~x) =
∂F

∂X1 ... ∂Xd

∣∣∣∣
~x

The marginal density function for variable Xi is then sim-
ply its distribution without regard to all the other variables:

fi(xi) =

∫
~xj<i

...

∫
~xk>i

f(〈~xj ;xi; ~xk〉)d~xjd~xk

Where 〈·; ·〉 represents vector composition. Here the integra-
tion ranges over all the dimensions but i, the marginal being
specified. We will denote the corresponding CDF as Fi( ~X).

Complex multivariate distributions are notoriously hard to
model and fit. Consequently, we here appeal to the power-
ful formalism of copulae. Copulae enable the construction
of a model that captures the various marginal distributions
of a empirical data separately from the “coupling” of these
marginals. As we shall see, this separation makes both form-
ing and fitting a complex model far more tractable.

The word copula was first introduced by Sklar [1959] in a
theorem that described the necessary properties of functions
that “join together” one dimensional marginal distributions to

Archimedean
Copula Generator Function ψ

Gumbel
Copula

ψ(ui) = exp

(
−
[∑n

i logλ( 1
ui

)
]1/λ)

Frank
Copula

ψ(ui) = logλ

(∏n
i (λui − 1)

(λ− 1)n−1
+ 1

)

Clayton
Copula

ψ(ui) =
(∑n

i u
1/λ
i − 1

)−λ
Table 1: Several Archimedean copulae and their formulae

create multivariate distributions. Concretely, a copula func-
tion C is a multivariate distribution defined on the unit hyper-
cube [0, 1]d with uniform marginals:

C(u1, u2, ... , ud) = Pr[U1 ≤ u1, U2 ≤ u2, ... , Ud ≤ ud]
where Ui ∼ Uniform(0, 1), i ∈ D, along with the boundary
conditions that:

[ui = 0]⇒[C(u1, ... , ui, ... , ud) = 0] ∀i ∈ D ∧ u6=i ∈ R
[u6=i = 1]⇒[C(u1, ... , ui, ... , ud) = ui] ∀i ∈ D ∧ ui ∈ R

Furthermore, according to Sklar’s theorem [Sklar, 1959], if
CDF F (~x) is a continuous multivariate distribution, a unique
copula function C : [0, 1]d → [0, 1] exists such that

F (~x) = C(F1(x1), F2(x2), ... , Fd(xd))

for continuous marginal distributions Fi(xi). Consequently,
copula C links the marginal distributions together to create
a multivariate distribution. In theory, such a copula function
can be arbitrarily complicated. We seek a simple parametric
copula that fits our data well. Next, we describe several such
copulae from literature that we evaluate in Section 5.2

The Gaussian copula, which is based upon the multivariate
Normal distribution, is one such choice for modeling depen-
dence. The Gaussian copula is defined as:

CΦ(u1, u2, ... , ud) = Φ(F -1
1 (u1), F -1

2 (u2), ... , F -1
d (ud),Σ)

where Φ is multivariate Normal CDF, Σ is a correlation ma-
trix for the different variables, and the F1, F2, ... , Fd are ar-
bitrary but well-defined marginal distributions.

Another important class of copula functions are the Archi-
medean copulae. Archimedean copulae have simple para-
metric form that allows for a variety of different dependence
structures. The general form of an Archimedean copula is

CA(u1, u2, ... , ud) = ψ-1(ψ(u1) + ψ(u2) + · · ·+ ψ(ud))

where ψ is a decreasing univariate function known as gener-
ator of the copula, carefully chosen such that CA will obey
the copula properties identified above. The Clayton, Gumbel
and Frank copulae are each defined by a specific choice of
Archimedean generator, as provided in Table 1, where λ is a
free parameter that is available for fitting.

Joint dependence structure has been modeled using copu-
lae in many fields, including reliability engineering, finance,
and risk management. Yet, these powerful copula-based
methods are unfamiliar to many researchers, and there is little
literature comparing the efficacy of copulae in real settings.
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2.2 Modeling the Marginal
Before building our full multivariate model, we must first en-
sure that we have accurately described the marginals in our
domain, i.e. that we have appropriate univariate models for
each of the demand attributes. Therefore, we next consider
several distributions of demand for specific resource types in-
cluding a new one not appearing elsewhere in the literature.

Process CPU usage (or runtime on a fixed processor type)
is typically a key feature of computational loads. Early stud-
ies show that the general shape of the process runtime distri-
bution is skewed [Walter and Wallace, 1967; Rosin, 1965],
i.e., there are a lot of short jobs and a few long jobs. These
papers use a simple exponential PDF to model process life-
time: f(x) = 1

θ e
x/θ, where θ is a scale parameter. Later Le-

land and Ott [1986] and Harchol-Balter and Downey [1997]
showed that process life distributions are actually heavy-
tailed and better modeled by a Pareto distribution, with PDF
function f(x) = ξxξm/x

ξ+1 where xm is location parameter
and ξ is a shape parameter. There are also many studies of
memory usage and its linear correlation with respect to CPU
usage. For example, Parsons and Sevcik [1996], as well as Li
et al. [2004] studied workload characteristics, including job
size and memory usage. Chiang and Vernon [2001] found
that most jobs have a very small memory usage per processor
(under 32M) while 5% of jobs have a memory usage greater
than 1 GB per processor, and a significant correlation between
requested memory and number of processors. Work of this
style describes memory usage statically; there has not been to
our knowledge a distributional model for memory propsed.
Moreover, none of these studies goes beyond simple linear
correlation to model the full joint distribution over demand
attributes as we do.

In our work, we have found empirically that the distribu-
tion of CPU usage (and memory) are not always decreasing,
and a skewed bell-type structure is in fact possible. When
confronted with such a bell shape, the first distributions one
typically considers are the Normal and Log-Normal distri-
butions. However, these are exponential family distributions
which will not fit heavy-tailed data well. Because we be-
lieve our data may be heavy tailed, we additionally consider
a somewhat more esoteric distribution, the Burr XII [Burr,
1942], also known as the Singh-Maddala distribution. The
Burr XII distribution can fit a wide range of empirical data, as
different values of its parameters cover a broad class of skew-
ness and kurtosis. Hence, it is used in various fields such as
finance, hydrology, and reliability to model a variety of data
types. We choose it as a target because it can take on both a
decreasing and a bell shape; it also generalizes the Gamma,
Generalized Pareto and the Log-Logistic distributions which
would otherwise be candidates in their own right [Burr, 1968;
Tadikamalla, 1980].

The three parameter Burr XII PDF is given by

f(x) =
ξk(x/β)ξ−1

β((x/β)ξ + 1)k+1

and CDF
F (x) = 1− (1 + (x/β)ξ)−k

where ξ > 0 and k > 0 are shape parameters and β > 0 is
the scale parameter. Because of its flexibility and appropriate

properties, we will consider the Burr XII distribution both for
CPU and memory marginals.

2.3 Modeling the Joint Distribution
Having modeled a single attribute like CPU runtime or mem-
ory usage by an appropriate marginal distribution we now
turn to handling the joint distribution of multiple attributes.
At present, we focus on a joint distribution of CPU and mem-
ory because this is what is in our data, although a generaliza-
tion to further dimensions is immediate.

We first model the marginals as in the previous section.
Then, we perform a probability integral transform on the data
along each marginal. This converts a random variable A to a
new random variable B, which is uniformly distributed on
[0, 1] by applying the CDF of A, FA to itself: B = FA(A).
Concretely, this means we apply each of our fitted marginal
distributions Fi ∼ Burr XII to the corresponding dimension
of our data. This procedure produces a distribution on the unit
square with uniform margins but some more complex joint
structure. We then seek a parametric model for this joint-
uniform distribution: i.e., a copula as defined in Section 2.1.

By compositing our chosen copula with the marginal mod-
els, we then obtain a model of the full joint distribution that
has the appropriate marginal distributions exactly, and where
the joint dependence of the model is represented solely in the
copula. This enables us to both define and fit a complete joint
distribution in a principled manner.

3 The Data
Large open data sets for memory and CPU load are hard to
come by, with the notable exception of the public Google
workload traces we employ [Reiss et al., 2011]. The traces
are compromised of 11, 000 machines’ logs from 29 days in
May 2011. We restrict the set to the 54.7% of jobs that com-
pleted successfully, resulting in about 760, 000 processes.
Reported CPU time is in microseconds, and memory usage
is scaled between 0 and 107. We interpret a process’ memory
usage as the maximum observed over its runtime.

Before analyzing the data set some preparation is required.
First, processes with 0 usage are omitted, which is a further
5% of the data. Further, while the bulk of the data comes
from a reasonable spread of job types, the data includes a set
of extreme outliers that are different in kind to the balance
of the data, and thus the raw empirical distribution is multi-
modal in the tail. We believe this is a limitation of the data
size (large though it is), and that if the number of job types
included in the data were larger, these modes in the tail would
disappear. To avoid this confounding our results, we restrict
ourselves to the bulk of the jobs outside of these extreme out-
liers, or specifically to CPU usage below 5 ∗ 106 and memory
usage below 7.5 ∗ 104, which is 82% of the raw data. Next,
to interpolate between the job types (modes) in the data, we
perform a bivariate kernel-density smoothing with a Normal
kernel and a bandwidth of 0.4 and 0.3 for memory and CPU
respectively.

4 Bootstrap Goodness-of-Fit Testing
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Algorithm 1 The Bootstrap Kolmogorov-Smirnov goodness-
of-fit test for a hypothesized family of distributions against
observed data.
Input: b, Observed Data O, Hypothesized Distribution H
Output: p-value

1: c← 0
2: n← Size of O
3: γO ← Estimate parameters of H on O by MLE
4: Ko ← DKS(O,H(γO))
5: for i = 1 ... b do
6: Ri ← Generate s random points ∼ H(γo)
7: γi ← Estimate Parameters of H on Ri by MLE
8: Ki ← DKS(Ri, H(γi))
9: if Ki ≥ Ko then

10: c← c+ 1
11: end if
12: end for
13: p-value← c/n
14: return p-value

Given an observed data set and a family of distributions
that we hypothesize the data to be drawn from, we would like
to know whether our hypothesis is a reasonable one, given the
data. A standard approach to answering this kind of question
is to use a goodness-of-fit test, which quantifies the plausibil-
ity of the hypothesis. In standard statistical hypothesis test-
ing, one calculates a test statistic p, that captures the proba-
bility of the data being at least as “extreme” as that observed,
given that the hypothesis is true. When this probability is
less than a specified significance level, α, we reject the hy-
pothesis. In typical usage, the hypothesis is a so called null
(e.g. the data is explained by randomness), and so a rejection
of this hypothesis in favor of an alternative and mutually ex-
clusive one held by the researcher is the desired outcome, in
that it provides evidence in favor of the alternative hypothesis.
Thus, concretely, for disproving a null hypothesis you want
p < α. Here though, in goodness-of-fit testing, we wish to
find evidence that our hypothesis is true (i.e., the data is con-
sistent with our fitted distribution). Consequently, a small p-
value (i.e., below α) is evidence against our proposed model,
and we want p > α, ideally significantly so [D’Agostino,
1986].

To perform such a test, it remains to choose the notion
of “extreme” that defines p. Many such test statistics have
been proposed. In this work, we employ the commonly
used Kolmogorov-Smirnov (KS) statistic: DKS(O,F ) =
supx{FO(x)− F (x)} where FO(x) is the empirical CDF of
the observed data calculated as: FO(x) = 1

n

∑n
i I(Xi ≤ x)

where I is the indicator function which is 1 when the given
condition is true and 0 otherwise. DKS measures the max-
imum point-wise difference in the CDF of the hypothesized
distribution and the observed data.

When the hypothesis is that the data is drawn from a con-
crete distribution, not a parametrized family, then a simple
goodness-of-fit test is available: One finds the quantile of√
nDKS in the well-known Kolmogorov distribution, and this

quantile is taken as the value of p.
However, when testing the goodness-of-fit of a distribu-

Distribution CPU
Parameters

p
value

Memory
Parameters

p
value

Burr XII
ξ = 178000
c = .9
κ = .15

.52
ξ = 15900
c = 1.8
κ = 1.05

.74

Generalized
Pareto

ξ = 839262
θ = 0
κ = .26

0
ξ = 23540
θ = 0
κ = −0.26

0

Log-Normal µ = 13.05
σ = 1.59

0 µ = 13.16
σ = .91

0

Log-Logistic µ = 14.2
σ = 1.8

0 µ = 9.56
σ = .5

0

Table 2: Maximum Likelihood Estimate (MLE) parameters
for CPU and Memory models and their associated p-values
calculated by parametric bootstrapping.

tion fit from a parametrized family of distributions, the Kol-
mogorov distribution is no longer the appropriate target of
comparison for DKS . Consequently, we employee a method
known as parametric bootstrapping [Clauset et al., 2009]. In
parametric bootstrapping, the p value is based not only on the
test statistic (e.g., in our case DKS) computed over the ob-
served data and the fitted hypothesized distribution, but also
over synthetic data drawn from this fitted distribution and re-
fits of the hypothesis model to these synthetic data.

Specially, we first fit our model to the observed data by es-
timating the parameters using Maximum Likelihood Estima-
tion (MLE). MLE chooses the parameters which maximize
the likelihood of observing the data under the model. Then
we calculate the test statistic over the observed data and our
fitted model. Next, we draw b synthetic data sets from the
fitted model using the parameters we have just estimated. For
each, we run MLE again to estimate the parameters of a new
model from the hypothesized family of distributions, and then
calculate the test statistic between the synthetic sample and
its specially estimated private model. The p-value is then de-
fined to be the fraction of the synthetic data whose test value
is larger than the test value obtained from observed data. Al-
gorithm 1 shows the steps of this parametric bootstrapping al-
gorithm formally. The effect is a Kolmogorov-Smirnov (KS)
test that is unbiased when used on hypotheses involving fitted
families of distributions. The larger the number of synthetic
data sets generated, b, the more reliable the p-value obtained.
In our analysis we let b = 1000.

Our data was processed in Matlab, and analyzed in R. We
used the copula [Yan, 2007] and CDVine [Brechmann and
Schepsmeier, 2013] packages to perform our copula-based
fits and as the basis for implementing Algorithm 1.

5 Results
Using this framework, we next fit models of CPU and mem-
ory usage both separately, and subsequently together as a
joint model of demand.

5.1 Fitting the Marginals
In both the CPU and memory usage data, there are generally
sufficiently large numbers of big jobs that we expect heavy-
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Figure 1: The empirical CDF of CPU usage, and MLE for the
Burr XII, Generalized Pareto, Log-Normal and Log-Logistic
distributions.

Figure 2: The empirical CDF of memory usage and MLE fits
of the Burr XII, Generalized Pareto, Log-Normal and Log-
Logistic distributions.

tailed distributions to perform well. We fit our data using Burr
XII, Log-Normal, Generalized Pareto and Log-Logistic dis-
tributions by MLE. Table 2 lists the parameters as computed.1

To evaluate the model fit, we begin by visually observing
the correspondence between the empirical CDF and the CDF
of each distribution in Table 2. Figures 1 and 2 illustrate this
for CPU and memory usage respectively. We observe that the
truncated Burr XII distribution is the closest to the empirical
distribution for both CPU runtime and memory usage.

To back up the intuition we obtain from the graphs, we for-
mally evaluate the goodness-of-fit of each distribution using
the bootstrap KS method from Section 4, evaluating the CPU
and memory data separately. Accordingly, we sample 5000
data points and run our KS test procedure using the distri-
butions and parameters from Table 2 as our hypothesis. The
resulting p-value is also shown in Table 2. From the table it is
clear that Log-Normal, Log-Logistic and Pareto distribution
perform poorly, with the differences between their fitted dis-
tributions and the data being strongly statistically significant.
The calculated p-value of the Burr XII is very large, indi-
cating no evidence to distinguish it from the observed data
for CPU and memory. We therefore adopt it as our marginal
model of both resources (with different parameters for each).

5.2 Fitting the Copula
Having created a model for each of the marginal distributions,
we next turn to modeling the copula needed to relate them. To
get a sense of the joint data (and to use as a baseline compar-
ison for the fidelity of our eventual model) we show a scatter/
histogram plot of a 2500 point sample of the data in Figure 3.

Next, in Figure 4 we apply the probability integral trans-
form described in Section 2.3 to the data in Figure 3. Specif-
ically, we use the Burr XII marginal distributions for both
CPU and memory usage with the parameters provided in Ta-

1We fit truncated distributions, at 5 ∗ 106 for CPU and 7.5 ∗ 104
for memory.

Distribution Estimated
Parameter

Copula
p-value

End-to-End
p-value

Gaussian 0.329 0.08 0.15
Frank 1.993 0.26 0.44
Gumbel 1.226 0.03 0.08
T Copula 0.272 0.005 0.05
Clayton 0.329 0.17 0.41

Table 3: For each copula we show its MLE parameters and
its p-value as calculated by our parametric bootstrap KS test
on the copula alone. Lastly, we provide the p-value of a two-
sample bootstrap KS-test of the full joint model to the ob-
served data.

ble 2. The result is the empirical copula, i.e. the “coupling”
structure manifest in the data once the marginal distributions
have been made uniform. We can see that our truncated Burr
XII marginal distribution is doing an effective job at captur-
ing most of the marginal structure, and thus the probability
integral transform yields data that is nearly uniform in each
dimension.

Having applied our marginal models, we next seek a para-
metric copula that captures the structure observed in Figure 4.
Accordingly, we fit five of the most commonly used families
of copula including Gaussian, Frank, Gumbel, T, and Clay-
ton. Table 3 shows the estimated parameters for each family.
To get a sense of the copulae produced, we plot a random
sample from the fitted Frank copula in Figure 5. We can see
that this plot is a close match to the transformed empirical
data shown in Figure 4. The Frank copula, as observed in
Figures 5 has weak correlation in the tails compared to other
copula [Trivedi and Zimmer, 2007]. However, there is still
a tendency for there to be stronger correlation between CPU
and Memory among either extremely large or extremely small
jobs, which is reflected in our data set.

Next, to evaluate goodness-of-fit, we apply our bootstrap
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Figure 3: A 2500 point sample of the observed Google CPU
and memory usage data.
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Figure 4: The probability integral transform applied to the
usage data in figure 3, based on a Burr XII fit according to the
values provided in Table 2. This is an empirical copula when
the margins have been described by our Burr XII model.
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Figure 5: A draw of 2500 random points from the Frank cop-
ula using the parameters in Table 3.
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Figure 6: A draw of 2500 points from our full end-to-end
multivariate model, using the Frank copula parametrized in
Table 3 and illustrated in Figure 5. Clearly the model closely
matches the original data from Figure 3.

KS test algorithm, but now on the bivariate copulae instead
of univariate marginals. The resulting p-values are listed in
Table 3. From the table it is clear that the p-value for all the
copulae except Frank and Clayton copula are small, indicat-
ing evidence to reject them. These large values for the Frank
and Clayton indicate that we have no evidence to reject them
as reasonable models of the coupling between the CPU and
memory properties. Although both the Frank and the Clayton
are reasonable models, the evidence for the Frank is stronger
than the Clayton.

The last step of validating our model is to evaluate the com-
plete model including both the fitted Burr XII marginals and
the Frank copula together. Figure 6 shows a random sample
of 2500 pints from this model, and appears nearly identical to
the original data in Figure 3. Once again, we can formalize
this by using a KS test to compare the observed data and data
drawn from our fitted model. Table 3 shows the resulting

p-values, for each copula we considered. The large p-value
shown for the Frank copula indicates that our aggregate Burr
XII-copula model can not be statistically differentiated from
the data, and thus forms a valid model of joint demand.

6 Conclusion
In this paper, we have analyzed the CPU and memory us-
age of jobs separately and as a joint distribution using real
data from Google data-centers. Our marginal models of indi-
vidual process attributes (like CPU and memory) have better
fidelity than those used previously. We obtained this improve-
ment by using a more flexible distribution, the Burr XII, than
previously considered. We then leveraged this accuracy in
modeling marginal distributions to create the first effective
multi-attribute model of data-center demand. Concretely, we
show that an Archimedean copula, specifically the Frank, can
be used to great effect in modeling the “coupling” structure
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between the attributes of computational processes in distribu-
tion. Then, by putting both our Burr XII marginal models and
our Frank copula model together, we obtain a highly accurate
model of the full joint distribution across attributes.

Understanding multivariate resource usage distributions is
critical to creating better resource allocation and scheduling
algorithms for large computing centers, which in turn offer
the promise of significant energy savings and CO2 reduction.
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