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Abstract

In this paper we combine two of the most important
areas of knowledge representation, namely belief
revision and (abstract) argumentation. More pre-
cisely, we show how AGM-style expansion and re-
vision operators can be defined for Dung’s abstract
argumentation frameworks (AFs). Our approach
is based on a reformulation of the original AGM
postulates for revision in terms of monotonic conse-
quence relations for AFs. The latter are defined via
a new family of logics, called Dung logics, which
satisfy the important property that ordinary equiva-
lence in these logics coincides with strong equiva-
lence for the respective argumentation semantics.
Based on these logics we define expansion as usual
via intersection of models. We show the existence
of such operators. This is far from trivial and re-
quires to study realizability in the context of Dung
logics. We then study revision operators. We show
why standard approaches based on a distance mea-
sure on models do not work for AFs and present
an operator satisfying all postulates for a specific
Dung logic.

1 Introduction

The goal of this paper is to bring together two important sub-
areas of knowledge representation, namely belief revision and
argumentation. Belief revision addresses the following ques-
tion: given a knowledge base KB, represented in a suitable
formal knowledge representation language, and a new piece
of information I, what is the result of incorporating I into
KB (the revision of KB with I)? This is nontrivial, as I may
be inconsistent with KB. The most influential approach in
this area is the AGM-theory of belief revision, named after
its founders Alchourron, Girdenfors, and Makinson. AGM-
theory was originally defined for classical propositional logic.
It is based on 8 postulates for revision meant to prescribe the
behaviour of rational revision operators. It also comprises an
account of how such operators can be constructed based on
so-called epistemic entrenchment orderings of formulas. In
the meantime, AGM-style revision has been extended to de-
fault logic [Williams and Antoniou, 1998], description logics
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[Qi and Yang, 20081, Horn clause logic [Delgrande and Pep-
pas, 20151, and logic programming [Delgrande et al., 2008;
2013].

Argumentation is based on the idea that reasoning with
potentially conflicting information can adequately be mod-
elled by (1) constructing arguments based on the available
information, and (2) selecting an adequate subset of the gen-
erated arguments which, intuitively speaking, fit together in
an adequate manner, thus representing a rational, coherent
view of the issues at hand. In his seminal paper [Dung, 1995]
Dung has shown that the second step, namely the selection
of acceptable arguments, can be analyzed independently of
the actual structure of the arguments. He introduced abstract
argumentation frameworks (AFs) which are basically graphs
representing attack relations among abstract arguments. A
semantics then assigns to each AF a collection of argument
sets, called extensions, which represent the different coherent
views an agent may adopt based on the AF. Different intuitions
about the extensions are captured in different semantics (we
introduce 9 such semantics in the background section).

Although some work on AF revision already exists [Cay-
rol et al., 2010; Coste-Marquis erf al., 2014a; 2014b], to the
best of our knowledge this paper presents the first attempt to
define AGM-style expansion! and revision operators which
firstly, allow for the integration of arbitrary AF's and secondly,
respect strong equivalence. The latter can be seen as the
non-monotonic analogue of ordinary equivalence in classical
logic since it respects the so-called substitution principle (cf.
[Truszczynski, 2006] for more details).

To achieve this, several intermediate steps and theoretical
foundations are necessary. In the following we list the decisive
points also representing the main contributions of this paper:

1.Instead of using o-extensions (which are the base for all
other revision approaches available in the literature) we
introduce the notion of k-models. Roughly speaking, a k-
model of an AF F' corresponds to a dynamical evolvement
of F respecting the non-redundant information of F'.

2. We then define satisfiability, (monotonic!) consequence
and ordinary equivalence in terms of the newly introduced
models which allows us to rephrase the AGM-postulates in
a straightforward manner.

!Contrary to revision, expansion just adds new information with-
out taking care of inconsistency.
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3. The reformulation respects strong equivalence as required
since it turns out that (analogously to SE-models and logic
programs) ordinary equivalence w.r.t. k-models matches
strong equivalence.

4.In the next step we need an expansion operator for AFs.
Whereas defining expansion for propositional logic is triv-
ial, this turns out to be surprisingly difficult for AFs. The
difficulty is to decide whether, and if so how, the intersec-
tion of k-models is realizable via a single AF. We provide
a constructive method for expansion and study the question
of realizability including characterization theorems.

5.Finally, we turn to revision. Due to realizability results we
argue and show that classical distance-based approaches re-
ferring to the set of models are unsuitable. We then present
a specific revision operator satisfying all postulates as well
as a family of operators satisfying at least six of them.
The paper is organized as follows. Sect. 2 provides the

necessary background on AFs as well as on AGM-theory. In
Sect. 3 we introduce the family of Dung logics and perform a
first analysis including realizability results. Sect. 4 introduces
our expansion operator. Based on AF consequence and AF
expansion, we can then reformulate in Sect. 5 the AGM postu-
lates. Furthermore, we illustrate why usual semantical charac-
terizations based on distance among models do not work for
AFs, and we introduce a specific revision operator satisfying
all 8 postulates. An outlook on further operators is presented
as well. Sect. 6 discusses related work and concludes.

2 Background

2.1 Abstract Argumentation Theory

An argumentation framework (AF) is a pair F = (A, R).
A, the set of arguments, is a finite subset of a fixed infinite
background set i/, and R C A x A. The set of all AFs is
denoted by 7. Given AFs F = (A, R) and F’ = (A’, R) we
write FF C F' for AC A’ and R C R’. Similarly, F U F’ or
FAF’ is defined component-wise. We say a attacks b in F'
whenever (a,b) € R. An argument a € A is defended by a set
A’ C Ain F if foreach b € A with (b,a) € R, b is attacked
by some @’ € A’ in F. Foraset E C A we use Rf.(E) or
simply, E* for EU {b | (a,b) € R,a € E}. Furthermore,
we say that a set A’ C A is conflict-free in F if there are
no arguments a,b € A’ such that ¢ attacks b. The set of all
conflict-free sets of an AF F is denoted by cf (F').

A semantics o is a function which assigns to any AF F' =
(A, R) aset of sets of arguments denoted by o(F') C 24. Each
one of them, a so-called o-extension, is considered to be ac-
ceptable with respect to F'. We consider nine prominent seman-
tics, namely admissible, complete, preferred, semi-stable, sta-
ble, stage, grounded, ideal and eager semantics (abbreviated by
ad, co, pr, ss, stb, stg, gr, id and eg respectively). For recent
overviews we refer the reader to [Baroni and Giacomin, 2009;
Baroni et al., 2011].

Definition 1. Let ' = (A, R) be an AFand E C A.
1.E € ad(F) iff E € ¢f(F) and E defends all its elements,

2.E € co(F)iff E € ¢f(F) and for any a € A defended by
EinF,a€FE,

3.E € pr(F)iff E € ad(F) and forno £’ € ad(F), E C F',

4.F € ss(F)iff E € ad(F) andforno E' € ad(F), ET C E'T,
5.E € sth(F)iff E € ¢f(F)and Et = A,

6.E c stg(F)iff E € ¢f(F)andforno E' € ¢f (F), EY C E'T,
7.E € gr(F)iff E € co(F) and for no E' € co(F), E' C E,

)i
8. E € W(F)iff E € ad(F), E C (pr(F) and there is no
" € ad(F) satisfying E' C (pr(F)st. EC E,
9.FE € eg(F) iff E € ad(F), E C ()ss(F) and there is no

E’ € ad(F) satisfying E' C (ss(F)st. EC E'.

It is well-known that for nonmonotonic formalisms standard
notions of equivalence (possession of the same extensions)
are insufficient to guarantee replaceability, and notions of
strong equivalence are needed. Strong equivalence under some
semantics o (denoted =%) can be decided via so-called kernels.
A kernel is a function k : &/ + o where each k(F) = F*
is obtained from F' by deleting certain redundant attacks. We
call an AF F' k-r-free iff F' = F'*. The following kernels will
be used throughout the paper.

Definition 2. Given an AF F = (A R) and a semantics o.
We define o-kernels F*(7 (A7 Rk ) whereby

1.RFC™ = R\ {(a,b) |a # b, (a,a) € R},

2. R*4D = R\ {(a,b)|a # b, (a,a) € R, {(b,a), (b,
3R = R\ {(@.D)|a#b,(,b) € R {(a.0), (b
4. R¥) = R\ {(a,b) |a # b, (a,a), (b,b) € R},

We use K as a shorthand for {k(stb), k(ad), k(gr), k(co)}.
Furthermore, the term any considered kernel (k) is an abbrevi-
ation for any considered kernel (k) introduced in Definition 2.
Recent overviews on relations between different equivalence
notions can be found in [Baumann and Brewka, 2013; 2015;
Baumann, 2014a]. As already mentioned, kernels can be used
to decide strong equivalence. Observe that one single kernel
may serve for different semantics.

BHINR#D},
a)}NR#0D},

Theorem 1. [Oikarinen and Woltran, 2011; Baumann and
Woltran, 2014] For any AFs F and G we have:

1.F =% Ge FF9 = G%9 forany o € {stb, ad, co, gr},
2.F =5 G & FFed =
3F =0 G FHO =

2.2 Belief Change - AGM

Belief Change is extensively studied in the Al-community.
The influential AGM-model [Alchourrén et al., 1985] provides
criteria addressing the problem of how current beliefs should
be changed in the light of removing old or adding new beliefs.
In the following we list? the famous eight postulates for the
latter case, so-called belief revision.

R1 K x ¢ is a belief set,
R2 ¢ € K % ¢,
R3 Kx¢pC K+ o,

G* D for any T € {pr,id, ss, eg} and
Gk(stb).

%In the postulates, K * ¢ is the result of revising a deductively
closed set of sentences (a so-called belief set) K by a formula ¢.
Furthermore, K| denotes the inconsistent belief set. K + ¢, the
expansion of K by ¢, is Cn(K U {¢}).
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R4 ¢ ¢ K= K+¢CKxo,
RS K+¢=K, oo,

R6 Ep—vv=Kx¢dp=Kx,

R7 K« (9 A1p) C (K %) + 1,

R8 ) Kxdp= (Kx¢)+1 CKx*(dpNY).

3 Monotonic Dung-Logics

In the following we introduce a family of monotonic logics,
so-called Dung-logic. These logics formalize reasoning purely
on the level of AFs, e.g., they allow us to determine whether
one AF is a consequence of another. We therefore introduce
the notion of a k-model which in turn determines an abstract
consequence relation =¥ constituting £, = (<, =").

Our notion of a model may seem unusual at first. Intu-
itively, a k-model of F' is any dynamic argumentation scenario
respecting the information of /' modulo redundancy, as en-
coded by k. This means, a k-model is itself an AF which
satisfies at least the required information, but may have more
information than encoded by F'. Note that this is not as far
from classical logic as it may seem: propositional models can
be represented as formulas (namely as conjunctions of literals),
and thus propositional formulas can be viewed as models of
propositional formulas. Importantly, it turns out that ordinary
equivalence w.r.t. Dung-logics, i.e. F =¥ G and G =* F,
perfectly matches strong (!) equivalence w.r.t. certain seman-
tics o. This is crucial as it allows us to do classical AGM-style
revision for the non-monotonic theory of abstract AFs.

We proceed with basic definitions and some first results.

Definition 3. Given an AF F' and a set of AFs F. The set of
k-models is defined as Mod"(F) = {G € o | F* C G*}
and Mod" (F) = Nrer Mod" (F), respectively. We say

1. Fis k-satisfiable iff Mod" (F) # 0,

2. Fis k-tautological iff Mod" (F) = <.

To simplify notation, we drop braces if 7 = {F}. The
same applies to Definition 4. We state some first properties
applying to all considered kernels. The empty framework
Fy = (0,0) is k-tautological since F; = Fy. Furthermore,
no other framework is k-tautological. Any single AF F' is
k-satisfiable since F* C F*. Whereas any infinite set of AFs
F can be shown to be k-unsatisfiable the following examples
show that finite sets may or may not be k-satisfiable. Moreover,
satisfiability depends on the considered kernel k.

Example 1. Consider the following AFs F, F and Fis:

For all considered kernels and all ¢ € {1,2,3} we have
FF = F; and obviously Fy,F, C Fj3. Consequently,
F3 € Mod"({F, F5}). Consider now Fy, F5 and Fg:

@ s 80

For any o € {ad, gr,co} we state that F = {Fy, Fy} is

k(c)-satisfiable since Fy'”) FF7) ¢ FF) = F; Note

that any potential k(stb)-model G of F must possess at
least the attack (b,a) as well as the self-loop (b,b). In
any case, (b,a) ¢ GF6®) je. FFE™) g GGt proving
the k(stb)-unsatisfiability of F. Similarly, one may verify
Mod"({F\, F5}) = () for any considered kernel.

Having the different notions of a model at hand we may
define the associated consequence relations and operations.
Definition 4. The k-consequence relation =*C 27 x o
is defined as follows: F =F G iff Mod"(F) C Mod"(G).
The k-consequence operation Cnk 29 5 29 is given by:
F = Cn*(F) = {G | F =¥ G}. A Dung-logic L 18
given by (mf , ):k) or (mf , an), respectively.

The following proposition shows that the defined opera-
tions are indeed monotonic consequence operations, i.e. the
conditions of a closure operator are satisfied.

Proposition 2. Let Cn € (an) e Forall F,G C &,

ke
1. FC Cn(F), (inclusion)
2. FCG= Cn(F)C Cn(9), (monotony)
3. Cn(F) = Cn(Cn(F)). (idempotency)

We introduce the notion of ordinary equivalence as usual
and prove the relation to strong equivalence.

Definition 5. Two AFs F', G are k-equivalent (for short,
F=FG)iff F =¥ Gand G =F F.
Theorem 3. For any AFs F and G we have:
1.F =% G F =" Gforany o € {stb, ad, co, gr},
2.F =5 G F =" G forany T € {pr,id, ss, eg} and
3F= G e F=e

Finally, we define realizability which is a decisive point for
belief expansion as well as revision.

Definition 6. A set M is k-realizable iff there exists a set of
AFs F such that Mod" (F) = M.

Note that the existence of k-tautological or k-unsatisfiable
sets implies k-realizability of the set of all AFs ./ or 0, re-
spectively. The former is witnessed by the empty framework
Fy whereas the latter is exemplified by the AFs F} and Fj
depicted in Example 1. For convenience, we use L for a
k-unsatisfiable “framework”, i.e. Mod* (L) = 0.

The question whether certain nontrivial sets are realizable is
central for belief expansion as well as revision. Analogously to
fragments of classical logic like Horn logic or 2-CNFs where
sets of models are realizable if and only if certain properties
are satisfied® we present the following characterization theo-
rem for realizability. The decisive properties are very similar
to so-called filters in the context of partial ordered sets (see
[Davey and Priestley, 1990] for a very good introduction).
Roughly speaking, the sets have to be upward closed and must
possess a least element w.r.t. the subset relation. Note that
both properties are relativised to kernels. Consequently, the
“least” element is uniquely determined up to k-equivalence
only.

3For Horn logic we have closedness under intersection whereas
in case of 2-CNFs closedness under majority operation is required
(cf. [Marek, 2009] for more details).

2736



Theorem 4. A set M is k-realizable iff
1. VFEMVGeo : FFC GF - G e M,and
2 M#A) —3IF e MVYG € M : FF C G*.

Due to space restrictions we stop our meta-logical consider-
ations of Dung-logics at this point. An in-depth analysis will
be done elsewhere. So far, we mention that all consequence
relations are not finitary and furthermore, the logics neither
possess the compactness property nor the Craig interpolation
property (cf. [Barwise, 1982] for more information). It will
be interesting to study whether the mentioned features are
satisfied in case of infinite AFs. The main difficulty here is
that abstract properties satisfied for finite AFs do not nec-
essarily carry over to infinite ones. A systematic study has
begun only recently (cf. [Baumann and Spanring, 2014] for an
overview regarding existence and uniqueness of o-extensions
or [Baumann, 2014b, Section 4.1.3] for splitting properties).

4 Belief Expansion for Dung-logics

In the AGM-approach, belief expansion is prior to belief revi-
sion in the sense that the latter makes reference to the former.
In classical logic, expansion is straightforward from a techni-
cal point of view since the intersection of the models can be
simply realized by taking the conjunction of the given formu-
las. It is the main outcome of this section that even in case of
Dung-logics the intersection of k-models is k-realizable by a
single AF. Consider the following definition.

Definition 7. A function +* : & x & — & where
(F,G) — F +* G is a k-expansion iff Mod"(F +* @) =
Mod"(F) N Mod*(G).

Note that k-expansion is defined semantically. In consider-
ation of the characterization theorem for realizability (Theo-
rem 4) it suffices to check whether the intersection of &£-models
satisfies upward-closedness as well as the existence of a least
element. Whereas the first property is straightforward, the
second one has to be shown one by one for each considered
kernel. Moreover, we provide not only an existence result
for k-expansions but a constructive one. More precisely, the
k-expansion of two AFs can be defined via the union of their
corresponding kernels, provided the intersection of their k-
models is non-empty:

Theorem 5. Let k € K. For any AFs F and G there exists an
AF H such that Mod"(F) N Mod*(G) = Mod"*(H).
Moreover, if Mod" (F) N Mod*(G) # 0, then H =F FFUG®.
Otherwise, H = 1.

We mention that the result can be generalized to arbi-
trary finite intersections of k-models representing iferative
k-expansion. Before turning to an example, one final question
in consideration of Theorem 5 must be answered, namely how
to decide efficiently whether Mod®(F) N Mod*(G) # 0,
or equivalently, Mod" (F +* G # (). The following lemma
transfers the semantical question of a non-empty intersection
of k-models to a syntactic comparison of frameworks, namely
in terms of k-r-freeness. This means, from now on we are
equipped with a shortcut.

Lemma 6. Let k € K. Forall AFs F, G:
Mod"(F +% G) # 0 & F* U G* is k-r-free.

Example 2. Consider the following AFs F' and G.

How does the k-expansion F' +* G look like? In case of
k = k(gr) we observe the k-r-freeness of F'¥ U G*. Due to
Theorem 5 and Lemma 6 we have:

F+kG: 0'6 @

Finally, for any o € {stb, ad, co} one may check that
FF@yG*@) isnot k(o)-r-free implying that F+%(0) ¢ = |

We conclude this section by listing some (desirable) prop-
erties satisfied for k-expansion. Particularly noteworthy is the
last property, namely that k-equivalence is even a congruence
for k-expansion. This means, complete syntax independency
is guaranteed.

Theorem 7. Given AFs F,G and H and let k € K, then:
1. F +* G isan AE,

F+F G EF G,

FEFG=F+FG=FF,

FEFG=F+*"HE*G+"H,

F=FGH=FI=>F+*H=FG+FI

SR RN

5 Belief Revision for Dung-logics

In the AGM-model, belief revision is a more fine-grained
operation than expansion since it provides us in addition with
a meaningful result whenever the outcome of expansion is
unsatisfiable. In the first part of this section we rephrase the
classical AGM-axioms for Dung-logics. We then show and
argue that standard distance-based methods as used in classical
logic are inadequate in case of Dung-logics. This is mainly due
to the fact that arbitrary sets of models may not be realizable,
as shown in Theorem 4. We then proceed with a specific
k(stb)-revision operator satisfying all required axioms. At the
end of this section we briefly discuss and give an outlook for
possible k-revision operators for the other kernels considered
in this paper.

5.1 Postulates for Belief Revision

In the following we list k-revision axioms for AFs adopted
from the AGM-model. In the following let F',G,H and I AFs.

R1 F «* G is an AF,

R2 F+* G EF G,

R3 F+F G EF F i G,

R4 F +F G is k-satisfiable = F +* G =F F 4+F @G,

R5 F «*F @G is k-satisfiable < G is k-satisfiable,

R6 F=FG H=FI=F+«*H=FG+F1I,

R7 (F+* G)+* H EF F+* (G +* H),

R8 (F " G) +* H is k-satisfiable =

Fs* (G+"H) EF (F+F G)+" H.

Definition 8. A function ¥ : &7 x &/ — o/ where (F, G)
F +* G is called a k-revision iff axioms R1-R8 are satisfied.
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5.2 Standard Approaches are Problematic

One main assumption of belief revision is that of minimal
change. More precisely, if we have to change our current
beliefs we want to give up as few old beliefs as possible. In
terms of models, this would amount to the following: revising
an AF F by another framework G is given by an AF F %% G
comprising those k-models of G that are closest to those of F'.
Indeed, for classical logic different notions of closeness have
been provided via different distance-based approaches. These
distances are often specified via the so-called symmetric dif-
ference A (cf. [Dalal, 1988; Satoh, 1988; Winslett, 1988;
Williams, 1994] among others). The following definition re-
flects a Satoh-like operation based on set containment.

Definition 9. Given two AFs F and G. We define k-
Satoh-operator F of, G semantically via Mod" (F of, G) =

{H € Mod*(G) | 3I € Mod* (F) s..,

VH' € Mod*(G),YI' € Mod*(F), H'AI' ¢ HAI}.
Observe that some axioms like R2 and R3 are immediately
clear by definition. Despite of this partial success, the follow-
ing example shows that the Satoh-operator is not a suitable
revision operator since the realizability of the required set of
models is not guaranteed. This means, axiom R1 is violated.

Example 3. Let k& = k(stb)*. Consider the AFs F and G.

20! «@® B

Observe that F' and G are k-r-free. Consequently, any k-
model of F' or G has to contain F or G, respectively. Hence,
the self-loops (a, a) and (¢, ¢) are included in any symmetric
difference of k-models of F' and G. Consider now F’ and G’.

P B0 ¢ @ O3

Observe that F' € Mod" (G ok F) since F' € Mod"(F),
G' € Mod"(G) and F’AG’ = {(a,a)7 (¢, c)}. Moreover, if
Mod" (G o F) is k-realizable, then it has to satisfy upwards-
closedness (statement 1, Theorem 4). Consequently, (£’ )k =

k
F has to be a k-model of G of F since (FF = ((F’)k) .

This is a contradiction since for any I € Mod"(G) we have
{(a,a),(a,b), (c,c)} € FAIT violating the C-minimality.
The requirement of realizability is the main problem for
approaches which define the revision operator semantically
via distances between models. The semantical definition may
select too few and too many models at the same time. Too few
in the light of upward-closedness (as shown in Example 3)
and too many in consideration of the requirement of the exis-
tence of a least element. More precisely, distances may select
different minimal (w.r.t. kernel-relativised subset relation)
models. We remark that even if realizability would be given or
enforced there are no compelling reasons why the remaining

*We mention that counter-examples can be given for all kernels
considered in this paper.

>This can be done via a subsequent procedure which completes
(in the sense of upwards-closedness) the set of models and/or selects
a certain minimal model.
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axioms should be satisfied for a distance-based approach. For
instance, how to ensure compatibility between expansion and
revision for distance-based approaches as required in axioms
R7 and R8?

5.3 A Revision Operator for £ (stb)

In view of the problematic nature of defining a revision opera-
tor semantically, we pursue a different strategy in this section,
namely constructing the result of revision syntactically. Con-
sequently, in this case, axiom R1 is no longer problematic.
The construction is guided by the following reflections. Due
to axioms R2 and R3 we have: F +* G =F F+* G |=F @
Therefore, we deduce that the kernel of the revision has to
be between the kernels of the new piece of information and

the corresponding expansion. Formally, G* C (F xF G)k -

(F ++ G )k. Furthermore, due to axiom R4 we even have
(F +F G)’C C (F " G)’C if k-expansion is k-satisfiable. For-
tunately, due to Lemma 6 and Theorem 5 we may infer even
more, namely: Firstly, k-satisfiability of F' +-* G is fulfilled if
F* U G* is k-r-free and secondly, if k-satisfiability is given,
then F' +* @ is even k-realizable by F* U G*. Altogether,
G* C (F +F G)k C F¥U G*. Consequently, a promising ap-
proach is to define F'+* G as GFUX given that G # L (axiom
RS). Furthermore, due to the assumption of minimal change,
the framework X should maintain as much information as
possible of F'. And finally, by axiom R6 the construction has
to be insensitive w.r.t. k-equivalence. This means, only non-
redundant information counts leading to X C F'*. Note that
there is no a priori reason for X being uniquely determined.
Therefore we consider the set of maximal k-r-free frameworks
first as defined in the following.

Definition 10. Given two AFs F' and G. We define the set of
maximal k-r-free sets w.r.t. F' and G as follows:

M’;;G = mcaX{Gk UH | HC F¥ G¥UHis k-r-free}.

In order to illustrate that M’;G may indeed possess more
than one element we give the following example.

Example 4. Consider the following two AFs F' and G:

HORORNCA0,

Observe that F' and G are k-r-free for all considered kernels.
In order to determine M5 we have to check whether (a, a),
(b, b) or both can be added to G without loosing k-r-freeness.
The following three candidates have to be considered.

For o € {ad, co, gr} we obtain MI}U {h,L},ie. I, and
L are k(o )-r-free. Furthermore, Mk(gfb) ={L}.

In consideration of the example above, one may start to
think about other frameworks F' and G witnessing the plurality

of Mk(Stb) It is the surprising result of this section that this
search w1ll never succeed.

k(stb)’ —1



Due to this uniqueness result along with the considerations
at the beginning of this subsection we are now equipped with
a potential as well as uniquely determined candidate meeting
the conditions of a revision function according to Definition 8.

Definition 11. The k(stb)-operator is a function oF(s%) .

o x o — o with (F, G) — F of(®) G = [ whereby
k(stb
Mig" =1},
It remains to be shown that this operator satisfies the postu-
lates. The following theorem provides a positive answer:

Theorem 9. The k(stb)-operator is a k(stb)-revision.
We close this section by giving an example.

Example 5. Consider again the AFs F' and G presented in
Example 2. We already observed that F* U G is not k-r-
free in case of k = k(stb). Consequently, F' +* G does not
provide a meaningful result (Lemma 6) in contrast to F +* G
according to Definition 11.

F*kG: e‘e @

Revising in reverse order results in the following framework.

cor @OE @

5.4 Towards Revision Operators for Other Kernels

In order to obtain similar k-revisions in case of the admissi-
ble, grounded and complete kernel we have to deal with the
plurality of M%, as demonstrated in Example 4. An obvious
idea, namely introducing a selection function sel returning a
suitable candidate from M’}G, will be quickly sketched in the
following.

Definition 12. Let £ € K. A k-sel-operator is a function
ok i x o — o with (F, G) — Fo¥, G = sel (Mh)

sel sel

where sel : 29 — o

Which properties should sel satisfy with regard to R1-R8?
The following proposition shows that the first six postulates
are satisfied for any function sel, i.e. no further requirements
are needed.

Proposition 10. Any k-sel-operator satisfies RI - R6.

The fulfillment of axioms R7 and R8 requires further prop-
erties. For instance, a certain kind of subset-compatibility of
sel appears to be necessary. More precisely, for two sets of
AFs F and G where F C G and sel (G) € F we should obtain
sel (G) = sel (F). The study of sufficient conditions ensuring
the last two axioms will be part of future work.

6 Related Work and Conclusions

In this paper we combined abstract argumentation with AGM-
like belief change. To this end, we introduced a family of
so-called Dung logics for reasoning over AFs under different
semantics. We presented some initial meta-logical results for
these logics including the issue of realizability. Since belief
expansion is prior to belief revision we considered the former
first. Although the semantic characterization of this operator

was straightforward, the proof of the existence of correspond-
ing AFs possessing the required sets of models turned out to
be rather difficult. Finally, we studied the existence of revi-
sion operators respecting the rephrased AGM postulates. We
presented a specific revision operator satisfying all postulates
as well as a family of operators satisfying at least six of them.

Our approach shows some similarity with the way AGM
revision was applied to logic programs under answer set se-
mantics in [Delgrande et al., 2008]. Delgrande and colleagues
used so-called SE-models, which were earlier developed in
the context of the logic of here and there and which capture
strong equivalence for logic programs. Here we introduced
k-models, constituting Dung-logics, capturing strong equiva-
lence for AFs. Note that although AFs can be interpreted as
restricted sub-classes of logic programs it is not reasonable
to consider revision of two AFs in the logic programming
setup. To mention two reasons: firstly, strongly equivalent
AFs are not necessarily strongly equivalent in the context of
logic programs and secondly, the resulting revision may be
realizable w.r.t. logic programs but not in case of AFs.

As mentioned in the Introduction, some earlier work on
revising Dung AFs exists. The problem how the set of ex-
tensions changes if one single argument is added was studied
in [Cayrol et al., 2010]. The related question whether it is
possible (and if so how) to modify an AF in such a way that a
desired set of arguments becomes an extension was considered
in [Baumann and Brewka, 2010]. Both works did not con-
sider AGM postulates. Interestingly, in [Cayrol et al., 2010]
the authors noticed that AGM-style revision would require
“... consistency and inference notions that are not explicitly
present in an abstract argumentation system.”. Our paper
provides exactly these missing notions.

Coste-Marquis and colleagues propose a revision approach
via axioms inspired by the AGM postulates [Coste-Marquis et
al., 2014al. Here, a revision operator maps an AF F together
with a revision formula ¢ to a set of AFs. More precisely,
the formula ¢ specifies which arguments are to be accepted
and which are not. Then, a two step procedure is performed.
Firstly, ¢-compatible extensions which are as close as possible
to former extensions of F' are selected. Thereby, closeness is
measured in terms of minimal change of argument statuses.
Then, (due to realizability issues) the outcome of revision is
a set of AFs, s.t. the union of their extensions consists of all
selected extensions. Interestingly, the authors do not allow the
addition of new arguments, i.e. revised AFs are obtained by
modifying the attack relation only.

In a subsequent work by the same authors [Coste-Marquis
et al., 2014b] a similar approach based on the translation of
Dung frameworks to propositional logic is considered. This
translation allows one to draw advantage of standard proposi-
tional revision operators. The main difference to the previous
work is that the semantics of the revising formula changed
from credolous to sceptical acceptance.

Regarding future work, an obvious next step is the further
study of revision operators as briefly sketched in Sect. 5.4.
Moreover, it would be interesting to apply our approach to
recent generalizations of Dung AFs like extended argumenta-
tion frameworks (EAFs) [Modgil, 2009] or abstract dialectical
frameworks (ADFs) [Brewka er al., 2013].
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