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Abstract
Aiming at ontology-based data access over temporal,
in particular streaming data, we design a language of
ontology-mediated queries by extending OWL 2 QL
and SPARQL with temporal operators, and investi-
gate rewritability of these queries into two-sorted
first-order logic with < and PLUS over time.

1 Introduction
Ontology-based data access (OBDA), one of the most promis-
ing applications of description logics, has recently been touted
as a key ingredient in data stream management systems [Cal-
bimonte et al., 2012; Baader et al., 2013; Özçep and Möller,
2014; Kharlamov et al., 2014]. Its role is to facilitate querying
data streams from heterogeneous sensor networks (measur-
ing temperature, vibration, wind speed and direction, blood
pressure, etc.) in order to detect, analyse and predict certain
events or situations. For example, we may want to detect areas
of the country that have been hit by blizzards—severe snow-
storms with low temperatures and strong winds for at least
three hours—using the weather stations’ sensors streaming raw
data such as (sensorId, temperature, timestamp) [Zhang et al.,
2012]. The OBDA component would give us an ontology,
O, that defines a high-level vocabulary—possibly including
the relation ‘area x was hit by a blizzard at time t’—which is
linked to the raw data by means of (say, R2RML) mappings.
Given a query in the vocabulary ofO such as ∃tBlizzard(x, t),
the system would first rewrite the pair (O,∃tBlizzard(x, t)),
called a temporal ontology-mediated query (TOMQ), into a
query over the original timestamped data and then evaluate it
using standard relational or stream data management systems.

The OBDA scenario outlined above is similar to the classi-
cal one [Calvanese et al., 2007a]. An essential difference, how-
ever, is that now we query temporal data and therefore, require
temporal constructs in the ontology and/or query languages,
which, on the other hand, should not undermine the rewritabil-
ity property of TOMQs. As temporal extensions of knowledge
representation formalisms are notorious for their bad computa-
tional behaviour [Lutz et al., 2008], a first natural step could be
to keep standard atemporal OBDA languages (e.g., OWL 2 QL
or DL-Lite logics), assuming that ontology axioms hold at all
moments of time, but add temporal constructs to queries. This
approach was taken by [Gutiérrez-Basulto and Klarman, 2012;

Baader et al., 2013; Borgwardt et al., 2013; Özcep et al., 2013;
Klarman and Meyer, 2014] and shown to preserve query
rewritability. Note, however, that the inability to define tempo-
ral predicates such as Blizzard(x, t) in ontologies leaves the
burden of encoding them within queries to the user, which
goes against the OBDA paradigm. Moreover, natural queries
such as ‘check if a weather station has been serviced every 24
hours’ are not expressible in these languages.

The first attempt to introduce linear-time temporal logic
(LTL ) operators to the TOMQs’ ontologies was made by Ar-
tale et al. [2013b], who showed that the operators 3F and
3P (sometime in the future and past) on the left-hand side of
DL-Lite axioms allow rewritings of conjunctive queries into
the two-sorted first-order language FO(<) with variables of
sorts ‘object’ and ‘time’ and an explicit temporal precedence
relation <. On the other hand, it was observed that the next-
and previous-time operators ©F and ©P —perhaps the most
powerful and versatile temporal modelling constructs—do not
support FO(<)-rewritability.

The aim of this paper is to launch a systematic investigation
of rewritability of TOMQs with arbitrary temporal operators.
Apart from FO(<), we consider two more target languages
for rewritings: FO(<,+), which complements FO(<) with a
ternary predicate PLUS for ‘addition’ and still ensures query
evaluation in LOGTIME-uniform AC0 for data complexity;
and monadic second-order logic MSO(<), which guarantees
query evaluation over finite linear orders (flows of time) in
NC1 ⊆ LOGSPACE for data complexity. Axioms of our on-
tologies are given in clausal normal form

λ1 u · · · u λn v λn+1 t · · · t λn+m, (1)

where the λi are all either DL-Lite concepts or roles, pos-
sibly prefixed with the operators ©F , ©P , 2F and 2P (al-
ways in the future and the past). Let o ∈ {2,©,2©} and
c ∈ {bool, horn, krom, core}. We denote by DL-Liteoc the
temporal description logic with axioms of the form (1), where
the λi can only use the (future and past) operators indicated in
o, andm ≤ 1 if c = horn; n+m ≤ 2 if c = krom; n+m ≤ 2
and m ≤ 1 if c = core; and arbitrary n, m if c = bool. For
example, the DL-Lite©horn axioms

l

0≤i≤2

©i
F BlizzardCondition v ©jF Blizzard, j = 0, 1, 2,

SevereSnow u LowTemp u StrongWind v BlizzardCondition,
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where ©iF is a sequence of i-many ©F , define the temporal
concept Blizzard (the concepts on the left-hand side of the
second axiom are defined via mappings from the sensor data),
while the DL-Lite©core axiom Scheduled v ©24

F Scheduled can
be used to detect ‘service every 24 hours’ (see below).

The queries in our TOMQs range from atoms of the form
A(x, t) or P (x, y, t), for A a concept and P a role name, in
atomic TOMQs (or TOMAQs), to arbitrary positive temporal
concepts and roles such as (BlizzardU(RaintFlooding))(x, t)
in instance TOMQs (TOMIQs), where U is the ‘until’ opera-
tor, and further to two-sorted FO-formulas built from positive
temporal concepts and roles. It is well known that, due to the
open-world semantics of OBDA, negation in queries results
in non-tractable (often undecidable) query evaluation even
in the atemporal case. In classical OBDA, a way to retain
all FO-constructs in queries was proposed by Calvanese et
al. [2007b] who interpreted them under an epistemic seman-
tics. We follow in their footsteps: for example, the query
Scheduled(x, t) ∧ ¬Serviced(x, t) returns weather stations x
that are not known (or not certain) to have been serviced at
scheduled times t. With this semantics, TOMQs cover all first-
order features of SPARQL 1.1 under the OWL 2 QL entailment
regime [Kontchakov et al., 2014]. Although the variables in
TOMQs range over the active domain, their positive temporal
concepts can express (via qualified existential restrictions and
role intersections) tree-shaped CQs with one answer variable.

To only focus on rewritability, we assume that data instances
are given as finite ABoxes with timestamped atoms of the form
A(a, n) and P (a, b, n), n ∈ Z (e.g., generated from streamed
data via mappings and the window operator [Calbimonte et
al., 2012]). We proceed in two steps. First, we investigate
rewritability of TOMQs without roles, which can be regarded
as LTL TOMQs. Using automata-theoretic techniques, we
obtain the following rewritability classification:

TOMAQs TOMIQs / TOMQs
LTL2

α LTL©α LTL2©
α LTL2

α LTL©α LTL2©
α

bool MSO(<)
horn MSO(<) FO(<) MSO(<)
krom FO(<) MSO(<)
core FO(<,+) MSO(<)∗ FO(<) FO(<,+) MSO(<)∗

∗It is still open whether these can be improved to FO(<,+); all other
results in the table are optimal.

In the second step, we reduce FO-rewritability of DL-Lite2©horn
TOMQs to FO-rewritability of certain LTL2©

horn TOMQs. In par-
ticular, we prove that all DL-Lite2core TOMQs are FO(<)-rewri-
table, while DL-Lite©core TOMQs are FO(<,+)-rewritable. On
the other hand, we show that some DL-Lite2horn TOMQs are
NC1-hard for data complexity, and so they cannot be FO-
rewritable even using arbitrary numeric predicates. All omit-
ted proofs can be found at tinyurl.com/q6ahvnt.

2 Temporal Ontology-Mediated Queries
First we remind the reader of basic DL-Lite logics [Cal-
vanese et al., 2007a; Artale et al., 2009]. Their language
contains object names a0, a1, . . . , concept names A0, A1, . . . ,
and role names P0, P1, . . . . Roles R and basic concepts B
are defined as R ::= Pk | P−k and B ::= Ak | ∃R. For
c ∈ {bool, horn, krom, core}, we denote by DL-Litec the de-

scription logic with concept and role inclusions of the form (1)
such that the λi are all either basic concepts or roles. As usual,
we assume that the empty u is > and the empty t is ⊥. Note
that DL-Litehorn and DL-Litebool contain role inclusions with
monotone Boolean operators.

In temporal DL-Lite, we also allow applications of the
operators ©F , ©P , 2F , 2P to basic concepts and roles. For
any o ∈ {2,©,2©}, DL-Liteoc is the temporal description
logic with concept and role inclusions of the form (1), where
each λi is a basic concepts or roles are (possibly) prefixed by
a string of (future or past) operators indicated in o.

A DL-Liteoc TBox T (RBox R) is a finite set of DL-Liteoc
concept (role) inclusions; O = T ∪R is a DL-Liteoc ontology.
An ABox (or data instance), A, is a finite set of atoms of the
form A(a, `) and P (a, b, `), where a, b are object names and
` ∈ Z. We denote by ind(A) the set of object names in A, by
minA and maxA the minimal and maximal numbers in A,
and set tem(A) = {n ∈ Z | minA ≤ n ≤ maxA}. Without
loss of generality, we assume that minA = 0 and maxA ≥ 1.

A temporal interpretation is a pair I = (∆I , ·I(n)), where
∆I 6= ∅ and I(n) = (∆I , aI0 , . . . , A

I(n)
0 , . . . , P I(n)0 , . . . ) is

a standard DL interpretation for each time instant n ∈ Z, that
is, aIi ∈ ∆I , AI(n)i ⊆ ∆I and P I(n)i ⊆ ∆I ×∆I . Thus, we
assume that the domain ∆I and the interpretations aIi ∈ ∆I

of the object names are the same for all n ∈ Z. The DL and
temporal constructs are interpreted in I(n) as follows:

(P−i )II(n) = {(x, y) | (y, x) ∈ P I(n)i },
(∃R)I(n) =

{
x | (x, y) ∈ RI(n), for some y

}
,

(2Fλ)I(n) =
⋂

k>n
λI(k), (©Fλ)I(n) = λI(n+1),

and symmetrically for 2P and ©P ; as usual, ⊥ is interpreted
by ∅ and > by ∆I for concepts and by ∆I × ∆I for roles.
Concept and role inclusions are interpreted in I globally in the
sense that (1) holds in I if

⋂
λI(n)i ⊆

⋃
λI(n)j for all n ∈ Z.

We call I a model of (O,A) and write I |= (O,A) if all
concept and role inclusions fromO hold in I , and aI ∈ AI(n)
for A(a, n) ∈ A, and (aI , bI) ∈ P I(n) for P (a, b, n) ∈ A.
Remark 1. Note that the LTL operators 3F , 3P , U and S
(‘since’) can be expressed in DL-Lite2©bool [Fisher et al., 2001;
Artale et al., 2013a]. DL-Lite2horn extends the ontology lan-
guage TQL of Artale et al. [2013b] as 3PA v B is equivalent
to A v 2FB. Note also that each of our ontology languages
can say that a role or basic concept λ is expanding (using
λ v ©Fλ in DL-Lite©core and λ v 2Fλ in DL-Lite2core) or rigid
(using, in addition, λ v ©Pλ and λ v 2Pλ).

To query temporal ontologies with data, we suggest the
following language inspired by the recently standardised
SPARQL 1.1 entailment regimes (www.w3.org/TR/sparql11-
entailment); cf. also [Motik, 2012; Gutierrez et al., 2007].

Positive temporal concepts κ and positive temporal roles %
are defined by the grammars

κ ::=> | Ak | ∃R.κ | κ1 u κ2 | κ1 t κ2 | opκ | κ1 op
′κ2,

% ::=R | %1 u %2 | %1 t %2 | op % | %1 op′%2,
where op ranges over ©F , 3F , 2F , ©P , 3P , 2P and op′ over
U , S. The extensions of κ and % in a temporal interpretation
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I are computed using the definition above and the following
clauses (given only for κ and the future-time operators):

(∃R.κ)I(n) =
{
x | (x, y) ∈ RI(n), for some y ∈ κI(n)

}
,

(κ1 u κ2)I(n) = κI(n)1 ∩ κI(n)2 ,

(κ1 t κ2)I(n) = κI(n)1 ∪ κI(n)2 ,

(3Fκ)I(n) =
⋃

k>n
κI(k),

(κ1 U κ2)I(n) =
⋃

k>n

(
κI(k)2 ∩

⋂
n<m<k

κI(m)
1

)
.

A DL-Liteoc ontology-mediated instance query (TOMIQ) is a
pair of the form (O,κ) or (O, %), for a DL-Liteoc ontology O.
A certain answer to (O,κ) over an ABox A is a pair (a, `)
such that a ∈ ind(A), ` ∈ tem(A) and aI ∈ κI(`) for every
I |= (O,A). A certain answer to (O, %) over A is a triple
(a, b, `) with a, b ∈ ind(A), ` ∈ tem(A) and (aI , bI) ∈ %I(`)
for every I |= (O,A). Let ans(O,κ,A) denote the set of
certain answers to (O,κ) over A, and similarly for (O, %).

As a technical tool in our proofs, we also require ‘certain an-
swers’ in which ` can range over the whole Z rather than only
the active domain tem(A); we denote the set of such certain
answers over A and Z by ansZ(O,κ,A) or ansZ(O, %,A).
Example 2. Let O={©PA v B, ©PB v A}, A={A(a, 0)}
and κ = ©2

FB. Then aI ∈ BI(2n+1), for any n ≥ 0 and
I |= (O,A). So, ansZ(O,κ,A) = {(a, 2n + 1) | n ≥ 0}
but ans(O,κ,A) = {(a, 1)} since tem(A) = {0, 1}.

Given an ABox A and convex D ⊇ tem(A), denote by
SD
A the two-sorted structure with object domain ind(A) and

temporal domain D such that SD
A |= A(a, `) iff A(a, `) ∈ A

and SD
A |= P (a, b, `) iff P (a, b, `) ∈ A, for concept and role

names A and P . Let q = (O,κ) be a TOMIQ and Φ(x, t) a
constant-free FO-formula whose signature is the concept and
role names in q,< and =. We call Φ(x, t) an FO(<)-rewriting
of q if, for any ABox A, a ∈ ind(A) and ` ∈ tem(A), we
have (a, `) ∈ ans(q,A) iff Stem(A)

A |= Φ(a, `). If Φ(x, t)
also uses the predicate PLUS(k, n1, n2) (for k = n1 + n2)
then it is called an FO(<,+)-rewriting of q. FO-rewritings
of TOMIQs (O, %) are defined analogously. Note that FO-
formulas using < and PLUS as built-in predicates can be eval-
uated by standard relational or stream database management
systems, and so are an appropriate target for query rewriting.
Example 3. Consider q = (O, A), where O is the same as in
Example 2. It is not hard to see that

∃s, n [(A(x, s) ∧ (t− s = 2n ≥ 0)) ∨
(B(x, s) ∧ (t− s = 2n+ 1 ≥ 0))]

is an FO(<,+)-rewriting of q, where t − s = 2n ≥ 0
stands for ∃k

(
PLUS(k, n, n) ∧ PLUS(t, s, k) ∧ (k ≥ 0))

and t−s = 2n+1 ≥ 0 is defined similarly. (The constant 0 is
obviously definable.) Note that q is not FO(<)-rewritable
since properties such as ‘t is even’ are not definable by
FO(<)-formulas [Libkin, 2004].
Example 4. For a word e = (e0, . . . , en−1) ∈ {0, 1}n, take
Ae = {B0(a, n)} ∪ {Aei(a, i) | i < n } and let O′ contain

©
FBk uA0 v Bk and ©

FBk uA1 v B1−k, k = 0, 1.

One can check that (a, 0) is a certain answer to (O′, B0) over
Ae iff the number of 1s in e is even (parity). It follows that
(O′, B0) is not FO-rewritable even using arbitrary numeric
predicates [Arora and Barak, 2009].

If we replace Stem(A)
A in the definition above with SZ

A, then
we call Φ(x, t) an FOZ(<)- or FOZ(<,+)-rewriting of q.
Finding FOZ-rewritings is often a first step in the construction
of FO-rewritings, which are usually more involved.

Example 5. Suppose O = {A v ©2
FA, B v ©3

FB} and
κ = 3F (A uB). Then

∃s, u, v, n,m [(t < s) ∧A(x, u) ∧ (s− u = 2n ≥ 0) ∧
B(x, v) ∧ (s− v = 3m ≥ 0)]

is an FOZ(<,+)-rewriting of (O,κ) but not an FO(<,+)-
rewriting because s can be outside the active domain tem(A).

A temporal ontology-mediated query (TOMQ) is a pair
(O, ψ), where ψ is an FO-formula built from atoms κ(x, t),
%(x, y, t) and t < t′, with κ and % being any positive tempo-
ral concept and role, x and y object variables, and t and t′
temporal variables. Given an ABox A, (O, ψ) is evaluated
over the two-sorted structure with the object domain ind(A)
and the temporal domain tem(A), where κ(a, `) holds true iff
(a, `) ∈ ans(O,κ,A), and likewise for %(a, b, `). Thus, simi-
larly to the SPARQL 1.1 entailment regime, we interpret the
DL and temporal constructs of TOMIQs in arbitrary temporal
models (over Z), while the object and temporal variables of
TOMQs range over the active domains only.

Example 6. Suppose O = {Scheduled v ©24
F Scheduled},

ψ(x, t) = Scheduled(x, t) ∧ ¬Serviced(x, t) and A contains
Scheduled(a, 0) as well as entries Serviced(a, `) made by a
serviceman. Then (O, ψ) returns all pairs (a, 24n) such that
24n ≤ maxA and there is no entry Serviced(a, 24n) in A.

FO-rewritings of TOMQs are defined similarly to TOMIQs.
We generalise [Calvanese et al., 2007b]:

Theorem 7. If all constituent TOMIQs of a TOMQ q are
FO(<)- or FO(<,+)-rewritable, then q is also FO(<)- or,
respectively, FO(<,+)-rewritable.

From now on we only focus on rewritability of TOMIQs.

3 Rewriting LTL TOMQs
We begin our study of FO-rewritability by considering ontolo-
gies without role names and assuming that all ABoxes contain
a single object name, say a. To simplify notation, we will omit
a from the ABox assertions, interpretations, certain answers,
etc., and writeA(`) instead ofA(a, `) and assume that answers
to TOMIQs are subsets of tem(A) rather than {a} × tem(A),
and that FO-rewritings Φ(x, t) are one-sorted FO-formulas
ϕ(t). Ontologies in this restricted language can be regarded
as formulas of the propositional temporal logic LTL given in
clausal normal form (1), and so we denote the corresponding
restrictions of DL-Liteoc by LTLo

c . In this context, positive
temporal concepts are simply negation-free LTL -formulas.

As shown by Example 4, some LTL©horn TOMAQs cannot
be FO(<,+)-rewritable. On the other hand, relying on the
well-known fact that the semantics of temporal formulas can
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be encoded by monadic second-order (MSO) formulas (built
from atoms of the form A(t), t = t′ and t < t′ using the
Booleans, first-order quantifiers ∀t, ∃t and second-order quan-
tifiers ∀A and ∃A), one can prove the following:
Theorem 8. All LTL2©

bool TOMQs are MSO(<)-rewritable.
It follows that, for any LTL2©

bool TOMQ q, one can build
an NFA accepting an ABox A and ` ∈ tem(A) written on
its tape iff ` ∈ ans(q,A) [Straubing and Weil, 2010], and
that the evaluation problem for q is in NC1 for data complex-
ity [Ladner and Fischer, 1980]. On the other hand, we also
have:
Theorem 9. There exist an LTL©horn TOMAQ and LTL2

krom and
LTL©krom TOMIQs that are NC1-hard for data complexity; in
particular, they are not FO-rewritable even with arbitrary
numeric predicates.
Proof sketch. It is known that there exist NC1-complete
regular languages [Barrington et al., 1992]. Given an NFA
A and input a = a0 . . . an−1, we take concept names Aa
and Bq for tape symbols a and states q of A, and then set
Aa = {Bq1(n)}∪{Aai(i) | i < n }, where q1 is the accepting
state, and O = {©FBq′ u Aa v Bq | q →a q

′ }. Then A
accepts a iff 0 ∈ ans(O, Bq0 ,Aa), for the initial state q0.
Next, letO′ containNquBq v ⊥ and> v BqtNq , for each
state q, and let κ = Bq0 t

⊔
q→aq′

3P3F (©FBq′ uAa uNq).
Then A accepts a iff 0 ∈ ans(O′,κ,Aa). q

Next, we show the FO(<)- and FO(<,+)-rewritability re-
sults from the table in the introduction. To begin with, we fo-
cus on temporal ontology-mediated atomic queries (TOMAQs)
of the form (O, A), where A is a concept name.
Theorem 10. Any LTL©krom TOMAQ is FO(<,+)-rewritable.
Proof sketch. Suppose q = (O, A) is an LTL©krom TOMAQ.
By a literal, L, we mean a concept name in q or its negation.
We use©nL in place of©nF L if n > 0, L if n = 0, and©−nP L
if n < 0. We write O |= L v ©kL′ if I |= L v ©kL′ in
every model I of O. For any ABox A consistent with O, we
have:

` ∈ ansZ(O, A,A) iff either O |= > v A
or O |= B v ©`−nA, for some B(n) ∈ A.

Given literals L and L′, let AL,L′ be an NFA whose tape
alphabet is {0}, the states are the literals, with L initial and L′
accepting, and whose transitions are of the form L1 →0 L2,
for O |= L1 v ©L2 (without loss of generality we assume
that O does not contain nested ©). It is easy to see that AL,L′
accepts 0k (k > 0) iff O |= L v ©kL′. By [Chrobak, 1986;
To, 2009], there areN = O(|AL,L′ |2) arithmetic progressions
ai + biN = {ai + bi ·m | m ≥ 0}, 1 ≤ i ≤ N , such that
0 ≤ ai, bi ≤ |AL,L′ | and AL,L′ accepts 0k iff k ∈ ai + biN
for some i, 1 ≤ i ≤ N . These progressions give rise to the
FO-rewriting we need. To illustrate, suppose q = (O, A) and

O = {A v ©B, B v ©C, C v ©D, D v ©A,
D v ©E, E v ©D}.

The NFA AB,A (more precisely, the states reachable from B)
is shown below, and for L ∈ {A,C,D,E}, AL,A is the same

B A

C
D

E

NFA but with the initial state L. It is readily seen that AB,A
accepts 0k iff k ∈ 3 + 2N, which can be described by the
formula

ϕB,A(t) = ∃s, n [B(s) ∧ (t− s = a+ bn ≥ 0)],

where with a = 3, b = 2, t − s = a + bn ≥ 0 is defined
as in Example 3. Similarly, for AE,A, we have a = b = 2.
(Note that in general more than one progression is needed to
characterise automata AL,A.) To obtain an FO(<,+)- and
FOZ(<,+)-rewriting of q, we take a disjunction of ϕL,A(t),
for all literals L. q

Theorem 11. Any LTL2
bool TOMAQ is FO(<)-rewritable.

Proof sketch. Given an LTL2
bool-ontology O, we construct an

NFA A that takes as input an ABox A written as the word
A0, . . . ,Ak, where k = maxA and Ai = {A | A(i) ∈ A}.
Let Σ be the set of temporal concepts inO and their negations.
Each state of A is a maximal set S ⊆ Σ that is consistent with
O; let S be the set of all such states. For S, S′ ∈ S and a tape
symbol (set of concept names) X , we set S →X S′ just in
case X ⊆ S′, 2Fβ ∈ S iff β,2Fβ ∈ S′, and 2Pβ ∈ S′ iff
β,2Pβ ∈ S. A state S ∈ S is accepting if A has an infinite
‘ascending’ chain S →∅ S1 →∅ . . . ; S is initial if A has an
infinite ‘descending’ chain · · · →∅ S1 →∅ S. The NFA A
simulates O in the following sense: for any ABox A, concept
name A and ` ∈ Z, we have ` ∈ ansZ(O, A,A) iff A does
not contain an accepting path S0 →X1

· · · →Xm
Sm (S0

initial and Sm accepting) such that A /∈ S`, Xi+j = Aj if
0 ≤ j ≤ k, and Xj = ∅ otherwise, for some 0 < i ≤ m− k.

Define an equivalence relation, ∼, on S by taking S ∼ S′
iff S = S′ or A has a cycle with both S and S′. Let [S] be
the ∼-equivalence class of S. One can check that S →X S′

implies S1 →X S′, for any S1 ∈ [S]. Let A′ be the NFA
with states [S], for S ∈ S, and transitions [S] →X [S′] iff
S1 →X S′1, for some S1 ∈ [S] and S′1 ∈ [S′]. The initial
(accepting) states of A′ are all [S] with initial (accepting) S.
The NFA A′ also simulates O and contains no cycles other
than trivial loops, which makes it possible to express the
simulation condition by an FO(<)-formula. For example, A′
for O = {A v 2PB, 2PB v C} is shown below, where all
states are initial and accepting, and negated concepts omitted:

[S1]
{2PB,B,A,C}
{2PB,B,C} [S′

2]
{2PB,C}

[S2]
{2PB,A,C} [S3]

2{B,C}

2{C}

2{A,C}

2{A,B,C}

2{B,C}

2{B,C}

2{B,C}

Let q = (O, C). Take all accepting paths π in A′ with
pairwise distinct states at least one of which has a set without
C. Thus, for π = [S1] →{A} [S2] →∅ [S3], a set in [S3] has
no C, and the simulation condition for π, which makes sure
that ¬C holds at t, can be written as

∃t1, t2
[
∀t′
(
(t′ < t1)→ loop[S1](t

′)
)
∧ sym{A}(t1) ∧

∀t′
(
(t1 < t′ < t2)→ loop[S2](t

′))
)
∧ sym∅(t2) ∧

∀t′
(
(t′ > t2)→ loop[S3](t

′)
)
∧ (t ≥ t2) ∧ ¬C(t)

]
,
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where sym{A}(t) = A(t) ∧ ¬B(t) ∧ ¬C(t) and sym∅(t) =

¬A(t) ∧ ¬B(t) ∧ ¬C(t) define transitions→{A} and→∅ in
π, and loop[S1] = >, loop[S3] = ¬A(t) and loop[S2] = ⊥ say
that [S1] and [S3] have loop transitions with any input and any
input but A, respectively, but [S2] has no loop. To obtain an
FO(<)- and FOZ(<)-rewriting of q, we take a disjunction of
such formulas for all accepting paths π in A′ and negate it. q

FO-rewritings of LTL©core and LTL2
horn TOMIQs can now be

constructed by induction on the structure of concepts using the
fact that any consistent (O,A) in these languages has a single
canonical model providing answers to all TOMIQs with the
given ontology (it will be formally defined in Section 4). For
example, an FOZ(<)-rewriting of (O, A1 U A2) is defined as

∃s
[(

(s > t)∧ϕA2
(s)
)
∧∀u

(
(t < u < s)→ ϕA1

(u)
)]
, (2)

where ϕAi(t) is an FOZ(<)-rewriting of (O, Ai). Note, how-
ever, that such FOZ(<)-rewritings are not in general FO(<)-
rewritings as they may refer to time instants outside the active
domain tem(A); cf. Example 5. To cope with this problem,
we require (constant-free) sentences ϕkA, for any concept A
and k 6= 0, such that, for every ABox A consistent with O,

– Stem(A)
A |= ϕkA iff k + maxA ∈ ansZ(O, A,A), k ≥ 1,

– Stem(A)
A |= ϕkA iff k ∈ ansZ(O, A,A) and k ≤ −1.

The existence of such sentences, called witnesses for (O, A)
and k, follows from the proofs of Theorems 10 and 11. Instead
of (2), we can now take the infinite ‘formula’

(2) ∨
[
∀u ((t < u)→ ϕA1

(u)) ∧
∨
k>0

(
ϕkA2
∧
∧

0<i<k

ϕiA1

)]
.

It turns out that we can make it finite by observing that the
canonical models are ultimately periodical with at most expo-
nential period (see the full paper). Thus, we obtain
Theorem 12. (i) Any LTL©core TOMQ is FO(<,+)-rewritable.

(ii) Any LTL2
horn TOMQ is FO(<)-rewritable.

4 OBDA with Temporal DL-Lite
Now we transfer the rewritability results obtained above to
certain DL-Lite2©horn TOMIQs. To simplify presentation, we
assume that our ontologies do not contain nested temporal
operators and ⊥ (and so they are always consistent with any
data); a proof without this assumption is given in the full paper.

Observe first that rewritability of TOMIQs of the form
(O, %) can be easily reduced to rewritability of LTL2©

horn
TOMIQs because only the RBox R in O has to be taken
into account. We assume that with every role inclusion (e.g.,
2FRu©FQ

− v T ) the RBox also contains the corresponding
inclusion for the inverse roles (that is, 2FR

− u©FQ v T−).
We treat the roles in R and % as concept names and denote
the resulting LTL2©

horn TOMIQ by (R∗, %∗). If it has an FO-
rewriting ϕR∗, %∗(t), then we replace every P (s) in it with
P (x, y, s), every P−(s) with P (y, x, s), and denote the re-
sulting FO-formula by ΦO,%(x, y, t).
Theorem 13. For every DL-Lite2©horn TOMIQ (O, %) with
O = T ∪ R, if ϕR∗, %∗(t) is an F -rewriting of (R∗, %∗) then
ΦO,%(x, y, t) is an F -rewriting of (O, %), where F is FO(<)
or FO(<,+).

However, this simple reduction to LTL does not work for
TOMIQs of the form (O,κ). The main reason is that the
RBox in O can have a strong impact on its TBox.

Example 14. Let O = T ∪ R, T = {B v ∃R,∃Q v A}
andR = {R v ©FQ}. It is not hard to see that the following
is an FO(<)-rewriting of (O, A):

A(x, t) ∨ ∃y Q(x, y, t) ∨ ∃y R(x, y, t− 1) ∨B(x, t− 1).

It can also be constructed by treating T as an LTL©core-ontology,
but only if the connection axiom ∃R v ©F∃Q is added to T .

To understand what connection axioms are required for any
given DL-Lite2©horn TOMIQ (O,κ), we first define a canon-
ical model (or chase) for (O,A), which will also be used
to prove our main Theorems 17 and 21. Let C be a set of
atoms of the form A(a, n), ∃R(a, n) and R(a, b, n), possibly
prefixed by temporal operators and such that P (a, b, n) ∈ C
iff P−(b, a, n) ∈ C. Denote by cl(C) the result of applying
non-recursively the following rules to (the same) C:

– if R(a, b, n) ∈ C then we add ∃R(a, n) to C;

– if (λ1 u · · · u λk v λ) ∈ O and λi(a, n) ∈ C, for all
i = 1, . . . , k, then we add λ(a, n) to C;

– if ∃R(a, n) ∈ C then we add R(a, aRn, n) to C, where
aRn is a new object name (called a witness for ∃R(a, n));

– if 2Fλ(a, n) ∈ C then add λ(a,m) to C for all m > n;

– if λ(a,m) ∈ C for all m > n, then add 2Fλ(a, n) to C;

– if ©Fλ(a, n) ∈ C then add λ(a, n+ 1) to C;

– if λ(a, n) ∈ C then add ©Fλ(a, n− 1) to C;

and symmetrical rules for 2P and©P . Then we set cl0(C) = C
and, for any successor ordinal ξ + 1 and limit ordinal ζ,

clξ+1(C) = cl(clξ(C)) and clζ(C) =
⋃

ξ<ζ
clξ(C).

Let N be the number of temporal operators in O. We regard
CO,A = clω·N (A) as an interpretation whose domain ∆CO,A

comprises ind(A) and the witnesses aRn and the interpreta-
tion function is defined by taking aCO,A = a, for a ∈ ind(A),
and a ∈ SCO,A(`) iff S(a, `) ∈ CO,A, for concept or role
names S. We call CO,A the canonical model of (O,A).

Example 15. Suppose that O = {A v 2F∃P, 2F∃R v B,
P v ©FR, R v ©FR} and A = {A(a, 0)}. The canonical
model of (O,A) is depicted below:

a
0 A 1 B 2 B 3 B

aP 1

aP 2
aP 3
· · ·

P R

P

R

R
P

Note that its construction requires ω + 1 applications of cl.

Theorem 16. For any DL-Lite2©horn TOMIQs (O,κ) and
(O, %), any ABox A, a, b ∈ ind(A) and ` ∈ Z, we have

(a, `) ∈ ansZ(O,κ,A) iff a ∈ κCO,A(`),

(a, b, `) ∈ ansZ(O, %,A) iff (a, b) ∈ %CO,A(`).
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Let (O,κ) be a DL-Lite2©horn TOMIQ with O = T ∪ R.
For any role R in O, we consider the canonical model
CR,{R(a,b,0)} and denote by rRn , n ∈ Z, the set of roles Q
in O such that Q(a, b, n) ∈ CR,{R(a,b,0)}. It is known from
temporal logic [Gabbay et al., 1994] that there are positive
numbers nr, nl, kr, kl = O(2|R|) such that

rRi = rRi+kr for any i ≥ nr, rRi = rRi−kl for any i ≤ −nl.

We take, for eachR and 0 ≤ i ≤ nr+kr, fresh concept names
Di and add to T the concept inclusions (cf. Example 14):
(con) ∃R v D0, Di−1 v ©FDi (if i > 0), Dnr+kr v Dnr

and Di v ∃Q, for 0 ≤ i ≤ nr + kr and each Q ∈ rRi .
and symmetrical inclusions for −nl − kl ≤ i ≤ 0 . Denote by
T ∗ the LTL2©

horn TBox obtained from T by replacing the basic
concepts in it with concept names.
Theorem 17. Suppose (O,κ) is a DL-Lite2©horn TOMIQ and
O = T ∪ R with T supplemented by (con). If there exist
F -rewritings of (T ∗, A) and (R∗, P ), for every concept name
A and role name P in O, then (O,κ) is F -rewritable, where
F is FO(<) or FO(<,+)

We illustrate the rather involved proof of this theorem (given
in the full paper) by an example.
Example 18. Let O = T ∪ R, where T = {B v ∃R} and
R = {R v 2FS

−}, and q = (O,κ) with κ = ∃R.3F∃S.A.
By Theorem 16, certain answers to q over an ABox A are all
a ∈ ind(A) and n ∈ tem(A) with a ∈ κCO,A(n). Witnesses
for ∃R in κ are either located in ind(A) or of the form aRn

if CO,A contains B(a, n), and so R(a, aRn, n), in which case
there must also be some m > n such that A(a,m) ∈ CO,A:

a
n B n+ 1 mA

aRn

R S− S−

This observation gives the following inductive rewriting:

ΦO,κ(x, t) = ∃y [R(x, y, t) ∧ ΦO,3F ∃S.A(y, t)] ∨
[B(x, t) ∧ ∃t′ ((t′ > t) ∧A(x, t′))],

ΦO,3F ∃S.A(x, t) = ∃t′ [(t′ > t) ∧ Φ∃S.A(x, t′)],

ΦO,∃S.A(x, t) = ∃y [A(y, t) ∧ (S(x, y, t) ∨
∃t′ ((t′ < t) ∧R(y, x, t′)))].

Since the connection axioms (con) belong to DL-Lite©core,
as a consequence of Theorems 12 (i), 13 and 17 we obtain:
Corollary 19. DL-Lite©core TOMIQs are FO(<,+)-rewritable.

On the other hand, the following unexpected result shows,
in particular, that (con) cannot be expressed in DL-Lite2horn:

Theorem 20. There is a DL-Lite2horn TOMAQ which is NC1-
hard for data complexity; in particular, it is not FO-rewritable
even using arbitrary numeric predicates.
Proof sketch. We first show non-rewritability by modifying
the construction of Example 4. Consider the RBoxR with

Sk v Fk, Sk v 2FFk, Sk v 2PPk, 2FFk u Pk v Rk,

and the TBox T with

∃Rk uA0 v ∃Sk, ∃Rk uA1 v ∃S1−k, B0 ≡ ∃S0,

where k = 0, 1. For e = (e0, . . . , en−1) ∈ {0, 1}n, we take
Ae = {B0(a, n)} ∪ {Aei(a, i) | i < n }. Then (a, 0) is a
certain answer to (T ∪ R, B0) over Ae iff the number of 1s
in e is even—see the picture below and note that ∃Sk(a, n)
always generates a fresh witness aSnk :

a
−1 0 A0 1 A1 2 A1 3 B0 4

aS3
0

aS2
1

aS1
0

aS0
0

S0R0 F0P0

S1R1

S0R0

S0R0

The same idea can be used to simulate arbitrary NFAs and
show NC1-hardness of DL-Lite2horn TOMAQs; see Thm. 9. q

Thus, Theorem 12 (ii) cannot be lifted to DL-Lite2horn. In
the proof above, using Horn role inclusions with 2F and 2P ,
we have encoded ©F on concepts: T ∪ R |= ©F∃Sk v ∃Rk.

We now give a sufficient condition under which (con) can
be expressed in DL-Lite2core. Call an RBoxR monotone if, for
any roles R,Q in it, Q ∈ rRn and n 6= 0 imply Q ∈ rRm for
all m ≥ n or all m ≤ n. Clearly, for a monotone R and any
roles R and Q in it, one of the four options holds:

(i) Q ∈ rRn iff n = 0,
(ii) there is mr ∈ Z such that Q ∈ rRn iff mr ≤ n or n = 0,

(iii) there is ml ∈ Z such that Q ∈ rRn iff n ≤ ml or n = 0,
(iv) there are ml,mr ∈ Z, ml ≤ mr, such that Q ∈ rRn iff

n ≤ ml or mr ≤ n or n = 0.
We encode (i) by ∃R v ∃Q; (ii) by the following:
∃R v ∃Q, ifR |= R v Q,
∃R v 2mr

F ∃Q, if mr > 0,

∃R v 2FD, 2−mr+1
F D v ∃Q, if mr ≤ 0,

with fresh D; (iii) is symmetrical; (iv) combines (ii) and (iii).
The set of all such connection axioms is denoted by (con′).
Theorem 21. Theorem 17 holds true for O = T ∪ R with
monotoneR and (con′) in place of (con).

One can show that all DL-Lite2core RBoxes as well as
DL-Lite2horn RBoxes without 2-operators on the left-hand side
of role inclusions are monotone. We denote by DL-Litemon2

horn
the fragment of DL-Lite2horn whose role inclusions do not con-
tain negative occurrences of 2F and 2P ; this language can be
regarded as an extension of TQL [Artale et al., 2013b].
Corollary 22. All DL-Lite2core as well as DL-Litemon2

horn
TOMIQs are FO(<)-rewritable.

5 Conclusions
We have developed a two-step approach to analysing FO-
rewritability of temporal ontology-mediated queries. First,
we classified the FO-rewritability properties of TOMQs in
fragments of LTL. Second, we proved two general transfer
theorems identifying conditions under which FO-rewritability
is preserved for combinations of LTL with DL-Lite. The trans-
fer results show that, although temporal DLs are notorious for
their high complexity, one can nevertheless find large ‘islands’
of tractable and expressive TOMQs. Many interesting and
challenging research questions can be tackled based on the
results of this paper:
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– complexity and succinctness of rewritings (the size of
our rewritings of TOMAQs varies from polynomial for
LTL©krom to single, double and triple exponential in the
size |T | of the TBox T for various temporalised versions
of DL-Lite; rewritings of TOMQs are of size S|q| and
S|q||T | for, respectively, LTL and DL-Lite ontologies,
where |q| is the size of the query and S the size of the
rewritings for the underlying TOMAQs);

– generalising our FO rewritings of TOMIQs to (two-
sorted) CQs using the methods of [Artale et al., 2013b];

– data complexity of evaluating DL-Lite2©horn TOMQs;
based on our proofs, we conjecture that it is NC1-
complete;

– extension of the transfer results for Horn logics to t and
¬, possibly via a non-uniform analysis;

– our rewriting algorithms need to be optimised and evalu-
ated in real-world applications.
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and D. Thérien. Regular languages in NC1. J. Comput. Syst. Sci.,
44(3):478–499, 1992.

[Borgwardt et al., 2013] S. Borgwardt, M. Lippmann, and V. Thost.
Temporal query answering in the description logic DL-Lite. In
Proc. of the 9th Int. Symp. on Frontiers of Combining Systems
(FroCoS), volume 8152 of LNCS, pages 165–180. Springer, 2013.

[Calbimonte et al., 2012] J.-P. Calbimonte, H. Jeung, Ó. Corcho,
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data access on temporal and streaming data. In Proc. of the 10th
Int. Summer School on Reasoning Web (RW), vol. 8714 of LNCS,
pages 279–312. Springer, 2014.
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