Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

Bidirectional Constraints for Exchanging Data: Beyond Monotone Queries

Marcelo Arenas Gabriel Diéguez Jorge Pérez
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
PUC Chile PUC Chile Universidad de Chile
marenas @ing.puc.cl gsdieguez@uc.cl jperez@dcc.uchile.cl

Abstract

In this paper, we propose to use the language of
bidirectional constraints to specify schema map-
pings in the context of data exchange. These con-
straints impose restrictions over both the source and
the target data, and have the potential to minimize
the ambiguity in the description of the target data
to be materialized. We start by making a case for
the usefulness of bidirectional constraints to give
a meaningful closed-world semantics for st-tgds,
which is motivated by Clark’s predicate comple-
tion and Reiter’s formalization of the closed-world
assumption of a logical theory. We then formally
study the use of bidirectional constraints in data
exchange. In particular, we pinpoint the complex-
ity of the existence-of-solutions and the query eval-
uation problems in several different scenarios, in-
cluding in the latter case both monotone and non-
monotone queries.

1

Data exchange is the process of taking data structured under a
source schema and transforming it into data structured under
a target schema. A fundamental building block in this pro-
cess is the notion of a schema mapping, which is a high-level
specification that describes how data from the source should
be mapped into the target.

In relational databases, schema mappings are usually spec-
ified by using a logical language. In particular, most
of the research on data exchange [Lenzerini, 2002; Fagin
et al., 2005a] has focused on mappings specified by the
so-called source-to-target tuple-generating dependencies (st-
tgds), which have been also widely used in practical applica-
tions [Haas et al., 2005; Bernstein et al., 2006]. An st-tgd is
a first-order logic sentence of the form:

Vavy(es(z,9) — 320 (T, 7)),

where ¢g(Z,) and 1 (Z, Z) are conjunctions of relational
atoms from the source and target schemas, respectively. For
example, consider a source schema consisting of a relation
Student(name, course) storing students’ names and the names
of the courses where they are enrolled in. Moreover, consider

Introduction

2698

a target schema consisting of a relation Enroll(sname, cid),
storing students’ names and the ids of the courses where they
are enrolled in, and of a relation Course(cid, cname), storing
for every course its id and name. In this case, the exchange is
driven by the following st-tgd:

VmVy(Student(x,y) — EIz(Enroll(:c,z)/\Course(z,y))). (1)

In data exchange, one is given a source database I and a
schema mapping M, and then the main problem is to find
a target database J that is a solution for I under M, that is, a
valid translation of I according to the constraints imposed by
M. For example, consider a mapping M specified by st-tgd
(1) and the following source database I :

Student | name course
John Al
Albert Databases

Then the following target database J; is a possible solution
for I; under the constraints imposed by M:

Enroll | sname cid Course | cid cname
John CS301 CS301 Al
Albert CS303 CS303 Databases

In fact, I; together with J; satisfy st-tgd (1) according to the
standard first-order logic semantics. Nevertheless, J; is not
the only target database that satisfies this condition. Consider,
for example, the following target database Js:

Enroll | sname cid Course | cid cname
John CS301 CS301 Al
Albert CS303 CS303 Databases
Albert CS400 CS400 Algorithms

Again, we have that I; together with J5 satisfy st-tgd (1) ac-
cording to the standard first-order logic semantics. Thus, the
database Jo, although less natural than Jp, is also a solution
for I; according to the constraints imposed by M. This sort
of anomaly is caused by the semantics of the implication; the
formula used to exchange data is not restricting the possibil-
ity of adding arbitrary tuples to Enroll and Course. Moreover,
this formula does not impose any restrictions on the courses’
ids; if we replace CS301 by CS401 in the database Jo, we also
obtain a solution for /; under M. Thus, target databases are
allowed to contain labeled nulls in this context, which repre-
sent values that can be replaced by any constant. In fact, the
following target database is a solution for /; under M, where
11 and L4 are distinct null values:

Enroll | sname cid Course | cid cname
John 11 11 Al
Albert 1o 15 Databases

The semantics of st-tgds has raised several issues in data ex-
change. One of the most prominent is the problem of an-
swering target queries. Given a source database, a schema
mapping, and a query () over the target schema, what should
be the answer for () after the exchange? Given that there are
many possible solutions for the source instance, this seman-
tics is not immediately clear.

The certain answers semantics has been adopted as the
standard semantics for query answering in data exchange.
More precisely, a tuple ¢ is said to be a certain answer for
a target query () given a source database I and a mapping
M, if t is an answer for Q over every possible solution for T
under the constraints imposed by M. Although this seman-
tics gives intuitively correct results for positive queries [Fa-
gin et al., 2003; 2005al, it has a less natural behavior for
non-monotone queries [Arenas et al., 2004; Libkin, 2006;
Hernich, 2013]. For instance, consider again the source
database /; and the mapping M specified by st-tgd (1), and
assume that @ is the following target query:

—3z(Enroll(John, z) A Course(z,Programming)). (2)

This query is asking whether John is not enrolled in Program-
ming. Given the data in I3, the natural answer to () would be
true. However, the actual answer to this query is false as there
exists a possible solution for /; under M where John is en-
rolled in Programming.

To tackle this problem, many authors have proposed to re-
strict the notion of data exchange solution based on some
minimality criteria [Fagin er al., 2005b; Libkin, 2006; Afrati
and Kolaitis, 2008; Hernich et al., 2011; Libkin and Sir-
angelo, 2011; Gottlob er al., 2011; Hernich, 2012; 2013],
which has led to different alternatives for the semantics of
non-monotone queries in this context. Regardless of the use-
fulness of these proposals, each one of them departs from the
well-understood semantics of first-order logic for st-tgds, as
initially proposed in [Fagin et al., 2005a]. We are convinced
that having a clean semantics for schema mappings based
on the semantics of first-order logic has been instrumental
in the adoption of this technology. Thus, as opposed to the
approaches mentioned above, our main goal in this work is to
propose and study a mapping-specification language that can
be defined in terms of the usual syntax and semantics of first-
order logic (FO), and whose semantics is suitable for both
monotone and non-monotone queries.

In [Arenas et al., 2014b], we proposed to use the so-
called bidirectional constraints to specify schema mappings.
A bidirectional constraint is an FO-sentence of the form
Vz(as(z) « Br(z)), where ag(z) and fr(z) are FO-
formulas over the source and target schemas, respectively.
Thus, these dependencies allow expressing in a natural way
what pieces of data should and should not be in the target, re-
ducing the ambiguity when describing what target instances
should be materialized. In this paper, we embark on a study
of the fundamental properties of these constraints regarding
data exchange and non-monotone queries, aiming to meet the
requirements mentioned in the previous paragraph. It is im-
portant to mention that although this type of dependencies

has been previously considered in the literature [Melnik et
al., 2008; Arenas et al., 2014b], the properties studied in this
paper have not been investigated.

Our contributions. First, in Section 3 we make a case for
the usefulness of bidirectional constraints to give a meaning-
ful closed-world semantics for st-tgds. Our proposal is moti-
vated by the classical notion of predicate completion [Clark,
1977] and Reiter’s formalization of the closed-world assump-
tion of a logical theory [Reiter, 1977]. Essentially, we prove
that for every schema mapping M specified by a set of st-
tgds, one can compute a closure of M specified by a set of
bidirectional constraints which, in a precise sense, completes
M assuming as negative any piece of information for which
there is no evidence according to M. For example, for the
case of st-tgd (1), the closure is very simple and is given by
the following dependency:

Va:Vy(Student(x,y) > EIz(Enroll(z,z)/\C()urse(z,y))). 3)

It is worth noticing that under this bidirectional constraint, we
obtain true as the answer to the query (2) given the source in-
stance I defined previously, which is the expected answer.
Besides, it is worth noticing that although the closure was ob-
tained in this case by just replacing an implication by a double
implication, this process is much more involved in general.
Second, we study bidirectional constraints in depth by con-
sidering two fundamental data exchange problems: the exis-
tence of solutions problem in Section 4, and the query eval-
uation problem in Section 5. We pinpoint the complexity
of these problems in several different scenarios and, in par-
ticular, for several different classes of monotone and non-
monotone queries in Section 5. We also describe several re-
stricted scenarios for which these problems become tractable.

2 Preliminaries

We assume that data is represented in the relational model.
A relational schema R, or just schema, is a finite set
{R1,...,R,} of relation symbols, with each R; having a
fixed arity k;. Let C and N be countably infinite sets with
no elements in common. We refer to the elements in C as
constants and to the elements in IN as labeled nulls, or just
nulls. An instance I of R assigns to each relation symbol
R; a finite kj-ary relation Rf C (C U N)* . We denote by
Inst(R) the set of all instances of R. Finally, slightly abusing
notation, we use C(+) to denote a built-in predicate such that
C(a) holds if and only if a is a constant (that is, @ € C).

Query languages. We assume some familiarity with first-
order logic (FO), and we focus on queries expressed by us-
ing formulas in this logic. Besides FO, the main query lan-
guages considered in this paper are the languages of con-
junctive queries (CQ), unions of conjunctive queries (UCQ),
and the languages obtained from them by adding the equality
predicate, the inequality predicate and the negation operator
(e.g. UCQ™, CQ3'é and UCQ ™). We also consider the class
of monotone queries, denoted by MON. This class contains
all queries () over a schema R that satisfy the following prop-
erty: given two instances Ji, Jo of R such that J; C Js, it
holds that Q(J1) € Q(J2). Finally, we assume that all query
languages allow the use of built-in predicate C.

2699

Schema mappings. As is customary in the data exchange
literature, if we refer to a schema S as a source schema, then
Inst(S) is defined to be the set of all instances of S that are
constructed by using only elements from C, and if we refer
to a schema T as a target schema, then Inst(T) is defined as
usual (that is, the instances of T are constructed by using el-
ements from both C and IN). In this article, we use S to refer
to a source schema and T to refer to a target schema. Besides,
in this section we assume that S and T are fixed source and
target schemas with no relation symbols in common.

Schema mappings are used to define a semantic relation-
ship between a source and a target schema. A schema map-
ping, or just mapping, M from S to T is a set of pairs (1, .J),
where [is an instance of S, and J is an instance of T. That
is, a mapping M is just a subset of Inst(S) x Inst(T). Given
an instance I of S, a mapping M associates to I a set of pos-
sible solutions for I, denoted by SOL (), given by the set
{J € Inst(T) | (I,J) € M}. Notice that the set SOL(])
represents the possible translations of I according to M.

In practice, schema mappings are represented by using log-
ical formulas. Again, we focus on using fragments of FO
to specify mappings. Given a finite set ¥ of FO-sentences
over vocabulary S U T, we say that a mapping M from S
to T is specified by ¥ if for every pair of instances (I, J) €
Inst(S) x Inst(T), it holds that (I, J) € M if and only if
TUJ | @ forevery ® € X, where I U J represents the
instance of S U T obtained by taking the union of the rela-
tions in I and J (recall that S and T have no relation symbols
in common). For convenience, we write the last statement
as (I,J) | X. Therefore, we usually refer to a mapping
as a triple M = (S, T,X), and to the set of solutions as
SoLpm(I) ={J € Inst(T) | (I,J) = X}

Dependencies. Schema mappings from S to T are usu-
ally defined by source-to-target dependencies [Fagin et al.,
2005al, that is, by formulas of the form VZ(¢(Z) — (%)),
where (Z) is an FO-formula over S, ¥ (Z) is an FO-formula
over T, and Z is the tuple of free variables of both formulas.
We usually drop the outermost universal quantification when
specifying these constraints, and thus we only write o(Z) —
1(Z) for the previous formula. Depending on which frag-
ments of FO we use to define formulas ¢(Z) and ¢/(Z), we ob-
tain a wide range of possible fragments of source-to-target de-
pendencies. Given fragments £ and L5 of FO, an £1-TO-L,
dependency is a formula of the above form in which ¢(Z) is
an L;-formula over S and ¢ (Z) is an Ly-formula over T.
In [Fagin et al., 2005al, the language of CQ-T0O-CQ depen-
dencies was chosen as the preferred formalism for specify-
ing schema mappings, calling them source-to-target tuple-
generating dependencies (st-tgds). In this article, we also
consider full £-T0-CQ dependencies, which are formulas in
which the target part is a conjunctive query without existen-
tial quantifiers.

In this paper, we study mappings specified by sets of for-
mulas of the following form

VI (p(@) ¢ $(@)), “

where ¢(Z) is an FO-formula over S, ¢ (Z) is an FO-formula
over T, and Z is the tuple of free variables of both formulas.
Such a formula is called a bidirectional constraint [Arenas et

2700

al., 2014b]. We usually drop the outermost universal quantifi-
cation, and we write ©(Z) <> (%) for formula (4). We say
that ® is an (L, L5)-dependency between S and T, if ® is
of the form (4) with ©(Z) in £; and ¥ (Z) in £o. When the
source and target schemas are clear from the context, we will
only talk about (L4, £o)-dependencies. We also consider full
(L, CQ)-dependencies, defined as before.

Query answering in data exchange. An important as-
pect in data exchange is how to answer queries over a tar-
get schema. The most accepted semantics for query answer-
ing is the certain answers semantics: given a mapping M
from S to T, an instance I of S and a query Q over T, the
certain answers of () with respect to I under M is the set
CERTAINp((Q, I) = ﬂJes()LM(I) Q(J). In other words, a

tuple £ € CERTAIN o((Q, I) if and only if ¢ € Q(J) for every
solution J for I under M.

3 Closing Mappings through Bidirectional
Constraints

The problem of answering non-monotone queries is of great
interest in the data exchange area. In particular, the issue
of defining a meaningful semantics for such queries has re-
ceived a lot of attention, mainly because an open-world ap-
proach was followed in the initial definition of the notion
of solution in data exchange [Fagin et al., 2005al. Many
authors have proposed restrictions on this notion based on
some minimality criteria [Fagin ez al., 2005b; Libkin, 2006;
Afrati and Kolaitis, 2008; Hernich et al., 2011; Libkin and
Sirangelo, 2011; Gottlob et al., 2011; Hernich, 2012; 2013],
which has led to some different alternatives for the semantics
of non-monotone queries in this context.

Arguably, the main advantage of the data exchange frame-
work proposed in [Fagin e al., 2005a] is that mappings are
specified by using st-tgds, whose syntax and semantics are
defined in a clean way by relying on the well-understood
syntax and semantics of first-order logic. We are convinced
that having such a clean framework has been instrumental in
the adoption of this technology. Thus, as opposed to the ap-
proaches mentioned in the previous paragraph, our main goal
in this work is to propose and study a mapping-specification
language that can be defined in terms of the usual syntax and
semantics of first-order logic, and whose semantics is suitable
for both monotone and non-monotone queries.

Bidirectional constraints allow expressing in a natural way
what pieces of data should and should not be in the target.
This, together with the fact that their syntax and semantics is
inherited from first-order logic, makes these constraints quite
appealing to meet the aforementioned requirements. More-
over, as shown next, bidirectional constraints can be used to
give a closed-world semantics to a mapping specified by st-
tgds, as these constraints are expressive enough to encode
an extension of the classical notion of predicate comple-
tion [Clark, 1977] and, at the same time, an adaptation of Re-
iter’s formalization of the closed-world assumption [Reiter,
1977] to the case of st-tgds. This gives more evidence that
bidirectional constraints form a good mapping-specification
language that deserves careful consideration.

Let M = (S, T,) be a mapping specified by a set X of
st-tgds. Then a mapping M* from S to T is said to be a
closure of M if for every st-tgd () — ¥(Z) € 3, every
source instance I and every tuple ¢ of constants:

if £ € CERTAIN v (¥(Z), I),
then ¢ € CERTAIN v« (10(Z), I); and

if t & CERTAIN v (¢0(), I),
then ¢ € CERTAIN v+ (—t)(Z), I).

To the best of our knowledge, this formalization of the notion
of a closure of a mapping is new. Notice that this notion is an
extension of Clark’s predicate completion [Clark, 19771, as
in M* we complete the definition of the heads of the depen-
dencies in Y. Besides, this notion is also inspired by Reiter’s
formalization of the closed-world assumption [Reiter, 19771,
as if ¢)(t) cannot be inferred from X, then —¢)(¢) is added into
the theory.

A natural question is whether a closure of a mapping M
given by st-tgds can be expressed by using also st-tgds. The
following proposition gives a negative answer to this ques-
tion, even if we are allowed to use FO-T0-CQ dependencies.

Proposition 1. There is a mapping M= (S, T,), where &
is a set of st-tgds, for which no mapping M' = (S, T,X’) is
a closure, assuming that ¥/ is a set of FO-T0-CQ dependen-
cies.

This proposition follows from the fact that for every map-
ping M’ = (S, T, ') specified by a set &' of FO-T0-CQ
dependencies, every instance I of S, and every conjunctive
query Q(z) over T, it holds that CERTAIN p¢/ (—Q(Z),I) =
@. In fact, this property holds even if ¥’ is restricted to con-
tain a single copying dependency A(x) — A’(x). Thus, the
class of FO-T0-CQ dependencies is not expressive enough to
capture the certain answers semantics for the negation of con-
junctive queries, which is required for expressing the closure
of a mapping.

Proposition 1 tells us that some restrictions on the target

instances considered as solutions have to be imposed in order
to obtain the closure of a mapping. Target dependencies have
been used in data exchange as a primary way to restrict the
spaces of solutions of source instances [Arenas ef al., 2014al,
so they form a natural alternative to solve this problem. Un-
fortunately, the following proposition shows that this alterna-
tive does not work. Notice that in this proposition we use no-
tation M = (S, T, X, T") to represent a mapping with target
dependencies, where X is a set of FO-T0-CQ dependencies
and I is a set of FO-sentences over T'. Moreover, we assume
that J € SoLy(]) if and only if (I,J) = Y and J = T.
Again, this result holds even for a mapping M specified by a
single copying dependency A(z) — A'(z).
Proposition 2. There is a mapping M = (S, T, X), where &
is a set of st-tgds, for which no mapping M’ = (S, T,¥',T")
is a closure, assuming that ¥’ is a set of FO-T0-CQ depen-
dencies and 1" is a set of FO-sentences over T.

Bidirectional constraints come to the rescue at this point, as
it is possible to show that every mapping given by st-tgds has
a closure specified by a set of bidirectional constraints. In the

2701

rest of this section, we outline the proof of this result. In fact,
we provide an algorithm that given a mapping M specified
by a set of st-tgds, computes a mapping COMP(M) specified
by a set of bidirectional constraints such that COMP(M) is a
closure of M.

Our algorithm is based on query rewriting. Next we review
the terminology and results about this concept needed in our
algorithm. Let M = (S, T,), where X is a set of st-tgds,
and assume that () is a query over T. Then a query Q’ over S
is a rewriting of Q) over the source if for every I € Inst(S), it
holds that Q'(I) = CERTAIN o((Q, I). That is, to obtain the
set of certain answers of () over I under M, we just have to
evaluate its rewriting Q' over instance I.

The computation of a rewriting of a conjunctive query is
a basic step in the algorithm presented in this section. This
problem has been extensively studied in the literature [Levy
et al., 1995; Abiteboul and Duschka, 1998] and, in partic-
ular, in the data integration context [Halevy, 2000; 2001;
Lenzerini, 2002]. In fact, it is known that there exists an
exponential-time algorithm QUERYREWRITING that given a
mapping M = (S, T, ¥), with ¥ a set of st-tgds, and a con-
junctive query @ over T, computes a query Q' over S such
that Q" is in UCQ™ and Q' is a rewriting of) over the source.

We are ready to present our algorithm to compute a closure
of a mapping. In this algorithm, if z = (z1,...,zx), then
C(Z) is a shorthand for C(z1) A -+ A C(zy), where C(+)
is the unary built-in predicate introduced in the preliminaries
which distinguishes between constants and nulls.

Algorithm CLOSURE(M)

Input: M = (S, T,), where X is a set of st-tgds.

Output: cOMP(M) = (S, T, A), where A is a set of bidi-
rectional constraints and COMP(M) is a closure of M.

(1) Start with A as the empty set.
(2) For every st-tgd p(Z) — ¥(Z) € %, do the following:

(a) Use QUERYREWRITING(M, (Z)) to compute a
query «(Z) that is a rewriting of ¢(Z) over the

source.
(b) Add dependency a(Z) + (¥(Z) A C(Z)) to A.
(3) Return COMP(M) = (S, T, A). O

The following theorem establishes the correctness of algo-
rithm CLOSURE. Its proof is direct, and it is based on some
general properties regarding the relationship between the so-
lutions under a mapping and the solutions under its closure.

Theorem 1. Let M = (S, T,X), where X is a set of st-
tgds. Then CLOSURE(M) computes a closure of M in ex-
ponential time in the size of 3, which is specified by a set of
(UCQ™, CQ)-dependencies.

We conclude this section by pointing out that the previous
result provides evidence of the richness of the language of
bidirectional constraints. In what follows, we continue our
investigation of this language by studying two fundamental
problems in data exchange, namely the existence of solutions
and the query evaluation problems.

full (CQ, CQ)-dependencies

full (UCQ™, CQ)-dependencies

(CQ, CQ)-dependencies (UCQ™, CQ)-dependencies

data complexity in PTIME

in PTIME

NP-complete NP-complete

combined complexity TIZ -complete

1Y -complete

NEXPTIME-complete NEXPTIME-complete

Table 1: The complexity of the existence of solutions problem.

4 The Existence of Solutions Problem

As pointed out before, one of the main problems to be solved
in the data exchange area is the issue of computing a valid
translation of a source instance according to a mapping. The
natural decision problem associated to this issue is what
has been called the existence of solutions problem: to de-
cide, given a mapping M and a source instance I, whether
SoL(I) # @. For the case of a mapping specified by a set
of st-tgds, this problem is trivial as every source instance has
a solution. However, for more expressive mapping languages
the situation can be different, in particular for the case of bidi-
rectional constraints as shown in the following example.

Example 1. Take a simple setting M = (S, T,X), with
Y = {A(z) — R(z),B(x) — R(x)}. Then for the source
instance I = {B(1)}, we have that the instance J = {R(1)}
is a solution under M. Now consider the setting M’ =
(S, T, A), with A consisting of the following bidirectional
constraints:

A(z) +» R(x) and B(z) <> R(x).

As opposed to the previous case, I does not have any solution
under M’. O

In this section, we embark on a study of the complexity
of the existence of solutions problem for different types of
bidirectional constraints. Formally, given a class C of bidi-
rectional constraints, this problem is defined as follows:

Problem: EXISTENCEOFSOLUTIONS(C)

Input: Mapping M = (S, T, A), where A C C,
and an instance I of S

Question: Is SOL (1) # @7?

The starting point of our investigation is the class of
(CQ, CQ)-dependencies, which is the natural counterpart of
the class of st-tgds. Moreover, we consider the class of
(UCQ™, CQ)-dependencies, as they are needed in the algo-
rithm in Section 3 to compute the closure of a mapping given
by st-tgds. Finally, we consider the restrictions of these two
classes to the case of full dependencies, as full source-to-
target dependencies are widely used in theory and practice.

It is important to notice that the previous definition corre-
sponds to the combined complexity [Vardi, 1982] of the ex-
istence of solutions problem. As mapping specifications are
usually much smaller than source instances, it is also natural
in this context to consider the data complexity [Vardi, 1982]
of this problem, which is defined by assuming that a map-
ping M = (S, T,Y) is fixed, and then considering the input
to be the source instance alone. This problem is denoted by
EXISTENCEOFSOLUTIONS(M).

The following theorem summarizes both the combined
complexity results obtained in our investigation and, for the
sake of completeness, the data complexity results obtained in

[Arenas et al., 2014b]. The results in this theorem should
be read as follows. Let C be a class of bidirectional con-
straints. When we refer to the combined complexity of the
existence of solutions problem for C, we are talking about
the complexity of EXISTENCEOFSOLUTIONS(C). On the
other hand, when we say that the data complexity of the exis-
tence of solutions problem for C is in a complexity class N,
we mean that EXISTENCEOFSOLUTIONS(M) € N for ev-
ery mapping M defined by a set of bidirectional constraints
in C. Moreover, when we say that the data complexity of
the existence of solutions problem for C is N -complete, we
mean that the data complexity of the existence of solutions
problem for C is in A/, and there exists a mapping M,
defined by a set of bidirectional constraints in C such that
EXISTENCEOFSOLUTIONS (M) is A/-hard.

Theorem 2. Let C be any of the classes of bidirectional con-
straints shown in the header of Table 1. Then the data and
combined complexity of the existence of solutions problems
for C are as stated in Table 1.

The upper bounds in Table 1 for the combined complex-
ity of the existence of solutions problem are derived directly.
The lower bound in this table for the case of (CQ,CQ)-
dependencies, and thus also for the case of (UCQ™,CQ)-
dependencies, is shown via a reduction from TILING [Pa-
padimitriou, 1994], a well-known NEXPTIME-complete
problem. The input of this problem is a set of tile types
T = {to,...,tm}, relations H C T x TandV C T x T
(which represent horizontal and vertical adjacency constraints
between tile types), and an integer n given in unary. Then
the question to answer is whether there exists a tiling of a
2™ x 2™ square with tile types in 7', starting with tile type
tp in the origin and satisfying the constraints imposed by
H and V. The lower bound in Table 1 for the case of full
(CQ, CQ)-dependencies, and thus also for the case of full
(UCQ™, CQ)-dependencies, is shown via a reduction from
the problem of determining if a quantified Boolean formula
of the form Vz3y ¢(Z,) is true, where ¢ is a propositional
formula in 3-CNF and Z, § form a partition of the variables
mentioned in ¢. This problem is known to be IT5’-complete
[Stockmeyer, 1976; Wrathall, 1976].

5 The Query Evaluation Problem

A fundamental problem in data exchange is the computa-
tion of certain answers. In this section, we study in depth
the complexity of this problem for the case of bidirectional
constraints. In particular, we are interested in the complexity
of answering non-monotone queries, thus going beyond the
more classical scenario of positive queries.

Given a class C of bidirectional constraints and a class Q
of queries, the problem that we study is defined as follows:

2702

CcQ MON ucQ~t cQ ™™ ucQ~ FO
full (UCQ™, CQ)-dependencies in PTIME in PTIME in PTIME coNP-complete | coNP-complete | undecidable
(UCQ™, CQ)-dependencies | coNP-complete | coNP-complete | coNP-complete | coNP-complete | coNP-complete | undecidable
Table 2: The data complexity of the certain answers problem.
cQ ucQ* cQ™M ucQ™M cQ ™ ucQ~
- . EXPTIME- EXPTIME- coNEXPTIME- | coNEXPTIME-
= . P P
full (UCQ™, CQ)-dependencies | X4 -complete >4 -complete —complete _complete ~complete _complete
(UCQ=,CQ)-d denci coNEXPTIME- | coNEXPTIME- | coNEXPTIME- | coNEXPTIME- | coNEXPTIME- | coNEXPTIME-
Q™ CQ)-dependencies -complete -complete -complete -complete -complete -complete

Table 3: The combined complexity of the certain answers problem.

Problem: = CERTAINANSWERS(C, Q)

Input: Mapping M = (S, T,A), where
A C C, n-ary query Q € Q over T,
n-tuple a, and an instance I over S.

Question: Is @ in CERTAIN y((Q, I)?

As in the previous section, and given that queries are usually
much smaller than database instances, we also consider the
data complexity of the problem, in which the mapping M
and query () are considered to be fixed:

Problem: =~ CERTAINANSWERS(M, Q)
Input: n-tuple a, and an instance I over S.
Question: Is @ in CERTAIN y((Q, I)?

To study the complexity of these problems we consider the
class of conjunctive queries (CQ) and its extensions with dis-
junctions and negations. The issue of negation is specially
sensible and the results vary if we consider one, two or many
negations in the queries. In particular, we denote by cQ
the class of conjunctive queries with at most n negated atoms,
and by UCQﬁ["] the class of unions of conjunctive queries
with at most n negated atoms per disjunct (recall that CQ™
and UCQ " represent the classes of conjunctive queries with
negation and unions of conjunctive queries with negation,
respectively, without restrictions on the number of negated
atoms).

When we refer to the combined complexity of the certain
answers problem for C and Q, we are talking about the com-
plexity of CERTAINANSWERS(C, Q). When we say that the
data complexity of the certain answers problem for C and Q is
in a complexity class A/, we mean that for every mapping M
defined by some constraints in C and for every query @) € Q,
the problem CERTAINANSWERS (M, @) is in /. Moreover,
we say that the data complexity of the certain answers prob-
lem for C and Q is N -complete, if the problem is in N and
there exists a mapping M, defined by some constraints in C
and a query @y € Q such that CERTAINANSWERS (M, Qo)
is N-hard. Finally, we say that the data complexity of the
certain answers problem for C and Q is undecidable if there
exists a mapping M defined by some constraints in C and
a query 1 € Q such that CERTAINANSWERS(M1, Q1) is
undecidable.

Theorem 3. Let C be either the class of full (UCQ™, CQ)-
dependencies or the class of (UCQ™, CQ)-dependencies.

(1) If @ € {CQ,Mon,UCQ MM cQ™? UucQ™, Fo},
then the data complexity of the certain answers problem
for C and Q is as stated in Table 2.

2 If @ € {CQucQ*,cQ M ucQ™™ cQ
UCQ™}, then the combined complexity of the certain
answers problem for C and Q is as stated in Table 3.

Now we briefly discuss our results, starting with the data
complexity of the certain answers problem. The coNP-
completeness of the problem for (UCQ™, CQ)-dependencies
is consistent with the NP-completeness of the existence of
solutions problem for this type of dependencies (shown in
Table 1). In fact, the lower bound for the case of conjunc-
tive queries, which is also a lower bound for all the other
query languages considered in Table 2, is proved by slightly
modifying a reduction from 3-COLORABILITY used in [Are-
nas et al., 2014b] to prove the NP-hardness (in data com-
plexity) of the existence of solutions problem for the case
of (CQ, CQ)-dependencies. The upper bound for UCQ™
queries, which is also an upper bound for the query lan-
guages in the first four columns of Table 2, is shown by us-
ing a modified version of the chase procedure [Maier er al.,
1979], inspired by the techniques used in [Fagin er al., 2005a]
and [Fuxman er al., 2006]. In the case of full (CQ,CQ)-
dependencies, the chase procedure is again used to prove

the tractability of the problem for UCQﬁm queries, and the

lower bound for CQﬁ[Z] queries is proved by reducing 3-
CNF-SAT to the complement of our problem. It is impor-
tant to mention that the tractability for the case of mono-
tone queries requires of some techniques tailored to them,
since this class of queries has a semantic definition, as op-
posed to the other query languages in this article that have
syntactic definitions. Notice that ucQ” queries are mono-
tone, and thus the tractability for this class is obtained from
the tractability for monotone queries. Finally, if we consider
FO queries, then the problem becomes undecidable. To prove
this result we consider the embedding problem for finite semi-
groups, which is an undecidable problem [Evans, 1951; 1953;
1978; Gurevich, 1966] that has as input a finite partial semi-
group, and asks whether it can be embedded to a finite semi-
group. More precisely, we prove the undecidability for the
case of FO by constructing a fixed mapping M and a fixed
FO query @, and then providing a reduction from the em-
bedding problem for finite semigroups to the complement of

2703

CERTAINANSWERS (M, Q).

In the case of combined complexity, the proofs are similar.
We just would like to point out here that for UCQﬁm queries,
the upper bound follows directly from the techniques used
in the study of the data complexity for the same class, but
not fixing the mapping and the query, while the EXPTIME-
hardness is proved by providing a reduction from the evalu-
ation problem for Datalog programs containing a single rule,
which is an EXPTIME-complete problem [Gottlob and Pa-
padimitriou, 2003; Kolaitis ef al., 2006]. Besides, for the case

of CQ 2 queries, the lower bound is shown by providing a
reduction from the complement of the TILING problem de-
fined in Section 4.

The computation of certain answers has been extensively
studied for the case of st-tgds [Fagin et al., 2003; Arenas et
al., 2004; Libkin, 2006; Hernich, 2013] and also for a set-
ting including target-to-source dependencies [Fuxman et al.,
2006]. The latter case could be considered as a generaliza-
tion of our scenario, as a bidirectional constraint consists of
an st-tgd and a target-to-source dependency. However, this
derived target-to-source dependency may have disjunctions
in the right-hand side, making our setting incomparable with
the framework of [Fuxman er al., 2006] where only tuple-
generating dependencies are considered. Besides this, neither
the combined complexity of the query evaluation problem nor
the case of non-monotone queries were considered in [Fux-
man et al., 2006]. It is worth mentioning, though, that some
of the techniques introduced in [Fuxman er al., 2006] proved
to be useful in our case, and inspired some of our results.

5.1 LAV, GAY, and some tractable cases

As it can be seen in Tables 2 and 3, most of the results on
the complexity of the query evaluation problem are nega-
tive. Thus, it is natural to ask what kind of conditions could
be imposed in order to get tractability. In this section, we
study the computation of certain answers in two restricted
scenarios that have been widely studied in the data inte-
gration/exchange literature [Lenzerini, 2002] and have been
widely used in practice, namely the local-as-view (LAV) and
the global-as-view (GAV) scenarios.

A set A of (UCQ™, CQ)-dependencies is said to be LAV if
the left-hand side of every dependency in A is a conjunctive
query mentioning a single relational atom. Similarly, A is
said to be GAV if the right-hand side of every dependency in
A is a single relational atom (not including existential quan-
tifiers). A further restriction is to consider true-LAV and true-
GAV dependencies [Arocena et al., 2010]. In true-LAYV, the
left-hand side of every dependency must be a conjunctive
query mentioning a single relational atom which has no re-
peated variables, and every source relation must appear in a
dependency. Similarly, in true-GAYV, the right-hand of every
dependency must be a single relational atom with no repeated
variables (and no existential quantifiers), and every target re-
lation should appear in the right-hand side of a dependency.

Example 2. Dependency (3) in Section 1 is true-LAV. I' =
{A(z,y) A B(y) + R(z,z,y)} is GAV, but not true-GAV.
The set A in Example 1 is true-LAV and true-GAV. O

Unfortunately, the LAV and true-LAV restrictions do not

reduce the complexity of the query evaluation problem. More
specifically, all the lower bounds in Table 2 hold for the
case of true-LAV (and, thus, for the case of LAV). On the
other hand, the query answering problem can be easily solved
for the case of true-GAV. In fact, if M is defined by a set
of true-GAV dependencies, then it can be proved that for
every instance I such that SOLA(I) # @&, it holds that
[SOLA¢(I)| = 1. Hence, the certain answers can be obtained
by just executing the input query over a single solution.

Proposition 3. CERTAINANSWERS(M, Q) is in PTIME,
for every mapping M specified by a set of true-GAV
(UCQ™, CQ)-dependencies and every query Q in FO.

For the case of GAYV, the query answering problem is no
longer trivial as an instance can have many (potentially in-
finite) solutions. For instance, if I" is the set of dependen-
cies in Example 2 and I = {A(1,2), B(2)}, then for ev-
ery tuple R(a,b,c) such that a # b, we have that J =
{R(1,1,2), R(a,b,c)} is a solution for I. In fact, for the
case of GAY, it can be proved that the query answering prob-
lem is undecidable in data complexity for FO. Neverthe-
less, the next result shows that for a large class of non-
monotone queries, GAV dependencies do have good compu-
tational properties with respect to query answering.

Theorem 4. CERTAINANSWERS(M, Q) is in PTIME, for
every mapping M specified by a set of GAV (UCQ™,CQ)-
dependencies and every query Q in UCQ™.

Theorem 4 is proved by providing a polynomial time al-
gorithm for CERTAINANSWERS (M, Q) which uses a sub-
routine for the problem of verifying whether a truth as-
signment satisfies a propositional formula. Given that
the latter can be solved in polynomial time, we conclude
that CERTAINANSWERS(M, Q) can be solved in polyno-
mial time.

6 Concluding Remarks and Future Work

We have considered the use of bidirectional constraints to
specify schema mappings, showing their usefulness to define
the closure of a schema mapping. We have studied two fun-
damental problems in data exchange (existence of solutions
and query evaluation) for these new mapping specifications,
obtaining a wide range of results for different scenarios.

Several issues deserve further investigation. First, some
properties of the notion of closure of a mapping need to be
investigated in more depth, in particular, whether the closure
of a mapping is unique, and if this is not the case, what is
the relationship between the different closures of a mapping.
Second, a deeper study of the connection between our pro-
posal and some existing semantics for non-monotone queries
needs to be conducted, in particular in the data exchange con-
text [Libkin, 2006; Hernich, 2013].

Acknowledgements

The authors would like to thank Juan Reutter and the anony-
mous referees for their comments and suggestions. The au-
thors were partially funded by the Millennium Nucleus Cen-
ter for Semantic Web Research under Grant NC120004. M.
Arenas and G. Diéguez were also funded by Fondecyt grant
1131049.

2704

References

[Abiteboul and Duschka, 1998] Serge Abiteboul and
Oliver M. Duschka. Complexity of answering queries
using materialized views. In PODS, pages 254-263, 1998.

[Afrati and Kolaitis, 2008] Foto N. Afrati and Phokion G.
Kolaitis. Answering aggregate queries in data exchange.
In PODS, pages 129-138, 2008.

[Arenas et al., 2004] Marcelo Arenas, Pablo Barceld,
Ronald Fagin, and Leonid Libkin. Locally consistent
transformations and query answering in data exchange. In
PODS, pages 229-240, 2004.

[Arenas et al., 2014a] Marcelo Arenas, Pablo Barceld,
Leonid Libkin, and Filip Murlak. Foundations of Data
Exchange. Cambridge University Press, 2014.

[Arenas et al., 2014b] Marcelo Arenas, Gabriel Diéguez,
and Jorge Pérez. Expressiveness and complexity of bidi-
rectional constraints for data exchange. In Alberto Mendel-
zon Workshop, 2014.

[Arocena et al., 2010] Patricia C. Arocena, Ariel Fuxman,
and Renée J. Miller. Composing local-as-view mappings:
closure and applications. In ICDT, pages 209-218, 2010.

[Bernstein er al., 2006] Philip A. Bernstein, Todd J. Green,
Sergey Melnik, and Alan Nash. Implementing mapping
composition. In VLDB, pages 55-66, 2006.

[Clark, 1977] Keith L. Clark. Negation as failure. In Logic
and Data Bases, pages 293-322, 1977.

[Evans, 1951] T. Evans. The word problem for abstract alge-
bras. Journal of the London Mathematical Society, 26:64—
71, 1951.

[Evans, 1953] T. Evans. Embeddability and the word prob-
lem. Journal of the London Mathematical Society, 28:76—
80, 1953.

[Evans, 1978] T. Evans. Word problems. Bulletin of the
American Mathematical Society, 84(5):789-802, 1978.

[Fagin et al., 2003] Ronald Fagin, Phokion G. Kolaitis,
Renée J. Miller, and Lucian Popa. Data exchange: Se-
mantics and query answering. In ICDT, pages 207-224,
2003.

[Fagin ef al., 2005a] Ronald Fagin, Phokion G. Kolaitis,
Renée J. Miller, and Lucian Popa. Data exchange: seman-
tics and query answering. Theor. Comput. Sci., 336(1):89—
124, 2005.

[Fagin er al., 2005b] Ronald Fagin, Phokion G. Kolaitis, and
Lucian Popa. Data exchange: getting to the core. TODS,
30(1):174-210, 2005.

[Fuxman et al., 2006] Ariel Fuxman, Phokion G. Kolaitis,
Renée J. Miller, and Wang Chiew Tan. Peer data exchange.
TODS, 31(4):1454-1498, 2006.

[Gottlob and Papadimitriou, 2003] Georg Gottlob and Chris-
tos H. Papadimitriou. On the complexity of single-rule
datalog queries. Inf. Comput., 183(1):104-122, 2003.

[Gottlob er al., 2011] Georg Gottlob, Reinhard Pichler, and

Vadim Savenkov. Normalization and optimization of
schema mappings. VLDB J., 20(2):277-302, 2011.

2705

[Gurevich, 1966] Yuri Gurevich. The word problem for cer-
tain classes of semigroups. Algebra and Logic, 5:25-35,
1966.

[Haas et al., 2005] Laura M. Haas, Mauricio A. Herndndez,
Howard Ho, Lucian Popa, and Mary Roth. Clio grows up:
from research prototype to industrial tool. In SIGMOD
Conference, pages 805-810, 2005.

[Halevy, 2000] Alon Y. Halevy. Theory of answering queries
using views. SIGMOD Record, 29(4):40—47, 2000.

[Halevy, 2001] Alon Y. Halevy. Answering queries using
views: A survey. VLDB J., 10(4):270-294, 2001.

[Hernich et al., 2011] André Hernich, Leonid Libkin, and
Nicole Schweikardt. Closed world data exchange. TODS,
36(2):14, 2011.

[Hernich, 2012] André Hernich. Computing universal mod-
els under guarded tgds. In ICDT, pages 222-235, 2012.

[Hernich, 2013] André Hernich. Semantics for non-
monotone queries in data exchange and data integration.
In Data Exchange, Information, and Streams, volume 5 of
Dagstuhl Follow-Ups, pages 161-184. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013.

[Kolaitis et al., 2006] Phokion G. Kolaitis, Jonathan Pant-
taja, and Wang Chiew Tan. The complexity of data ex-
change. In PODS, pages 30-39, 2006.

[Lenzerini, 2002] Maurizio Lenzerini. Data integration: A
theoretical perspective. In PODS, pages 233-246, 2002.
[Levy ef al., 1995] Alon Y. Levy, Alberto O. Mendelzon,
Yehoshua Sagiv, and Divesh Srivastava. Answering

queries using views. In PODS, pages 95-104, 1995.

[Libkin and Sirangelo, 2011] Leonid Libkin and Cristina
Sirangelo. Data exchange and schema mappings in open
and closed worlds. J. Comput. Syst. Sci., 77(3):542-571,
2011.

[Libkin, 2006] Leonid Libkin. Data exchange and incom-
plete information. In PODS, pages 60—-69, 2006.

[Maier et al., 1979] David Maier, Alberto O. Mendelzon,
and Yehoshua Sagiv. Testing implications of data depen-
dencies. TODS, 4(4):455-469, 1979.

[Melnik et al., 2008] Sergey Melnik, Atul Adya, and
Philip A. Bernstein. Compiling mappings to bridge
applications and databases. TODS, 33(4), 2008.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computa-
tional complexity. Addison-Wesley, 1994.

[Reiter, 1977] Raymond Reiter. On closed world data bases.
In Logic and Data Bases, pages 55-76, 1977.

[Stockmeyer, 1976] Larry J. Stockmeyer. The polynomial-
time hierarchy. Theor. Comput. Sci., 3(1):1-22, 1976.

[Vardi, 1982] Moshe Y. Vardi. The complexity of relational
query languages (extended abstract). In STOC, pages 137—
146, 1982.

[Wrathall, 1976] Celia Wrathall. Complete sets and the
polynomial-time hierarchy. Theor. Comput. Sci., 3(1):23—
33, 1976.

