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Abstract
Traditional techniques for monitoring wildlife pop-
ulations are temporally and spatially limited. Al-
ternatively, in order to quickly and accurately ex-
tract information about the current state of the en-
vironment, tools for processing and recognition of
acoustic signals can be used. In the past, a num-
ber of research studies on automatic classification
of species through their vocalizations have been
undertaken. In many of them, however, the seg-
mentation applied in the preprocessing stage either
implies human effort or is insufficiently described
to be reproduced. Therefore, it might be unfea-
sible in real conditions. Particularly, this paper
is focused on the extraction of local information
as units –called instances– from audio recordings.
The methodology for instance extraction consists in
the segmentation carried out using image process-
ing techniques on spectrograms and the estimation
of a needed threshold by the Otsu’s method. The
multiple instance classification (MIC) approach is
used for the recognition of the sound units. A pub-
lic data set was used for the experiments. The
proposed unsupervised segmentation method has a
practical advantage over the compared supervised
method, which requires the training from manually
segmented spectrograms. Results show that there
is no significant difference between the proposed
method and its baseline. Therefore, it is shown that
the proposed approach is feasible to design an auto-
matic recognition system of recordings which only
requires, as training information, labeled examples
of audio recordings.

1 Introduction
One of the biggest challenges in ecology and conservation
biology is the assessment of biodiversity through effective
monitoring techniques that allow covering large scales in both
time and space [Depraetere et al., 2012]. Nevertheless, tra-
ditional methods for assessing the presence and abundance
of species are expensive as well as spatially and temporally

limited since they typically consist in manual data collection
through extensive transects [Aide et al., 2013]. Such a task
would be much easier by using technological tools, e.g., it is
possible to implement a continuous monitoring of the sound-
emitting wildlife —as birds, which have been traditionally
used as a biodiversity indicator [Briggs et al., 2012]— by in-
stalling microphones and recorders in the field. Moreover,
in regions with high cloudiness, this technique may be even
more effective than visual inspection.

Signal analyses and classification approaches used in bioa-
coustics range from trained humans listening to recordings
or visually inspecting spectrograms, to autonomous classifi-
cation systems based on digital signal processing and pattern
recognition methods [Blumstein et al., 2011]. However, con-
sidering the overwhelming amount of acoustic data that can
be collected, relying on analyses made by human experts is
limited and often unfeasible. Furthermore, according to [Hao
et al., 2012], the automation of analyses using signal pro-
cessing techniques and pattern recognition algorithms is less
expensive —in the long term— than the assessments made by
experts and, potentially, even more accurate.

As indicated by Briggs et al. [2012], methods for acous-
tic classification of bird species can be categorized into two
types: 1) those that classify individual syllables, and 2) those
that classify recordings having sounds of multiple sources.
The former ones require a detailed annotation of each seg-
ment while in the latter ones, for training, it is only required
to label the presence of the species of interest in each record-
ing. In either case, segmentation is a high-priority step [Neal
et al., 2011]. However, methods of the first type are more
sensitive to the segmentation quality because omitted sylla-
bles become false negatives and those sounds incorrectly de-
tected could become false positives. In contrast, for methods
of the second type, it is possible to achieve correct classi-
fication even if the two above-mentioned miss-segmentation
cases occur since every recording may contain multiple syl-
lables.

In general, segmenting recordings into smaller recognition
units is assumed as a part of the preprocessing stage and it is
done either manually or automatically. Yet, automatic recog-
nition should not require manual segmentation [Trifa et al.,
2008]. To this end, segmentation algorithms have been de-
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veloped mostly using energy and entropy as criteria to iden-
tify onset and offset times of the regions of interest [Fager-
lund, 2007]. Under ideal conditions, when the vocalization
call is the only sound in the recording, an increase in en-
ergy clearly reveals a region of interest, making segmentation
procedures simple enough [Neal et al., 2011]. In real condi-
tions, however, recorded signals are degraded due to the pres-
ence of many sound sources, e.g., wind streams, background
noise from other animals and surrounding events. In spite of
that, several research studies on automated species recogni-
tion clarify that their methods work well when the recognition
units are correctly detected, often this issue is not discussed in
depth (making only a brief description). Furthermore, as in-
dicated in [Hao et al., 2012], it should be taken into account
that achieving perfectly segmented data is at least as difficult
as the classification step.

Considering that the recognition of recordings has the ad-
vantage of not making the impractical assumption of requir-
ing perfectly segmented data, in this study, it is proposed
a classification methodology for audio recordings which
only uses —in the training phase— labels from training
recordings, that is, isolated and labeled vocalization seg-
ments are not required beforehand since the methodology in-
cludes a novel unsupervised segmentation method for bird-
song recordings. Interest sounds are detected from the Short-
time Fourier transform (STFT). In the segmentation method
described in Sec. 2.1, the output is a matrix of the same size
of the corresponding spectrogram, where interest elements
(or pixels) are marked with “one” and non-interest elements
with “zero”. Classification is carried out using the multiple
instance classification (MIC) approach, as follows: 1) neigh-
boring interest pixels are grouped into regions, 2) each re-
gion is described by a feature representation and 3) a classifier
based on multiple instance learning (MIL) is trained consider-
ing each spectrogram as a bag of instances. Its classification
performance is estimated when using the unsupervised seg-
mentation method proposed in Sec. 2.1 and compared against
the performance obtained when using the supervised segmen-
tation method proposed by Briggs et al. [2012]. Both meth-
ods consist in the detection of regions in the spectrogram
likely associated with vocalizations; however, in the latter,
it is required to provide a set of manually annotated spectro-
grams where pixels have been labeled according to whether
or not they correspond to bird sounds.

2 Material and methods
2.1 Segmentation of birdsong recordings
Time-frequency analysis of audio recordings is usually car-
ried out through spectrograms representing power inten-
sity at each time-frequency point. Particularly, spectro-
grams are considered as recognizable images to identify bird
species [Dennis et al., 2011], whose vocalizations are repre-
sented by intensity variations. Thus, under the assumption
that segment vocalizations give a form of continuous regions
holding the highest power values, our unsupervised segmen-
tation methods consists in the following stages (see Fig. 1):

– Spectrogram estimation: Based on the STFT decom-
position, we compute a spectrogram matrix S = {sij :
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Figure 1: Flow diagram of the proposed segmentation
method.

i = 0, . . . , N − 1; j=0, . . . ,M − 1}, with S∈RN×M ,
where indexes i and j stand for the frequency and time
domains (i.e., N points in the frequency domain that are
estimated in each one of M time frames). We use the
Hann window lasting 512 samples and overlapping 256
samples as in [Briggs et al., 2012].

– Preprocessing: After applying the two-dimensional
Wiener filter, a denoised and smoothed spectrogram,
S̃={s̃ij} is estimated with elements:

s̃ij = µ+ sij(σ
2 + σ2

η)/σ2

where µ ∈ R and σ2 ∈ R are the local mean and vari-
ance, respectively, and σ2

η ∈ R is the noise variance. The
first two values are estimated at a k×k neighborhood
centered on each point (we set k=5 as in [Pourhomay-
oun et al., 2013]), and σ2

η is the average over all lo-
cal variances σ2. Then, we suppress structures that are
lighter than their surroundings and are connected to im-
age borders by considering a value of 8 as connectiv-
ity parameter. An erosion [van den Boomgaard and van
Balen, 1992] is performed before by estimating the low-
est number of image elements that are not connected to
the edges. The erosion procedure results in a smoothed
image I∈RN×M , from which we perform morpholog-
ical reconstruction of S̃ to remove all intensity fluctua-
tions (except the intensity peak). As a result, we get the
matrix H ∈ RN×M that only holds objects with neigh-
boring borders. At the same time, the difference matrix,
H̃ = S̃−H is also computed holding only those objects
from the original image not having neighboring borders.

– Thresholding: We fix a threshold to binarize each im-
age H̃ using the nonparametric and unsupervised Otsu’s
method of automatic threshold selection [Otsu, 1979].
Extracted only from a computed gray-level histogram,
the optimal threshold, To, is selected by maximizing an
introduced discriminant measure of separability among
all resultant gray level classes, as follows:

k̂ = arg max
k∈[1,L]

{(φTω(k)− φ(k))2/(ω(k)(1− ω(k)))}

where φT =
∑L
j=1 jpj , φ(k) =

∑k
j=1 jpj , ω(k) =∑k

j=1 pj , pj = nj/N are the values of the normalized
gray level histogram, L is the number of gray levels,
nj is the number of pixels at level j, and N is the to-
tal number of pixels over the whole difference image
H̃. Therefore, the optimal threshold is computed as
To = (k̂ − 1)/(L− 1).
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– Mask operation: To select the most relevant pixels
from the spectrogram at hand, a binary matrix B =
{bij}, with B∈RN×M , is obtained by thresholding as
follows:

bij =

{
1, if h̃ij > To;

0, otherwise.

– Instance vector extraction: From computed arrange-
ments B and S, we compute a spectrogram region set
R = {Ri : i = 1, . . . , l}, holding the respective
matrices of all-connecting points Ri ∈ RNi×Mi , with
Ri ⊂ S, being Ni < N and Mi < M. The number
of regions l is automatically fixed as indicated in [Za-
karia et al., 2012]. Lastly, each region Ri supplies a
single feature vector (or instance), denoted as xi ∈ Rd .
The number of features d is fixed in accordance with the
training scenarios explained in Sec. 3.1.

2.2 Multiple instance classification
Within the standard supervised classification framework, the
training set consists of n feature vector examples or instances
X = {xi ∈ Rd : i = 1, . . . , n} and their labels, in a two-
class problem, Y = {yi ∈ {0, 1} : i = 1, . . . , n}. Thus, any
classifier function, X → Y, is trained to predict labels for
each novel instance.

In MIC, an object is represented by a set, or bag, Xi =
{xij ∈ Rd : j = 1, ...,mi} ofmi instances xij and a label ỹi,
i.e., each label is associated with the entire bag but labels of
the individual instances are unknown. Therefore, the training
set consists of n bags X̃ = {Xi ∈ Rmi×d : i = 1, ..., n} and
their corresponding labels Ỹ = {ỹi ∈ {0, 1} : i = 1, . . . , n}.
Then, the classifier function, X̃ → Ỹ, is trained to predict la-
bels for each novel bag of instances. We address the problem
of classifying recordings using the MIC approach because, in
our case, we have labels for recordings, i.e. bags, but they are
represented for several instances (feature vectors extracted
from each region detected after the segmentation stage).

Particularly, we use the MILES (MIL via Embedded In-
stance Selection) classification algorithm because it has been
experimentally shown that it performs well with bioacustic
signals [Cheplygina et al., 2015]. MILES transforms the
original MIC problem into a standard supervised learning
framework injectively relating instances and labels [Chen et
al., 2006]. It maps each bag into a feature space defined
by instances in the training bags using an introduced in-
stance (dis)similarity measure. Thus, bags are represented
by the maximum (dis)similarity to all other instances. On
this (dis)similarity representation, a sparse linear classifier is
trained [Tax, 2013].

2.3 Segmentation performance measures
Since the manual recording segmentation is a very fatigu-
ing task, rather than directly comparing between automated
and manual outputs we indirectly estimate the quality of the
proposed segmentation method by the recording classifica-
tion performance that must be strongly influenced by the used
segmentation procedure, as discussed in [Briggs et al., 2012].
The most common performance measures for a classifier are

the following ones: accuracy a = (TP+TN )/(P+N), speci-
ficity s = TN/N , recall rate r = TP /P and precision rate
p = TP /(TP + FP ); where TP is the number of recordings
correctly classified as positives, TN is the number of record-
ings correctly classified as negatives, FP is the number of
recordings incorrectly classified as positives, FN is the num-
ber of recordings incorrectly classified as negatives, P and
N are the total number of positives or negatives recordings,
respectively.

However, these performance measures are affected by the
relative size of the classes. Therefore, to overcome that draw-
back, the two-class F -score is used as the performance mea-
sure defined as follows:

F = 2TP /(2TP + FP + FN ), F ∈ [0, 1]. (1)

The F -score ranges from 0 to 1 where the higher its value,
the better the classification performance. In this work, the
one-against-all reduction from multi-class task to binary clas-
sification technique is used where each species is selected
as objective (positive) class since the F -score is a two-class
measure. As regards the classifier performance, we carry out
validation using the Bootstrapping technique where input au-
dio data are randomly split into two sets: one-half for train-
ing and one-half for testing. This procedure is carried out ten
times.

As suggested in [Bramer, 2013], each one of the eight
considered feature sets over the 13 data sets (see Sec. 3.2),
are compared in terms of the paired t-test, for which the
null hypothesis states that the performance of two classifica-
tion strategies can be statistically assumed as the same. The
pseudo-code to determine whether to accept the null hypoth-
esis is presented in Algorithm 1. Otherwise, when the null
hypothesis is rejected, we select as the best strategy the one
having the highest pair performance difference computed in
average over all considered classification strategies.

3 Experimental Set-Up
3.1 Training strategy
Figure 2 shows the training scheme used through all experi-
ments to test the proposed birdsong classification methodol-
ogy based on unsupervised segmentation of audio recordings
and multiple instance learning.

-

Dataset #1

Dataset · · ·

Dataset #13

Data collection Segmentation Feature extraction Classification

MILES--

Supervised

Unsupervised

Mask descriptors

Profile statistics

HOG

Figure 2: Training scheme used through all experiments to
test the proposed birdsong classification methodology.

In the segmentation stage, only one approach, either the
unsupervised (see Sec. 2.1) or the supervised (proposed in
[Briggs et al., 2012]), is used. Besides, the following
four representation scenarios are separately considered: 1)
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Algorithm 1 Process to determine whether or not to accept
the null hypothesis of the paired t-test. Based on [Bramer,
2013].

1: Let z = [z1, z2, ... zn] be the vector of the differences
in classification performances between strategies 1 and 2
and let n be the number of data sets.

2: Assign tlevel considering the following: for 13 degrees of
freedom, t ≥ 1.771 would only be expected to occur by
chance with probability 0.10 or less, and it is said that the
hypothesis is rejected at 10% level. Therefore, if tlevel =
1.771, tlevel = 2.160 or tlevel = 3.012, and |t| > tlevel,
the null hypothesis is rejected at the 10%, 5% or 1% level,
respectively.

3: procedure T-TEST(z, n, tlevel)
4: Compute a = (

∑i=n
i=1 z

2
i )− (

∑i=n
i=1 zi)

2/n.
5: The sample variance s2 is equal to a/(n− 1).
6: The sample standard deviation is the square root of
s2.

7: Divide s by the square root of n to get the standard
error estd.

8: The t statistics is computed dividing the average
value of z by estd.

9: if |t| ≥ tlevel then
10: Return The hypothesis is rejected.
11: else
12: Return The hypothesis is assumed as true.
13: end if
14: end procedure

Mask descriptors, denoted as “MD”, that describe region
shape; the following set of features are computed: mini-
mum frequency, maximum frequency, bandwidth, duration,
area, perimeter, non-compactness, and rectangularity. 2)
Profile statistics, “PS”, a set of fourteen features are com-
puted, which are based on statistical segment properties in
time and frequency: frequency-Gini, time-Gini, frequency-
mean, frequency-variance, frequency-skewness, frequency-
kurtosis, time-mean, time-variance, time-skewness, time-
kurtosis, frequency-max, time-max, mask-mean, and mask-
standard deviation. 3) Histogram of Gradients, “HOG”,
this set consists of 16 features characterizing shape and tex-
ture of each region where gradient directions over the pix-
els of the region are computed; each histogram holds 16 bins
equally spaced over the angle range [−π, π] and features are
extracted from the normalized 1-D histograms [Dalal and
Triggs, 2005]. 4) All-features set, “AF”, that merges all
above feature sets into a single one, as in [Briggs et al., 2012].

Therefore, eight training strategies are tested for the feature
extraction stage. In case of supervised segmentation training,
the affix “-Br” (meaning Briggs) is added to the end of every
feature notation, in accordance to the segmentation method
proposed by Briggs et al. [2012]. Lastly, we use the MILES
classification algorithm. We employ an exponential kernel
exp{−(||a − b||)/p} as the instance (dis)similarity function,
where parameter p ∈ [2 . . . 5] is heuristically fixed and nota-
tion ‖ · ‖ stands for Euclidean-norm.

3.2 Data set
For the sake of comparison, we perform experiments with the
publicly available1 data set used in [Briggs et al., 2012]. This
data collection holds 548 recordings sampled at 16 kHz that
were manually labeled. The data set contains 13 bird species,
often vocalizing simultaneously and perturbed with envi-
ronmental noise, though each recording lasting ten-seconds
holds between one and five species. Table 1 shows the amount
of recordings holding each considered species.

Table 1: Data sets including the amount of recordings where
each considered bird species (objective class) is labeled.

Data Labeled species name Number of
set recordings

1 BRCR Brown Creeper 197
2 WIWR Winter Wren 109
3 PSFL Pacific-slope Flycatcher 165
4 RBNU Red-breasted Nuthatch 82
5 DEJU Dark-eyed Junco 20
6 OSFL Olive-sided Flycatcher 90
7 HETH Hermit Thrush 15
8 CBCH Chestnut-backed Chickadee 117
9 VATH Varied Thrush 89

10 HEWA Hermit Warbler 63
11 SWTH Swainson’s Thrush 79
12 HAFL Hammond’s Flycatcher 103
13 WETA Western Tanager 46

3.3 Results of compared classification strategies
Table 2 shows the estimated F -scores for the different consid-
ered feature sets; notice that the HAFL data set has the high-
est F -score (> 0.99). In contrast, both data sets DEJU and
HETH achieve the lowest values (< 0.21) and get zero-value
F -score for several features because those data sets hold very
few recordings (see Table 1): 20 and 15, respectively.

Table 2: Performed F -score values for all considered objec-
tive classes and each training scenario. The best reached F -
score is marked in bold for each objective class. Besides, the
notation “–” stands for null-value performance.

Training scenario
Class MD MD-Br PS PS-Br HOG HOG-Br AF AF-Br
BRCR 0.762 0.792 0.848 0.824 0.694 0.847 0.774 0.819
WIWR 0.938 0.870 0.917 0.870 0.896 0.900 0.933 0.905
PSFL 0.791 0.771 0.781 0.777 0.768 0.736 0.817 0.802
RBNU 0.853 0.742 0.793 0.725 0.759 0.784 0.871 0.831
DEJU – – – – – – 0.095 0.214
OSFL 0.701 0.704 0.718 0.681 0.667 0.694 0.756 0.738
HETH – – – – – – – –
CBCH 0.742 0.569 0.687 0.602 0.643 0.514 0.685 0.600
VATH 0.967 0.931 0.902 0.971 0.909 0.889 0.911 0.983
HEWA 0.729 0.718 0.643 0.764 0.641 0.652 0.715 0.741
SWTH 0.521 0.587 0.594 0.813 0.451 0.566 0.627 0.796
HAFL 1 0.996 0.999 0.996 1 0.994 1 0.996
WETA 0.852 0.762 0.795 0.757 0.340 0.372 0.840 0.823
Average 0.805 0.767 0.789 0.798 0.706 0.723 0.812 0.821

In terms of the considered feature sets, the use of AF-Br
reaches the highest average performance value (F = 0.821)
that is averaged over all considered objective classes, while

1Audio recordings of the data set are available at
http://www.miproblems.org/datasets/birds/
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HOG gets the lowest one, F = 0.723, for the baseline su-
pervised approach. Once again, AF (F = 0.812) and HOG
(F = 0.706) are the best and worst cases, respectively, for
the unsupervised method. However, the MD feature set, in
average, benefits the most from the use of the unsupervised
segmentation, while the HOG set degrades the worst. It must
be noted that the average performance is taken without DEJU
and HETH data sets because of their accomplished anomaly
values. This situation may be explained since the MD feature
set encodes region shape attributes that are far from being
easy to be manually computed, as seen in Fig. 3(a) showing
a typical birdsong spectrogram. In contrast, the texture-based
HOG set implies calculation of gradient directions over re-
gion pixels (see Fig. 3(b)); this procedure includes enhanced
Gaussian filtering and histogram binning that are very sensi-
tive to their parameter tuning.
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Figure 3: Example of a segmented spectrogram from a given
audio birdsong recording.

In order to provide an intuitive illustration, all F -score val-
ues estimated in Table 2 are graphically presented in Fig. 4
where the vertical axis represents the performance obtained
by the proposed unsupervised-based segmentation method,
while the horizontal axis corresponds to the one obtained by
the supervised reference method. Since the larger the F -score
– the better the performance, any point above the diagonal
line indicates that the proposed method outperforms the refer-
ence. In most of the cases, no remarkable difference in terms
of performance is observed between both segmentation meth-
ods tested for the same representation scenario.

In case of the worst performance when the classifier
guesses at random with equal frequency (i.e., Tp = P/2,
Fn = P/2, FN = N/2, and Tn = N/2), then one may cal-
culate a threshold Ft = P/(1.5P+0.5N) value, under which
the classifier is just guessing. In our case, Ft = 0.42 that is
achieved for the BRCR data set. As shown in Fig. 4, most of
the computed F -scores overcome by far the Ft threshold.

Table 3 shows several performance measures (namely, re-
call, r, specificity, s, precision, p, accuracy, a, and the F -
score) obtained for the whole feature sets, i.e., AF and AF-Br
data sets. Typically, both training strategies may be differ-
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Figure 4: Relationship of performed F scores for each con-
sidered feature set between both methods: the proposed
unsupervised-based segmentation (vertical axis) and super-
vised reference (horizontal axis).

ently influenced by each considered class. Particularly, the
former training strategy gets the better specificity for DEJU,
HETH, VATH, HAFL, and WETA classes, while the latter
strategy instead of WETA the HETH class also gets the high-
est value. At the same time, only the HALF class remains the
best in terms of accuracy.

Table 3: Performance classification measures for the feature
sets: AF (above) and AF-Br (below). The best column-wise
measures achieved overall data-sets are highlighted in bold.

Class r s p a F

A
F

BRCR 0.91 0.76 0.68 0.81 0.77
WIWR 0.92 0.99 0.94 0.97 0.93
PSFL 0.87 0.89 0.77 0.88 0.82
RBNU 0.86 0.98 0.88 0.96 0.87
DEJU 0.05 1 1 0.96 0.10
OSFL 0.86 0.92 0.67 0.91 0.76
HETH 0 1 0/0 0.97 0
CBCH 0.74 0.89 0.64 0.86 0.68
VATH 0.84 1 1 0.97 0.91
HEWA 0.57 1 0.95 0.95 0.72
SWTH 0.47 0.99 0.93 0.92 0.63
HAFL 1 1 1 1 1
WETA 0.77 0.99 0.92 0.98 0.84

A
F

-B
r

BRCR 0.87 0.85 0.77 0.86 0.82
WIWR 0.88 0.98 0.94 0.96 0.90
PSFL 0.78 0.93 0.83 0.88 0.80
RBNU 0.82 0.97 0.84 0.95 0.83
DEJU 0.12 1 1 0.97 0.21
OSFL 0.85 0.91 0.65 0.90 0.74
HETH 0 1 0/0 0.97 0
CBCH 0.46 0.98 0.85 0.87 0.60
VATH 0.97 1 1 1 0.98
HEWA 0.80 0.95 0.69 0.94 0.74
SWTH 0.70 0.99 0.91 0.95 0.80
HAFL 0.99 1 1 1 1
WETA 0.72 1 0.97 0.97 0.82

To provide a better illustration, Table 4 shows the obtained
results of the paired F -score difference, ∆F, computed be-
tween the AF and AF-Br features. Since the latter set is the
reference, the estimated ∆F value gets negative sign when
the reference feature set is better, otherwise ∆F becomes a
positive value. The best and worst achieved ∆F values are
marked in bold. Particularly, the SWTH gets the lowest dif-
ference (−0.169), that is, that class is the most negatively
influenced by the proposed strategy while the CBCH class
achieves the best influence (0.084). However, though the av-
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erage value is ∆F = −0.017 in support of AF-Br set, the
corresponding estimated t value gets as high as 0.905, mean-
ing that neither of the considered feature sets are statistically
different at levels of 10%, 5%, and 1%.

Table 4: Computation example of the paired F -score differ-
ence, ∆F, that gets negative sign when the reference feature
set is better, otherwise ∆F becomes positive.

Dataset AF AF-Br ∆F
BRCR 0.774 0.819 -0.045
WIWR 0.932 0.905 0.027
PSFL 0.817 0.801 0.016
RBNU 0.871 0.831 0.040
DEJU 0.095 0.214 -0.119
OSFL 0.756 0.738 0.018
HETH 0 0 0
CBCH 0.685 0.600 0.084
VATH 0.911 0.983 -0.072
HEWA 0.715 0.741 -0.026
SWTH 0.627 0.796 -0.169
HAFL 1 0.996 0.004
WETA 0.840 0.823 0.017
Average 0.694 0.711 -0.017

Lastly, the null-hypothesis values are shown in Table 5 in
order to make clear the influence of each considered segmen-
tation strategy, in terms of performed F -score classification
measure. Values are computed at 10% level (a strong as-
sumption) to either admit (value 0) or deny (value ±1) the
null hypothesis about their statistical similarity between each
pair of contrasted feature sets (columns stand for the refer-
ence supervised feature sets and rows for the proposed unsu-
pervised sets). In case the statistical similarity is rejected, the
null hypothesis gets the value 1 if the column-wise feature
set reaches a better performance than the the row-wise set.
Otherwise, the null hypothesis gets the value −1.

As seen from the obtained main diagonal matrix values,
one can infer that each compared feature set, except MD, has
no statistical difference regardless of the used segmentation
approach. In case of the MD set, its unsupervised version
turns out to be better. This situation should be expected due
to the above-given explanation about the advantage of auto-
mated MD feature extraction. As a result, the proposed bird-
song classification methodology based on unsupervised seg-
mentation of audio recordings and multiple instance learning
has no statistical difference with the baseline supervised ver-
sion, at least, when using the three extracted feature sets: PS,
HOG, and AF.

Table 5: Values of null-hypothesis test computed at 10% level
for both considered training segmentation strategies: super-
vised and unsupervised. Main diagonal elements marked in
bold.

MD PS HOG AF
MD-Br 1 0 0 1
PS-Br 0 0 -1 0
HOG-Br 0 0 0 1
AF-Br 0 -1 -1 0

4 Discussion and Concluding Remarks

In this paper, the use of unsupervised segmentation of au-
dio birdsong recordings is investigated along with multiple
instance learning to classify among a given number of bird
species. The proposed unsupervised segmentation of audio
birdsong recordings is contrasted against its baseline refer-
ence supervised version requiring manual annotation of prop-
erly computed spectrograms, as described in [Briggs et al.,
2012]. Yet, since this manual recording segmentation poses
as a very fatiguing task, we indirectly estimate the qual-
ity of the proposed segmentation method by the introduced
two-class F -score as classification performance measure that
is not affected by the relative class size. Afterwards, each
one of the considered feature sets are compared in terms of
the paired t-test, for which the null hypothesis states that
the achieved F -score performance of two given classification
sets can be statistically assumed as the same. The univari-
ate paired t-test is preferred due to its simple interpretation
though other multivariate tests may be used, for example, the
multivariate paired Hotelling’s T 2 test that provides similar
results in our work. Both segmentation approaches are vali-
dated for the four feature sets: MD, PS, HOG, as well as the
all-features set. In average, the MD feature set benefits the
most from the use of the unsupervised segmentation, while
the HOG set degrades the worst, as seen in Table 2. The main
reason for the latter results is the fact that parameter tuning of
the automated HOG feature extraction should be improved.
However, this procedure is out of the scope of the present
work. Nonetheless, according to the accomplished values of
the null-hypothesis test shown in Table 5, the introduction
of the unsupervised segmentation of audio recordings has no
statistical difference with the baseline supervised version, at
least, when using the following three extracted feature sets:
PS, HOG, and AF.

This work provides a birdsong recognition framework us-
ing the MILES classifier, which in turn uses an exponential
kernel as instance (dis)similarity measure. Even though per-
formed F -score values are high, this classifier is sensitive
to a low number of training recordings. As a conclusion,
the proposed unsupervised recording segmentation of audio
birdsong recordings improves species classification with the
benefit of easier implementation since no manual handling of
recordings is required, making feasible the design of fully au-
tomatic birdsong recognition systems.

As future work, the authors consider that more studies must
be undertaken on improving the feature extraction stage. Be-
sides, the use of classifiers demanding less input training sets
remains an important issue since, in practice, collecting la-
beled audio birdsong recordings is very costly.
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