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Abstract

Only knowing captures the intuitive notion that the be-
liefs of an agent are precisely those that follow from
its knowledge base. While only knowing has a simple
possible-world semantics in a single agent setting, the
many agent case has turned out to be much more chal-
lenging. In a recent paper, we proposed an account which
arguably extends only knowing to multiple agents in a
natural way. However, the approach was limited in that
the semantics cannot deal with infinitary notions such
as common knowledge. In this work, we lift that seri-
ous limitation to obtain a first-order language with only
knowing and common knowledge, allowing us to study
the interaction between these notions for the very first
time. By adding a simple form of public announcement,
we then demonstrate how the muddy children puzzle can
be cast in terms of logical implications given what is only
known initially.

1

When considering knowledge-based agents, it seems natu-
ral that the beliefs of the agent are those that follow from
the assumption that its knowledge base is all that is known.!
Levesque [1990] was among the first to capture this idea
in the logic of only knowing, where a modality O is intro-
duced in addition to the classical epistemic operator K. For
example, from Op it follows that —K¢g, which is differ-
ent from classical epistemic logic where K p does not rule
out K(p A ¢). Similarly, from O(P(a) v P(b)) we get
K (3x[P(x) A =K P(x)]), which says that “if all I know is
P(a) or P(D) then I know that there is an instance of P but not
what.” So, one of the advantages here is that a precise charac-
terization of the beliefs and the non-beliefs can be given.
While single-agent only knowing has a particularly sim-
ple possible-world semantics, the many agent case, where
agents may have beliefs about what other agents believe, has
turned out to be much more challenging. Early approaches
such as [Halpern, 1993; Lakemeyer, 1993; Halpern and Lake-
meyer, 2001; Waaler, 2004; Waaler and Solhaug, 2005] either
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had undesirable properties or had to resort to proof-theoretic
concepts such as canonical models built into the semantics.
In a recent paper, we [Belle and Lakemeyer, 2010] came
up with an account which arguably extends the semantics
of only knowing to multiple agents in a natural way. Most
significantly, this scheme is for a first-order language with
equality and quantification, as in Levesque’s proposal, but in
stark contrast to approaches such as [Halpern and Lakemeyer,
2001], based on canonical models, that are propositional.2

In Levesque’s single agent semantics of only knowing, a
model, or an epistemic state, is simply a set of worlds e, which
satisfies only knowing a sentence « just in case e is maximal,
that is, adding any other world to e would lead to not believing
« any more. (Worlds are simply truth assignments to atoms of
a first-order language and believing is interpreted in the usual
way as truth in all worlds in e.)

For many agents, in [Belle and Lakemeyer, 2010], we in-
troduced sets of states of affairs as epistemic states, where
each element consists of a world in the sense of Levesque
together with sets of states of affairs for every other agent,
representing their beliefs at this particular world. In order
to avoid circularity, each model is limited to a finite depth,
where depth refers to the maximal number of alternating
nested beliefs considered at this model. The idea is roughly
as follows. Suppose there are n agents. At level 1, an agent’s
epistemic state, called a 1-structure (or k-structure more gen-
erally), is simply a set of worlds; a (k + 1)-structure is a set
of tuples (w, ey, e, ..., e,), Where each ¢; is a k-structure. In
order to interpret a formula, one then picks a model consist-
ing of a world and k-structures, one for each agent, such that
k is at least as big as the depth of the formula in question.
Since k-structures are sets, knowing and only knowing can be
defined in a way similar to the single agent case except that
interpreting a belief of another agent leads to “popping up”
the k-structures of the respective agent. Of course, despite
the depth limitation of each model, validity and satisfiability
are well defined for all formulas (of arbitrary depth), since
each formula has finite depth, and there are enough models
of this (or greater) depth. Most significantly, this approach
was shown to generalize the features of Levesque’s logic as

21t is also not clear how such a proof-theory based semantics can
be extended to the first-order case mainly because there cannot be
a complete first-order axiomatization of only knowing even for a
single agent [Halpern and Lakemeyer, 1995].



identified in [Halpern and Lakemeyer, 2001], and when re-
stricted to the propositional case, the relationship to many re-
lated efforts, including [Halpern and Lakemeyer, 2001], was
also established in our previous paper.

However, as we acknowledged in that work, there is a price
to pay when using depth-limited models, since there is no sin-
gle model which works for all formulas. While this is often
not a problem, as knowledge bases are usually assumed to be
finite collections of sentences, there is one important excep-
tion: common knowledge. This notion has been found useful
in distributed systems [Moses et al., 1986] as well as in arti-
ficial intelligence, game theory and philosophy [Fagin et al.,
1995]. A formula ¢ is common knowledge if everybody be-
lieves ¢ and everybody believes that everybody believes ¢,
and so on, ad infinitum. Thus, given the depth limitation of
the our account, it is not possible to give meaning to such
(useful) infinitary notions.

In this paper, we show how this limitation can be over-
come. The idea is, roughly, to move from fixed k-structures
to infinite sequences of k-structures for all k£ and all agents,
where each member of a sequence for a particular agent is
compatible with the beliefs of its predecessor and extends it
to account for one additional level of nested beliefs. This con-
struction is shown to be fully compatible with depth-limited
models in terms of validity, and so it inherits the reasonable-
ness of the previous account. The treatment is inspired by
Fagin et al. [1991] and their idea of using infinite sequences
of epistemic states for many agents and common knowledge.
There are significant technical differences, however, which
we will discuss in more detail later. Moreover, Fagin ef al. do
not consider only knowing and limit themselves to the propo-
sitional case. Thus, for the very first time, we are able to
study the interaction between the notions of only knowing
and common knowledge. Interestingly, by adding a simple
form of public announcement to the logic, we are also able
to demonstrate how the muddy children puzzle [Fagin et al.,
1995] can be cast in terms of logical implications given what
is only known initially.

We structure the work by beginning with the new logic, dis-
cussing some of its properties and extensions before turning
to the puzzle. We conclude after discussing related work.

2 The Logic COL,

Syntax
The non-modal fragment of COL,, consists of standard first-
order logic with = (that is, connectives { A, Y, —}, syntactic
abbreviations {3, =, D}, parentheses, period) and a countably
infinite set of standard names N. As we shall see, these stan-
dard names will serve as a fixed domain of discourse, per-
mitting a substitutional interpretation for quantifiers. To keep
matters simple, function symbols are not considered in this
language. We call a predicate other than =, applied to first-
order variables and standard names, an atomic formula. We
write a;, to mean that the variable x is substituted in @ by a
standard name m. If all the variables in a formula « are sub-
stituted by standard names, then we call it a ground formula.
We let I = {l1,...,n} be a set of agents, and let i range
over this set. COL, has three epistemic operators: K;a is to
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be read as “i knows «@,” O;« is to be read as “all that i knows
is @,” and Ca is to be read as “a is common knowledge
among the agents in /.” For convenience, we also use Fa,
to be read as “everybody knows «@,” as an abbreviation for
Kia A ... A K,a. Letting E'a mean Ea, E*'a fork > 1
is used as an abbreviation for E(E*a). A formula not men-
tioning modalities is called objective, and a formula where all
predicate symbols appear within the scope of a modal opera-
tor is called subjective.

Semantics
The semantics is given in terms of possible worlds. Here, a
world is simply a set of ground atoms, and let ‘W denote the
set of all possible worlds.

Epistemic states, which are used to define the meaning of
subjective formulas, are described in two steps. First, we de-
scribe the beliefs of an agent using the notion of a k-structure.

Definition 1: Let k > 0. Then define E* as follows:
o & = 2W;
o & =2WX& fork > 1.

An element of & is referred to as a k-structure, denoted eX.
(When the context is clear, the superscript is dropped.)

As noted, ¢ € &E! for agent i, written e; for clarity, is of
the form {w’,w”,...} and determines what i believes about
the world, but has nothing interesting to say about i’s views
of other agents. By extension, ¢; € &® is of the form
{W.el,....e,),(w".€],....e)),...}, which says that at w’,
i’s beliefs about (say) agent n is given by ¢/, but at w”, i be-
lieves that e/’ captures n’s beliefs.

An epistemic state, roughly speaking, is used to determine
the beliefs of all agents and at all levels.

Definition 2: An epistemic state f is a function of the form
I x N — | J2,EF such that for any i and k > 1, f(i, k) € EF.

Such an epistemic state is reasonable only when an agent’s
beliefs are consistent across all levels. That is, each level ex-
tends the previous level by adding another layer of (nested)
beliefs about other agents’ beliefs, while keeping the set of
worlds an agent considers the same. (This latter set is pos-
sibly duplicated to allow for situations where at a world, an
agent’s beliefs about what another knows differs; see the ex-
ample below.) To formalize this idea we need the following
notion of i-compatibility for subsequent k-structures.

Definition 3: We define e € E and ¢’ € ! as i-compatible
inductively as follows:

o fork = 1:
e={w|(wey,...,e,...,e,) €'} and ¢; = ¢;
o fork > 1:
- {w|(w,er,...,e,...,e,) Ee} =
{wl(w,el,....el,....e;) €€’} and e = e;
— for every (w,el,...,el,...,e,) € ¢ there is a
(w,e1,...,¢€,...,e,) € e such that e;. and e; are

J-compatible for all j # i.

Definition 4: We say an epistemic state f is proper if for all
i, forall k > 0, f(i,k) and f(i,k + 1) are i-compatible.



Henceforth, epistemic states are implicitly assumed to be

proper.
Example 5: Here is a simple illustration using three levels
and two agents, from the first agent’s perspective:

S(1,1) = {w}

S(L2) = {(w, (1, 1), {w'}), (w, f(1, 1), {w"})}

S13) = {(w, £(1,2), { (W, {w*}, {w'}) }),

(w, f(1,2), { (W, {w™* 3, {w"}) 1)}

At level 1, the first agent only considers w possible. At level
2, the second agent is believed to consider the worlds w’ and
w'” possible. (At this level, the first agent’s view of himself is
precisely given by w, and so is fully compatible with the first
level.) At level 3, at the world w', the second agent believes
that the first agent’s knowledge is characterized by the world
w*. In other words, the first agent believes that the second
agent considers the first agent’s knowledge to be given by w*.
Analogously, at w”, the second agent’s beliefs about what the
first agent knows is given by w**. (Here too, the agents’ view
of themselves is fully compatible with the previous level.)

We will also be interested in the progression of an epis-
temic state wrt some i and w, by means of which we can refer
to the state of affairs as considered possible by i at w.

Definition 6: Given an epistemic state f, we define its pro-
gression wrt an agent index i and a world w as follows:

f = {proper f" | for all k > 0:

if f/(1,k) =ey,...,f (nk) =e,,
then (w,eq,...,e,) € f(i,k+ 1)}.

Example 7: Using Example 5, and considering only the first
level, suppose f(1,1) = f(1,1) and f'(2,1) = {w'}. Since
(w, f(1,1),{w'}) € f(1,2), f would belong in f}".

Considering only the first and second levels, let f/(1,1)
and f'(2,1) be as above, f'(1,2) = f(1,2) and f'(2,2) =
{0, {w*}, {w'})}. Since (w, £(1,2), {(w', {w*}, {w'})}) €
f(1,3), f would belong in f}".
(This can be seen to be analogous to the notion of an accessi-
bility relation in Kripke structures [Fagin et al., 1995].)

We now provide a semantics. By a model, we mean a pair
(f,w), where f is a (proper) epistemic state and w is a world.
The semantic rules are given inductively as follows:

o fiwlk=pift pew;

o f,w = (m = my) iff m; and m, are the same names;
o fiwlE=—aiff fiw = a;

o ffwkEaABiff f,wlE=aand f,w|=p;

o f,w = Vx aiff fyw |= a, for every standard name m;

o fiw |= Kia iff for all w' € f(i,1), for all ' € £,
fﬁvﬂ\=:a;
e f,wl=Caiff f,w|= Efa forallk > 1,

o f,w = Oaiffforallw’ and f/,w' € f(i,1)and f' € fl.W/
iff /', w = a.

A formula @ € COL, is said to be satisfiable iff there is a
proper epistemic state f and a world w such that f,w = a.
Given any set ¥ of sentences, we write ¥ |= « (read: “Z
entails @) if for all proper f and w, if f,w |= B for every
B € X, then f,w |= a. We write |= a (read: “a is valid”) to
mean {} = a.

3 Properties

Knowledge and Introspection
As we model knowledge as a set of possible worlds [Kripke,
1963; Hintikka, 1962], it is perhaps not surprising that we
obtain the usual properties of K45, [Fagin et al., 1995]:

L] |= K,-a VAN Ki(a' DIB) o] Kl,B

e = K,a > KK

[ ] |= ﬂK,-a/ D Ki_'K,'O’
The first property says that knowledge is closed under modus
ponens. The second and third say that the agent knows its
beliefs and non-beliefs.
Proof: = We prove the case for positive introspection, and
the others are analogous. Suppose f,w = K,a. By defini-
tion, for all w’ € f(i, 1) and all f’ € fl.W/,f’,w’ = . Suppose
f>w |= ~K;K;a. Then there is some w’ € f(i, 1) and some
f" € £ such that f,w' |= —Kja, that is, some w” € f'(i, 1)
and some f” € f’,w” such that f”,w” = a. However, by
definition, f(i, 1) = f'(i, 1), and so this is a contradiction. ll

Knowledge and Validity
As a simple property of the semantics, valid sentences are
always believed:

e If = a then = Ko
This property, however, should be distinguished from the
knowledge of true sentences:

e o D K« is falsifiable

These are analogous to the single agent case [Levesque and
Lakemeyer, 2001, Section 4.2].

Knowledge and Barcan Formula
Owing to the fixed domain of discourse, we obtain the Barcan
formula for knowledge, including its existential version:

o =VxK;a o K;(Vxa)

e = IxK;a o K;dxa
Proof: We show the case for V, the other being analogous.
Suppose f,w |= VxK;a. By definition, f,w | K;a, for all
names m. By definition, again, for all w’' € f(i, 1) and all f’ €

W f W' = @ Then, f/,w' |= Vxa. So, f,w = KVxa. |

Common Knowledge

Since C is interpreted in terms of K, it follows that all of the
introspection properties also hold for C' [Fagin et al., 1995;
19911, as well as a version of the Barcan Formula:

=CanC(aopB)>CB
I=Ca > CCa

o =—Ca>C—-Cua
I=VxCa o C(Vxa)

Proof: We show the case for positive introspection, and the
others are analogous in relation to the proofs for K;. Suppose
f.w |= Ca. By definition, f,w |= E*a for k > 1. Suppose
f,w = CCa. Thatis, f,w [= E¥(E'a) for k,I > 1, and so,
f,w = EX*la, which is a contradiction. ll

An inductive definition of C' in terms of E also holds:
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e =Ca> E(aACa)

Proof:  Suppose f,w |= Ca but f,w = E(a A Ca).
Clearly, f,w = Ea is a contradiction, and so f,w = ECa.
From the definition of E and C it follows that f,w [~ K;E*a
for some i and some k > 1 and hence f,w & E*a, which
is also a contradiction. i

Let us reiterate that since knowledge need not be true, by
extension, common knowledge need not be true:

o Koo«
o Caoa

Proof: Let f be any epistemic state such that every world
w € f(i,1) is such that p € w for some proposition p. Let
w* be a world such that p ¢ w*. Clearly, f,w* = K;p > p
showing that &= K& S «, and so Ca O « cannot be valid. il

A weaker version in the context of knowledge, however,
can be shown:

o = K;(Ca>a)
Proof:  Suppose f,w |= —K;(Ca D «). Then for some
w' e f(i,1) and f' € £, f',w' |= =(Ca > a), that is,
fow' = Ca A —a. So, f',w' |= K;a A —a. However note
that, then, f,w |= —K;a and so f,w = K;,—~K;a. This
means that /', w’ |= — K« as well, an inconsistency. Il

Only Knowing and Common Knowledge
Here we discuss a few properties on the interaction between
only knowing and common knowledge.

Let us begin by noting that, as in the single agent setting
[Levesque, 19901, only knowing implies knowing:

e = O;a o K
Proof:  The semantic rule for O; uses “iff” instead of the
“if” for Kj to test that the pairs (f’,w’), where w' € f(i, 1)
and [ € fiw/, are models of @. So O;a implies K;a. il

This does not extend to common knowledge, because O;p,
where p is a proposition, means that i knows nothing about
the beliefs of other agents:

e =0;p>—Cp
Proof:  Suppose f,w = O;p A Cp. It is easy to see that

fiw = Ojp o —K;K p for j # i that contradicts the truth
of Cpat (f,w). 1l

In general, however, [ O;a > —Ca. For example, sup-
pose @ is p A Cp. As we shall see, O« is satisfiable, and
suppose f,w = O;a. Clearly, then, f,w |= Cp and so
fiwEC(p A Cp). Thus, f,w |= Oa A Ca.

Since common knowledge implies having knowledge
about what other agents believe, common knowledge about
O;p is impossible:

e =—-CO;p

Proof:  Suppose f,w |= CO;p. Then, f,w = KK ;K,p,
letting j # i. By definition of O,, it is easy to show that
O;p o —K,K;K;p is valid. Because f,w |= CO;p, we
have f,w = K,;O;p, and so, f,w = K;—K;K;K,p, which
is a contradiction.
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Of course, then, common knowledge that p is not the only
thing known is satisfiable:

e C'—O;p is satisfiable
Proof: Let w any world such that p ¢ w. Let U' =
{w}, and inductively, U**! = {(w, Uk,...,Uk)}. Let f
be a proper epistemic structure such that f(j,1) = U' and
f(j,k) = U* for all j. Then, f,w' = C—O;p for any w'. I

A knowledge base can believe p and also believe that p is
common knowledge:

e Oi(p A Cp) is satisfiable

Proof: LetU' = {w|pew,we W}, and inductively, let
Ut = {(w,U,...,U*) | we U'}. Then, let f(i,k) = U*
for every k. It is easy to see f,w |= O;(p A Cp) for any w. I

It is worth remarking that one cannot be made to only know
C'p without actually knowing p:

e |=-0,Cp
Proof:  Suppose f,w |= O;Cp. By definition, w' € f(i, 1)
and " € " iff f,w' |= Cp. Since the truth of Cp does not
depend on the actual world, f(i,1) = “W. This means that
f>w = —K;p, which is a contradiction. Il

In fact, the following also holds (as observed for the single
agent case in [Levesque and Lakemeyer, 2001]):

e =—-O:K;p
Intuitively, saying that all that is known about the world is
K p says nothing about the world leading to this property.

4 Relation to Existing Logics

The Logic 0L,

This work not only extends our previous account in the sense
of capturing common knowledge, but it is also compatible
with it for the language OL,. (That is, 0L, = COL, — C.)
We recall some essentials: the prior account was limited to
two agents, say {a, b}; a model of a formula a of depth k (def-
inition not reproduced here) is a tuple of the form (e, ey, w),
where ¢; € & and w € ‘W as defined here. So a formula &
of depth k is said to be satisfiable iff there is such a tuple. If
a is true wrt every (e, e,,w), where ¢! is a k’-structure with
k' > k, it is said to be valid.

As noted, our prior work was shown to be reasonable in
terms of salient features of Levesque’s logic [Halpern and
Lakemeyer, 2001]. Thus, by establishing compatibility, we
inherit the reasonableness of only knowing in the many agent
case. The proof is not hard but tedious. Here we only go over
the main ideas. Suppose |=' denotes the satisfaction relation
in [Belle and Lakemeyer, 2010]. Then:

Lemma 8: Suppose I = {a,b} and « € OL, is of depth k.
Given any f and w, suppose f(i,k) = e;. Then:

fiwkEaifesenw= a.

By means of an induction on «, one can argue that formu-
las of depth k are true wrt (f, w) iff they hold at (e,, ep, w).
Intuitively, satisfaction wrt |= implies satisfaction wrt |= .

Next, we need a simple property that proper epistemic
states can be constructed for any e; € &



Proposition 9: For every pair (e,, ey), where e; € EF for any
k, there is a f such that f(i,k) = e;.

Owing to the definition of proper epistemic states (that is,
consistent beliefs across all levels) and the above proposition,
satisfaction wrt |=' can be seen to imply satisfaction wrt |=,
leading to the following result:

Theorem 10: Suppose @ € OL,. Then: |= a iff =’ a.

The Logic KC45,
For a propositional language,®> O£, was also related to K45,,:

Lemma 11: /Belle and Lakemeyer, 2010, Lemma 16] Sup-
pose OL, is propositional. For any a € OL, not mentioning
O,, if a is consistent wrt K45, then « is satisfiable wrt = .

The proof rests on the property that every K45,-consistent
formula is satisfiable wrt the canonical model for K45, ax-
ioms [Hughes and Cresswell, 1972; Fagin et al., 1995]. A
tuple (eg, ey, w), where e; € &, can then be constructed to
correspond precisely to the canonical model for formulas of
depth k. Of course, by means of Theorem 10, we obtain:

Corollary 12: Suppose OL, is propositional. For any a €
OL, not mentioning O;, if a is consistent wrt K45,, then « is
satisfiable wrt |= .

From this, letting KC45, denote K45, with the common
knowledge operator [Fagin et al., 1995], we finally get:

Theorem 13: Suppose COL, is propositional. For any a €
COL, not mentioning O;, if a is consistent wrt KC45, then a
is satisfiable wrt |= .

Proof (sketch):  The proof uses Lemma 11 and Corollary
12 to argue that if E*a for any k > 0 is satisfiable in KC45,,
then it is satisfiable wrt |= . Since Ca is true iff EXa is true
for every k > 0, the argument follows. il

5 Extensions

Truthful Knowledge
As noted, knowledge need not be true, but we can require it,
using a straightforward definition:

Definition 14: Given any proper f and any w, the pair (f, w)
is called a knowledge model iff for all i, we have w € f(i, 1).

(By the definition of proper, w will be considered possible
by all agents at all levels.) Logical consequence, then, can
be extended in an obvious way; ¥ |= @ means that in every
knowledge model where X is true, so is @. And indeed, as
required of knowledge that is true [Fagin et al., 1995], the
following properties are shown to hold:

° |: K,a o

e =Caoa
As is needed, knowledge models will be assumed for the de-
velopments in subsequent sections.

3For a language with quantification, O£, differs from the usual
treatments of first-order epistemic logic [Fagin et al., 1995, Chapter
3] in assuming a fixed domain of discourse called standard names as
in [Levesque and Lakemeyer, 2001].
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Public Announcements

In this paper, we are also interested in showing how the log-
ical system can be used for a puzzle in a dynamical context
that involves announcements. Perhaps the simplest way to
capture this is to consider the addition of an announcement
modality [Baltag et al., 1998] to COL,. So let COL, be the
addition of the modality [¢] to COL,, where ¢ € COL,. To
give a semantics for this modality, we first define the inter-
section operator for epistemic states:

Definition 15: Given any f and f’, we define f* = f n f’
inductively as follows. For every i:

o f*(i,1)={w|we f(i,1)andwe f'(i,1)}
o fork > 1, f*(i,k) = {(w,e1,....e,) |
(w,e1,...,en) € f(i,k) and (w,ey,...,e,) € f'(i,k)}

For this definition, it is easy to show the following property:

Proposition 16: Suppose a, € COL, are Boolean combi-
nations of objective formulas and formulas of the form K;¢
and O;¢, where ¢ € COL,. Suppose f and f' are epistemic
states, and w is any world. For j # i, if f,w = K;a and
flow = KB then f o flow = K@ p) if fow =
(=K ;8Ar—K;—p) and ' is as before, then fn f',w = K B.

We define the meaning of @ € COL;" inductively as before,
with the following new rule:

o fiw = [plaiff f,w |= ¢ implies flg, w |= a.

Here f|, = f f’, where f is any proper epistemic state such
that f/,w |= A O;(¢p AC¢). So, the announcement of ¢ is de-
fined simply in terms of an epistemic state where ¢ and com-
mon knowledge about ¢ is all that is believed. (Preconditions
for announcements are omitted for simplicity [Baltag et al.,
1998].) Intuitively, the only knowing modality ensures that
the epistemic state considered is the “maximal” one where ¢
holds at all levels. On intersecting such an epistemic state
with the current one f, all structures where ¢ is not believed
are discarded.

The operator can be shown to have the following reason-
able properties [Lutz, 2006]:

= [¢lp = (¢ > p)

Proof: We prove the first item only, and the others can
be proved by induction using the first item as the base case.
By definition, f,w |= [¢]p iff f,w |= ¢ implies fl|s,w = p.
We claim f,w |= ¢ implies f|s,w = piff f,w = ¢ D p.
Suppose f, w = ¢, then the LHS is vacuously true but then so
is the RHS. Conversely, suppose f,w |= ¢. Then f|s,w |= p
iff (by definition) p € w iff f,w |= p because the epistemic
state is irrelevant iff (by assumption) f,w |=¢ > p. 1l



6 The Muddy Children Puzzle

The muddy children puzzle [Barwise, 1981; Moses et al.,
19861, which is a variant of the cheating wives puzzle
[Gamow and Stern, 1958], brings out subtle changes to the
knowledge states of a group of logical agents. The situation
is as follows. Imagine n children playing together, leading
some of them to get mud on their foreheads. Each child can
see the foreheads of all other children, but not its own. Along
comes the father, who says, “At least one of you has mud
on your forehead,” thus expressing a fact known to each of
them before he spoke. The father then asks the question, “Do
any of you know whether your forehead is dirty?,” over and
over. If two children have muddy foreheads, for example, ev-
ery child announces “no” the first time the question is asked;
but the next time, the dirty ones declares that their forehead
is muddy.

Here, a purely deductive account of the puzzle is devel-
oped as logical consequences of what is only known initially,
thereby complementing the usual approach with model con-
structions [Fagin et al., 1995].

Formally, assume m; says that child i has a muddy fore-
head. Initially, let us suppose that every child has a muddy
forehead, that is, the real world w is any world where
AllMuddy is true, where:

AllMuddy =m; A ... A m,

Next, we take note of three properties of the puzzle to charac-
terize the knowledge bases of the children: (a) first, i sees that
every other child has a muddy forehead; (b) second, i knows
that others see its forehead; and (c) third, the father announces
initially that at least one child has a muddy forehead, which
is the only thing assumed to be common knowledge because
every child has heard the father’s announcement. Putting this
together, the initial theory X is the conjunction of AllMuddy
and the knowledge bases for every i:

O,(OthersMuddy ~ (Xm; v X —m;) n C(AtLeastOne))

where,
o OthersMuddy = /\

e Xa= A i
o AtLeastOne = \/ m; is the father’s message in (c).

j2iMm; captures (a);

K ;a abbreviates “they know” for (b);

Finally, every time the father asks the question of whether
the children know their foreheads are muddy, their announce-
ments are lumped together as:

No=—-Kym ...~ K,m,.
The puzzle, then, is:
n—1 times
f_/%
Theorem 17: =% S [No]...[No|(Kimj A ... A K,my).
After (n — 1) occurrences of No,* the children know that they
have muddy foreheads. To better see the knowledge bases

“More generally, if k < n children have mud on their foreheads,
k— 1 announcements of No need to be made [Fagin et al., 1995]. For
example, if kK = 1, owing to AtLeastOne being common knowledge,
the child with the muddy forehead notices that others have clean
ones, and concludes immediately that he must be the muddy one.

in action, we give the argument for n = 2; that is, suppose
I = {a, b}, and we are to prove:

=X o [No|(Km, A Kpmyp).

Proof:  Let (f,w) be a knowledge model for ¥ and let f’
be the epistemic state where O,(No A C(No)) A Op(No A
C(No)) holds. We prove the case for a concluding that its
own forehead is muddy, the other being analogous.

Owing to the closure of knowledge under modus ponens,
(Kp(my v mp) A Kpy—m,) > Kpmy, is valid. (In contrast,
(Kp(mgy v mp) n Kpm,) > K,my, is falsifiable.) Let & denote
K,(m, v my), B denote K,—m,,y denote K,m;, and § denote
Kym,. So (@ A B) D vy is valid. Owing to the knowledge
of valid sentences, the validity of (@ A —y) D —B means
K,((a A —y) > —p) is valid, and so is true at f and f’.

Since AtLeastOne is common knowledge in X, f,w |=
K,K,AtLeastOne, that is, f,w = K,a. By construction,
fiw = —~K,y A —~K_,—y because of only knowing. (That
is, in the absence of only knowing, there are epistemic states
where, say, K,y is believed.) By construction, f/,w =
K,—y because of only knowing. Using Proposition 16,
fof,wEK,—B.

On expanding X in X, we get f,w = K,(Kym, v
K,—my,), thatis, f,w |= K,(B8Vd). By construction, f/,w |=
(—K,(Bv ) n —~K,—(B Vv §)) because of only knowing. By
Proposition 16, f n f',w = K (B v §).

Putting it together, we get f n f',w |= K6, thatis, f N
fow = K,Kpm,. When knowledge is true the sentence
Ky o yisvalid, and so f n f,w = K m,. 1l

7 Related Work

As noted, there have been some prominent proposals for
multiagent only knowing such as [Halpern, 1993; Lake-
meyer, 1993; Halpern and Lakemeyer, 2001; Waaler, 2004;
Waaler and Solhaug, 2005]. Besides being propositional, they
have problematic features, as discussed at length in [Belle and
Lakemeyer, 2010]. See that work on how these problems are
avoided using k-structures.

The underlying notion of only knowing is due to Levesque
[1990]. Incidentally, there are some related notions, such as
total knowledge [Pratt-Hartmann, 2000] and minimal knowl-
edge [Halpern and Moses, 19841, the latter of which has also
received recent multiagent treatments [van Der Hoek and Thi-
jsse, 2002]. However, these notions differ significantly from
Levesque’s only knowing [Levesque and Lakemeyer, 2001].
Although not the focus of this paper, we note that when
the knowledge base itself refers to the agent’s beliefs, only
knowing also exhibits a form of nonmonotonic reasoning; see
[Levesque and Lakemeyer, 2001] and [Belle and Lakemeyer,
2015] for discussions and references in the single and multi-
agent cases respectively.

Let us also remark that multiagent logics of knowledge are
an active focus in artificial intelligence [van der Hoek and
Wooldridge, 2012], with a number of extensions for reason-
ing about time, actions, desires, and intentions, among oth-
ers. (For an account using sets of possibilities, see [Ger-
brandy and Groeneveld, 1997].) Investigations in the area
on common knowledge and muddy children variants are
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also fairly prevalent; for example, see [Fagin et al., 1995;
van Ditmarsch et al., 2007]. The analysis of the puzzle here
is mostly by means of model constructions, with approaches
such as [Kraus and Lehmann, 1988; Elgot-Drapkin, 1991] be-
ing notable exceptions. In particular, one would observe in
this latter work that the muddy children puzzle requires an
explicit enumeration of the non-beliefs of the agents. In con-
trast, we can get off the ground simply in terms of what is
believed initially (with help from only knowing), which (to
the best of our knowledge) has not been obtained before.

Finally, the inspiration for the infinite sequence of struc-
tures is the work in [Fagin et al., 1991]. They introduce
what they call knowledge structures, also for different lev-
els. While at level 1 our concepts match (that is, just worlds),
a level 2 structure of theirs is already different from a 2-
structure. Most significantly, they are propositional, do not
treat only knowing and require knowledge to always be true.
The way that the infinite sequences work in the semantics of
the two proposals differs as well: in our case, the C' modality
causes the epistemic states to repeatedly progress, whereas
in theirs there are structures for every nesting of this modal-
ity which requires structures corresponding to many ordinal
numbers. Nonetheless, they do establish a connection to the
logic KC45, [Fagin et al., 1991, Corollary 5.9], as do we, and
so we would agree on formulas of this language.

8 Conclusions

A first-order logic of only knowing and common knowledge
was introduced that allows us to investigate the interaction be-
tween these notions, and provide a solution to the muddy chil-
dren puzzle in terms of what is only known initially. Among
other things, this logic is shown to be fully compatible with
(and extend) previous accounts, and thus is a very general
first-order proposal of only knowing in the many agent case.

Beginning with OL,, [Belle and Lakemeyer, 2010], explor-
ing issues related to axiomatization and nonmonotonic rea-
soning in the presence of common knowledge would make
for interesting future work.
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